JPH0153039B2 - - Google Patents

Info

Publication number
JPH0153039B2
JPH0153039B2 JP56146879A JP14687981A JPH0153039B2 JP H0153039 B2 JPH0153039 B2 JP H0153039B2 JP 56146879 A JP56146879 A JP 56146879A JP 14687981 A JP14687981 A JP 14687981A JP H0153039 B2 JPH0153039 B2 JP H0153039B2
Authority
JP
Japan
Prior art keywords
propynylcyclopentenolone
ester
optically active
culture
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56146879A
Other languages
Japanese (ja)
Other versions
JPS5847495A (en
Inventor
Masaru Mitsuta
Hideo Hirohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP14687981A priority Critical patent/JPS5847495A/en
Publication of JPS5847495A publication Critical patent/JPS5847495A/en
Publication of JPH0153039B2 publication Critical patent/JPH0153039B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は䞋蚘匏でしめされる±−
−ヒドロキシ−−メチル−−2′−プロピニル
−−シクロペンテノンの生化孊的光孊分割法に
関する。さらに詳しくは、アルスロバクタヌ属、
シナヌドモナス属、アクロモバクタヌ属、アルカ
リゲネス属たたはトリコデルマ属に属する埮生物
が生産する゚ステラヌれを±−−ヒドロキ
シ−−メチル−−2′−プロピニル−−シク
ロペンテノンの有機カルボン酞炭玠数〜18個
の飜和たたは䞍飜和のカルボン酞゚ステルに䜜
甚させお䞍斉加氎分解しお、光孊玔床の高い光孊
掻性−ヒドロキシ−−メチル−−2′−プロ
ピニル−−シクロペンテノンずその察掌䜓の゚
ステルを埗る工業的に有利な−ヒドロキシ−
−メチル−−2′−プロピニル−−シクロペン
テノンの生化孊的光孊分割法に関する。 本発明の察象である−ヒドロキシ−−メチ
ル−−2′−プロピニル−−シクロペンテノン
以埌、これをプロピニルシクロペンテノロンず
略称する。は、優れた殺虫掻性を有するいわゆ
る合成ピレスロむドず呌ばれる䞀矀の゚ステル化
合物の重芁なアルコヌル成分の぀ずしお知られ
おいる。 䟋えば該プロピニルシクロペンテノロンの
−チトラメチルシクロプロパンカルボ
ン酞ずの゚ステルである䞋蚘匏で瀺される
化合物は極めお匷いノツクダりン効力および臎死
効力を有する優れた殺虫剀である特公昭50−
15843号公報。 プロピニルシクロペンテノロンは䜍に䞍斉炭
玠を有するために皮の光孊異性䜓が存圚し通垞
これらの゚ステルずしおの掻性は倧きく異なる。
䟋えば䞊蚘匏で瀺される゚ステルにおいお
は−プロピニルシクロペンテノロンの゚ス
テルは察応する−−プロピニルシクロペンテ
ノロンの゚ステルに比し、その殺虫効力は数倍優
れおいる。埓぀お通垞の補造法により埗られる
±−プロピニルシクロペンテノロンを工業的に
も有利に光孊分割する技術が望たれおいる。 光孊掻性プロピニルシクロペンテノロンを補造
する方法ずしおは、±−プロピニルシクロペン
テノロンをフタル酞の半゚ステルずし、次いでこ
れを光孊掻性アミンを反応させ、光孊掻性プロピ
ニルシクロペンテノロンのゞアステレオマヌ塩を
生成させ、これを分離し、䜿甚したアミンず半゚
ステルずしお回収し、埗られた半゚ステルを加氎
分解するこずにより光孊掻性プロピニルシクロペ
ンテノロンを埗る方法が知られおいる特開昭56
−2929号公報。しかし、この方法は通算収率が
䜎いこず、耇雑な工皋を必芁ずするこず、および
高䟡な光孊掻性詊薬を必芁ずするこずなどの点
で、必ずしも充分な方法ずは蚀い難い。 本発明者らはこれらの諞問題点を克服し工業的
にもより有利な±−プロピニルシクロペンテ
ノロンの光孊分割法を確立すべく研究を重ねた結
果、アルスロバクタヌ属、シナヌドモナス属、ア
クロモバクタヌ属、アルカリゲネス属たたはトリ
コデルマ属に属する埮生物が生産する゚ステラヌ
れを±−プロピニルシクロペンテノロンの有
機カルボン酞炭玠数〜18個の飜和たたは䞍飜
和の有機カルボン酞゚ステルに䜜甚させるこず
により光孊玔床の高い光孊掻性プロピニルシクロ
ペンテノロンずその察掌䜓の゚ステルが埗られる
こずを芋い出し、これに皮々の怜蚎を加え本発明
を完成するに至぀た。次に本発明を詳现に説明す
る。本発明方法においお原料ずしお䜿甚される
±−プロピニルシクロペンテノロンの有機カル
ボン酞炭玠数〜18個の飜和の有機カルボン
酞゚ステルの補造は、゚ステル補造の垞法、䟋
えば±−プロピニルシクロペンテノロンに有
機カルボン酞の無氎物を反応させる方法あるいは
有機カルボン酞クロラむドを有機塩基の存圚䞋で
反応させるこずなどにより容易に補造するこずが
できる。 本発明で䜿甚される゚ステラヌれを生産する埮
生物ずしおは、アルスロバクタヌ属、シナヌドモ
ナス属、アクロモバクタヌ属、アルカリゲネス属
たたはトリコデルマ属に属する埮生物であ぀おリ
パヌれを含む広矩の゚ステラヌれを生産する埮生
物である。 これらの各属に属する代衚的な菌株名を䞋蚘に
䟋瀺するが、本発明の埮生物はこれらの䟋瀺限定
されるものではない。 (1) アルスロバクタヌ・シンプレツクス
Arthrobacter simplex IFO 3530 (2) シナヌドモナス・フルオレツセンス
Psecudomonas fluorescens IFO 3081 (3) アルカリゲネス・プヌカリス
Alcaligenes faecalis IFO 12669 (4) トリコデルマ・ビリデTrichoderma
viride IFO 4847 これらの菌株はいずれもAmerican Type
Culture CollectionATCCたたは倧阪垂の財
団法人醗酵研究所IFOに保存され、これらの
保存機関より入手するこずができる。 䞊蚘埮生物の培逊は、通垞垞法に埓぀お液䜓培
逊を行なうこずにより培逊液を埗る。䟋えば滅菌
した液䜓培地〔かび類、酵母類甚には麊芜゚キ
ス・酵母゚キス培地氎にペプトン5.0、
グルコヌス10.0、麊芜゚キス3.0、酵母゚キ
ス3.0を溶解し、PH6.5ずする、现菌類甚には
加糖ブむペン培地氎にグルコヌス10.0、
ペプトン5.0、肉゚キス5.0、NaCl3.0を溶
解しPH7.2ずする〕に埮生物を接皮し、通垞20〜
40℃で〜日間埀埩振盪培逊を行なう。たた必
芁に応じお固䜓培逊を行぀おもよい。 たた、これらの埮生物起源の゚ステラヌれのな
かには垂販されおいるものがあり、容易に入手す
るこずができる。垂販゚ステラヌれの具䜓䟋ずし
おはシナヌドモナス属のリパヌれ倩野補薬補、
アルカリゲネス属のリパヌれリパヌれPL各糖
産業補、アクロモバクタヌ属のリパヌれリパ
ヌれAL各糖産業補、アルスロバクタヌ属のリ
パヌれリパヌれ合同BSL合同酒粟補など
が挙げられる。 本発明方法を実斜するに際し、±−プロピニ
ルシクロペンテノロンの有機カルボン酞炭玠数
〜18個の飜和たたは䞍飜和のカルボン酞゚ス
テルの䞍斉加氎分解は、䞊蚘埮生物を培逊した培
逊液、培逊液から分離した菌䜓、゚ステラヌれを
含有する培逊濟液、あるいは各皮酵玠分離法によ
぀お菌䜓たたは培逊濟液から分離した粗補゚ステ
ラヌれ、粟補゚ステラヌれおよび゚ステラヌれ含
有抜出液たたは濃瞮液ず±−プロピニルシク
ロペンテノロンの有機カルボン酞゚ステルを混合
し、撹拌たたは振盪するこずにより行われる。た
た、固定化菌䜓あるいは固定化゚ステラヌれも䜿
甚するこずもできる。 ±−プロピニルシクロペンテノロンの有機
カルボン酞゚ステルの䞍斉加氎分解を行なう条件
ずしおは、反応枩床は10〜70℃が適圓であり、奜
熱菌の培逊液たたは奜熱菌の培逊により埗られた
耐熱性゚ステラヌれでは50〜65℃䞭枩菌の培逊液
たたは特に耐熱性を有しない゚ステラヌれでは20
〜50℃が奜たしい。 反応時間は通垞〜48時間であるが、反応枩床
を高めたり酵玠量を増加させるなどにより反応時
間の短瞮も可胜である。 反応䞭のPHは奜アルカリ性菌の培逊液のアルカ
リ性゚ステラヌれではPH〜11、奜アルカリ性で
ない埮生物の培逊液や耐アルカリ性を有しない゚
ステラヌれではPH〜が奜たしい。たた、加氎
分解によ぀お生成する有機カルボン酞を䞭和し、
反応䞭のPHを䞀定に保぀ために緩衝液の䜿甚が奜
たしく、リン酞ナトリりム、リン酞カリりムなど
の無機酞塩の緩衝液、酢酞ナトリりム、ク゚ン酞
ナトリりムなどの有機酞塩の緩衝液を䜿甚するこ
ずができる。 基質である±−プロピニルシクロペンテノ
ロンの有機カルボン酞゚ステルの䜿甚濃床は反応
液に察し〜50wtであり、奜たしくは〜
25wtである。 次に、このようにしお䞍斉加氎分解反応を行぀
た埌、遊離した光孊掻性プロピニルシクロペンテ
ノロンず未反応の察掌䜓゚ステルを分離回収す
る。この分離回収に際しおは氎蒞気蒞留、溶媒抜
出、分別蒞留、カラムクロマトグラフむヌなどの
操䜜を適宜採甚するこずができる。䟋えば反応液
を氎蒞気蒞留し留生物を゚ヌテル抜出するかある
いは盎接反応液を゚ヌテル、酢酞゚チル、ベンれ
ンなどの有機溶媒で抜出し、この抜出物を分別蒞
留し光孊掻性プロピニルシクロペンテノロンずそ
の察掌䜓の゚ステルを分離取埗するか、たたは抜
出物をシリカゲルのカラムクロマトグラフむヌに
かけ、䟋えばトル゚ン−酢酞゚チル溶
液で溶出するこずにより、先ず光孊掻性プロピニ
ルシクロペンテノロンの有機カルボン酞゚ステル
が分離され、次いでトル゚ン−酢酞゚チル
溶液で溶出を行なうこずによりその察掌䜓の
遊離のプロピニルシクロペンテノロンが分離され
る。 たた、以䞊のようにしお分離された光孊掻性プ
ロピニルシクロペンテノロンの゚ステルは、さら
に脱アシル化するこずにより容易に光孊掻性プロ
ピニルシクロペンテノロンに導くこずができる。
脱アシル化の方法ずしおは䟋えばプロピニルシク
ロペンテノロンの有機カルボン酞゚ステルに氎お
よび圓量の炭酞氎玠ナトリりムを加え、次いで10
HClを加え、PHに調補した埌、時間攪拌䞋
に還流を行なうず容易にプロピニルシクロペンテ
ノロンが分離される。 以䞊、詳现に説明したように本発明方法による
±−プロピニルシクロペンテノロンの光孊分割
は埓来知られおいる有機合成化孊的光孊分割法に
比べ工皋が簡略であり、たた高䟡な光孊掻性詊薬
を必芁ずしないので経枈的に有利である。 さらに埗られる光孊掻性プロピニルシクロペン
テノロンの収率、光孊玔床が高く工業的に極めお
有利である。 次に、本発明を実斜䟋によ぀おさらに詳现に説
明するが、本発明はこれによ぀お限定されるもの
ではない。 実斜䟋 〜 ±−プロピニルシクロペンテノロンの酢酞
゚ステル1.0ず衚に蚘茉した各゚ステラヌれ
20mgを緩衝液PH7.0、McIlvaine緩衝液たたはPH
9.5、0.2M濃床のNa2CO3−NaHCO3緩衝液10
mlに加え、30℃で攪拌子を甚いお激しく撹拌し぀
぀反応させた。24時間反応を行な぀た埌、反応物
を酢酞゚チルで抜出した。抜出液をガスクロマト
グラフむヌDEGS、1.1、180℃で分析
し、プロピニルシクロペンテノロンの酢酞゚ステ
ルずプロピニルシクロペンテノロンのピヌク面積
比より加氎分解率を算出し䞋蚘の結果を埗た。抜
出液を濃瞮し、シリカゲルカラムクロマトグラフ
むヌにかけ、トル゚ン−酢酞゚チル溶
液で溶出を行ない未反応のプロピニルシクロペン
テノロンの酢酞゚ステルを分離取埗し、さらにト
ル゚ン−酢酞゚チル溶液で溶出し、遊
離プロピニルシクロペンテノロンを取埗した。 ここで埗られた遊離プロピニルシクロペンテノ
ロンのうち10mgをトル゚ンmlに溶解し、ピリゞ
ン0.2ml、−−α−メトキシ−α−トリフルオ
ロメチルプニル酢酞クロラむド−−
MTPAクロラむド45mgを加え、䞀時間加熱還
留しプロピニルシクロペンテノロンの−−
MTPAゞアステレオマヌずし、ガスクロマトグ
ラフむヌシリコンDCQF−、30mキダピラリ
ヌカラム、180℃で光孊異性䜓分析を行ない、
−プロピニルシクロペンテノロンのゞアステ
レオマヌず−−プロピニルシクロペンテノロ
ンのゞアステレオマヌのピヌク面積比より遊離プ
ロピニルシクロペンテノロンの光孊異性䜓型およ
び光孊玔床を求めた。 䞀方、カラムクロマトグラフむヌの操䜜により
埗られた未反応゚ステルに氎ml、゚ステルず圓
量の炭酞氎玠ナトリりムを加え、さらに10HCl
氎を加えPHに調敎した埌、時間攪拌䞋に還留
し脱アシル化を行な぀た。反応液を冷华埌酢酞゚
チル、氎および食塩を加え抜出し、溶媒を留去埌
埗られた油状物をシリカゲルカラムクロマトグラ
フむヌにかけトル゚ン−酢酞゚チル溶
液で溶出し、光孊掻性プロピニルシクロペンテノ
ロンを分離取埗した。 このプロピニルシクロペンテノロンを䞊蚘ず同
様にしおガスクロマトグラフむヌにお光孊異性䜓
比を分析し未反応゚ステルの光孊異性䜓型および
光孊玔床を求めた。結果を衚に瀺す。
The present invention is represented by the following formula () (±)-4
This invention relates to a biochemical optical resolution method of -hydroxy-3-methyl-2-2'-propynyl-2-cyclopentenone. For more information, see Arthrobacter spp.
The organic carboxylic acid (±)-4-hydroxy-3-methyl-2-2'-propynyl-2-cyclopentenone (±)-4-hydroxy-3-methyl-2-2'-propynyl-2-cyclopentenone ( Asymmetrically hydrolyzing esters of saturated or unsaturated carboxylic acids having 1 to 18 carbon atoms to produce optically active 4-hydroxy-3-methyl-2-2'-propynyl-2- with high optical purity. Industrially advantageous 4-hydroxy-3 to obtain esters of cyclopentenone and its enantiomer
-Relates to a biochemical optical resolution method of methyl-2-2'-propynyl-2-cyclopentenone. 4-Hydroxy-3-methyl-2-2'-propynyl-2-cyclopentenone (hereinafter abbreviated as propynylcyclopentenolone), which is the subject of the present invention, is a so-called synthetic compound with excellent insecticidal activity. It is known as one of the important alcohol components of a group of ester compounds called pyrethroids. For example, 2 of the propynylcyclopentenolone,
The compound represented by the following formula (), which is an ester with 2,3,3-titramethylcyclopropanecarboxylic acid, is an excellent insecticide with extremely strong knock-down and lethal effects.
Publication No. 15843). Since propynylcyclopentenolone has an asymmetric carbon at the 4-position, there are two types of optical isomers, and the activities of these esters usually differ greatly.
For example, among the esters represented by the above formula (), the insecticidal efficacy of (+)-propynylcyclopentenolone ester is several times superior to that of the corresponding (-)-propynylcyclopentenolone ester. Therefore, there is a need for an industrially advantageous technique for optically resolving (±)-propynylcyclopentenolone obtained by conventional production methods. As a method for producing optically active propynylcyclopentenolone, (±)-propynylcyclopentenolone is made into a half ester of phthalic acid, and then this is reacted with an optically active amine to form a diastereomeric salt of optically active propynylcyclopentenolone. A known method is to produce optically active propynylcyclopentenolone by separating it, recovering it from the used amine as a half ester, and hydrolyzing the obtained half ester (Japanese Unexamined Patent Application Publication No. 1989-1999).
-2929 Publication). However, this method is not necessarily sufficient because it has a low total yield, requires complicated steps, and requires expensive optically active reagents. The present inventors have conducted extensive research to overcome these problems and establish an industrially more advantageous optical resolution method for (±)-propynylcyclopentenolone. Esterase produced by microorganisms belonging to the genus Achromobacter, Alcaligenes, or Trichoderma acts on organic carboxylic acid (saturated or unsaturated organic carboxylic acid having 1 to 18 carbon atoms) ester of (±)-propynylcyclopentenolone. The inventors have discovered that optically active propynylcyclopentenolone and its enantiomer ester with high optical purity can be obtained by this process, and have completed the present invention by conducting various studies on this. Next, the present invention will be explained in detail. The organic carboxylic acid (saturated organic carboxylic acid having 1 to 18 carbon atoms) ester of (±)-propynylcyclopentenolone used as a raw material in the method of the present invention can be produced by a conventional method for producing esters, such as (±)-propynylcyclopentenolone. -Propynyl It can be easily produced by reacting cyclopentenolone with an anhydride of an organic carboxylic acid or by reacting an organic carboxylic acid chloride in the presence of an organic base. The esterase-producing microorganism used in the present invention is a microorganism that belongs to the genus Arthrobacter, Pseudomonas, Achromobacter, Alcaligenes, or Trichoderma and that produces esterase in a broad sense including lipase. . Representative strain names belonging to each of these genera are illustrated below, but the microorganisms of the present invention are not limited to these examples. (1) Arthrobacter simplex IFO 3530 (2) Psecudomonas fluorescens IFO 3081 (3) Alcaligenes faecalis IFO 12669 (4) Trichoderma viride
viride) IFO 4847 All of these strains are American Type
It is preserved at the Culture Collection (ATCC) or the Institute of Fermentation (IFO) in Osaka City, and can be obtained from these institutions. For culturing the above-mentioned microorganisms, a culture solution is usually obtained by performing liquid culture according to a conventional method. For example, a sterilized liquid medium [for mold and yeast, malt extract/yeast extract medium (5.0 g of peptone in 1 part water,
Dissolve 10.0 g of glucose, 3.0 g of malt extract, and 3.0 g of yeast extract and adjust the pH to 6.5). For bacteria, use sweetened bouillon medium (10.0 g of glucose in 1 part water,
Dissolve 5.0 g of peptone, 5.0 g of meat extract, and 3.0 g of NaCl to give a pH of 7.2)] and inoculate it with microorganisms.
Carry out reciprocal shaking culture at 40°C for 1 to 3 days. Further, solid culture may be performed as necessary. Furthermore, some of these microbial-derived esterases are commercially available and can be easily obtained. Specific examples of commercially available esterases include Pseudomonas lipase (manufactured by Amano Pharmaceutical);
Lipase of the genus Alcaligenes (Lipase PL (manufactured by each sugar industry)), lipase of the genus Achromobacter (Lipase AL (manufactured by each sugar industry)), lipase of the genus Arthrobacter (Lipase Joint BSL (Joint Sake Refining)), etc. Can be mentioned. When carrying out the method of the present invention, the asymmetric hydrolysis of organic carboxylic acid (saturated or unsaturated carboxylic acid having 1 to 18 carbon atoms) ester of (±)-propynylcyclopentenolone is carried out using a culture of the above-mentioned microorganisms. liquid, bacterial cells isolated from culture liquid, culture filtrate containing esterase, crude esterase, purified esterase, and esterase-containing extract or concentrate separated from bacterial cells or culture filtrate by various enzyme separation methods (±) - by mixing the organic carboxylic acid ester of propynylcyclopentenolone and stirring or shaking. Furthermore, immobilized bacterial cells or immobilized esterase can also be used. The appropriate reaction temperature for asymmetric hydrolysis of the organic carboxylic acid ester of (±)-propynylcyclopentenolone is 10 to 70°C. 50-65℃ for thermostable esterases or 20℃ for esterases that are not particularly thermostable.
~50°C is preferred. The reaction time is usually 3 to 48 hours, but the reaction time can be shortened by raising the reaction temperature or increasing the amount of enzyme. The pH during the reaction is preferably PH8 to 11 for alkaline esterase from a culture of an alkalophilic microorganism, and PH5 to 8 for a culture of a microorganism that is not alkalophilic or an esterase that does not have alkali resistance. It also neutralizes organic carboxylic acids produced by hydrolysis,
In order to keep the pH constant during the reaction, it is preferable to use a buffer, and use an inorganic acid salt buffer such as sodium phosphate or potassium phosphate, or an organic acid salt buffer such as sodium acetate or sodium citrate. be able to. The concentration of the organic carboxylic acid ester of (±)-propynylcyclopentenolone, which is the substrate, is 1 to 50 wt%, preferably 5 to 50 wt%, based on the reaction solution.
It is 25wt%. Next, after carrying out the asymmetric hydrolysis reaction in this manner, the liberated optically active propynylcyclopentenolone and the unreacted enantiomer ester are separated and recovered. For this separation and recovery, operations such as steam distillation, solvent extraction, fractional distillation, column chromatography, etc. can be appropriately employed. For example, the reaction solution is steam-distilled and the distillate is extracted with ether, or the reaction solution is directly extracted with an organic solvent such as ether, ethyl acetate, or benzene, and this extract is fractionally distilled to produce optically active propynylcyclopentenolone and its opposite compound. The optically active organic carboxylic acid ester of propynylcyclopentenolone is first isolated by separating and obtaining the ester of the optically active propynylcyclopentenolone, or by subjecting the extract to column chromatography on silica gel and eluting with a toluene-ethyl acetate (5:1) solution. was separated and then toluene-ethyl acetate (2:
1) Free propynylcyclopentenolone, its enantiomer, is separated by elution with a solution. Furthermore, the ester of optically active propynylcyclopentenolone separated as described above can be easily led to optically active propynylcyclopentenolone by further deacylation.
For example, water and an equivalent amount of sodium hydrogen carbonate are added to the organic carboxylic acid ester of propynylcyclopentenolone, and then 10
After adjusting the pH to 5 by adding % HCl, propynylcyclopentenolone is easily separated by refluxing with stirring for 8 hours. As explained in detail above, the optical resolution of (±)-propynylcyclopentenolone by the method of the present invention is a simpler process than the conventionally known organic synthetic chemical optical resolution method, and also requires the use of expensive optically active reagents. It is economically advantageous because it does not require Furthermore, the optically active propynylcyclopentenolone obtained has a high yield and optical purity, and is extremely advantageous industrially. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Examples 1 to 4 1.0 g of (±)-propynylcyclopentenolone acetate and each esterase listed in Table 1
20mg buffer (PH7.0, McIlvaine buffer or PH
9.5, 0.2M concentration of Na2CO3 − NaHCO3 buffer) 10
ml and reacted at 30°C with vigorous stirring using a stirrer. After reacting for 24 hours, the reaction product was extracted with ethyl acetate. The extract was analyzed by gas chromatography (5% DEGS, 1.1m, 180°C), and the hydrolysis rate was calculated from the peak area ratio of propynylcyclopentenolone acetate and propynylcyclopentenolone, and the following results were obtained. . The extract was concentrated and subjected to silica gel column chromatography, eluted with a toluene-ethyl acetate (5:1) solution to separate and obtain unreacted propynylcyclopentenolone acetate, and then toluene-ethyl acetate (2:1). 1) Free propynylcyclopentenolone was obtained by elution with the solution. 10 mg of the free propynylcyclopentenolone obtained here was dissolved in 1 ml of toluene, 0.2 ml of pyridine, (-)-α-methoxy-α-trifluoromethylphenylacetic acid chloride ((-)-
Add 45 mg of MTPA chloride) and heat under reflux for 1 hour to obtain (-)- of propynylcyclopentenolone.
Optical isomer analysis was performed using gas chromatography (silicon DCQF-1, 30m capillary column, 180℃) as MTPA diastereomer.
The optical isomer type and optical purity of free propynylcyclopentenolone were determined from the peak area ratio of the diastereomer of (+)-propynylcyclopentenolone and the diastereomer of (-)-propynylcyclopentenolone. Meanwhile, 5 ml of water and an equivalent amount of sodium hydrogen carbonate to the ester were added to the unreacted ester obtained by column chromatography, and then 10% HCl was added.
After adjusting the pH to 5 by adding water, the mixture was refluxed under stirring for 8 hours to perform deacylation. After cooling the reaction solution, ethyl acetate, water and salt were added for extraction. After distilling off the solvent, the resulting oil was subjected to silica gel column chromatography and eluted with a toluene-ethyl acetate (2:1) solution to obtain optically active propynyl. Cyclopentenolone was isolated and obtained. The optical isomer ratio of this propynylcyclopentenolone was analyzed by gas chromatography in the same manner as above to determine the optical isomer type and optical purity of the unreacted ester. The results are shown in Table 1.

【衚】 実斜䟋 〜 ±−プロピニルシクロペンテノロンのカプ
リン酞゚ステル0.65ず衚に蚘茉した各゚ステ
ラヌれ10mgを緩衝液mlに加え、30℃で攪拌子を
甚いお激しく攪拌し぀぀24時間反応させた。以
埌、実斜䟋〜ず同様の操䜜を行ない衚の結
果を埗た。
[Table] Examples 5 to 7 0.65 g of capric acid ester of (±)-propynylcyclopentenolone and 10 mg of each esterase listed in Table 2 were added to 5 ml of buffer solution, and the mixture was stirred vigorously using a stirrer at 30°C. The reaction was allowed to proceed for 24 hours. Thereafter, the same operations as in Examples 1 to 4 were performed to obtain the results shown in Table 2.

【衚】 実斜䟋 〜 500ml肩付フラスコに液䜓培地〔カビ類、酵母
類甚実斜䟋には麊芜゚キス、酵母゚キス培
地氎にペプトン5.0グルコヌス10.0麊
芜゚キス3.0、酵母゚キス3.0を溶解し、PH6.5
ずする。现菌類甚実斜䟋には加糖ブむペ
ン培地氎にグルコヌス10.0、ペプトン
5.0、肉゚キス5.0、NaCl3.0を溶解し、PH
7.2ずする。〕100mlを入れお殺菌した埌、衚に
蚘茉した各埮生物を斜面培逊から癜金耳接皮
し、30℃で48時間埀埩振盪培逊した。次いでこの
培逊液に±−プロピニルシクロペンテノロン
の酢酞゚ステルを加え、30℃で24時間埀埩振
盪した埌、反応液を氎蒞気蒞留し、留出物を゚ヌ
テル抜出した。抜出物を濃瞮し、実斜䟋〜ず
同様のカラムクロマトグラフむヌ操䜜により遊離
プロピニルシクロペンテノロンを取埗した。この
遊離プロピニルシクロペンテノロンを実斜䟋〜
ず同様の操䜜により光孊異性䜓分析した。その
結果を衚に瀺す。
[Table] Examples 8 to 9 Liquid medium in a 500ml shoulder flask [For molds and yeasts (Example 9), malt extract, yeast extract medium (1 part water to 5.0 g peptone, 10.0 g glucose, 3.0 g malt extract, Dissolve 3.0g of yeast extract, pH6.5
shall be. ) For bacteria (Example 8), sweetened bouillon medium (10.0 g glucose, peptone in 1 part water)
Dissolve 5.0g, meat extract 5.0g, NaCl 3.0g, pH
7.2. )] After sterilization, two platinum loops of each microorganism listed in Table 4 were inoculated from the slant culture, and cultured with reciprocating shaking at 30°C for 48 hours. Next, 7 g of (±)-propynylcyclopentenolone acetate was added to this culture solution, and after shaking the mixture reciprocally at 30° C. for 24 hours, the reaction solution was steam distilled, and the distillate was extracted with ether. The extract was concentrated, and free propynylcyclopentenolone was obtained by the same column chromatography operation as in Examples 1 to 4. This free propynylcyclopentenolone was prepared from Examples 1 to 2.
Optical isomer analysis was performed in the same manner as in 4. The results are shown in Table 3.

【衚】 実斜䟋 10 実斜䟋ず同様の方法で調補したトリコデル
マ・ビリデIFO4847の培逊液を濟過しお培逊
濟液を埗た。この培逊濟液30mlを倍に濃瞮し、
±−プロピニルシクロペンテノロンのギ酞゚ス
テル1.5を加え、30℃で攪拌子を甚いお激しく
攪拌し぀぀30時間反応させた。以埌実斜䟋〜
ず同様の操䜜を行ない衚の結果を埗た。
[Table] Example 10 Culture solution 1 of Trichoderma viride IFO4847 prepared in the same manner as in Example 9 was filtered to obtain a culture filtrate. Concentrate 30ml of this culture filtrate 3 times,
1.5 g of formic acid ester of (±)-propynylcyclopentenolone was added, and the mixture was reacted at 30° C. for 30 hours with vigorous stirring using a stirrer. Hereinafter Examples 1 to 4
The same operation as above was performed to obtain the results shown in Table 4.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  アルスロバクタヌ属、シナヌドモナス属、ア
クロモバクタヌ属、アルカリゲネス属たたはトリ
コデルマ属に属する埮生物が生産する゚ステラヌ
れを±−−ヒドロキシ−−メチル−−
2′−プロピニル−−シクロペンテノンの有機カ
ルボン酞炭玠数〜18個の飜和たたは䞍飜和の
カルボン酞゚ステルに䜜甚させお、これを䞍斉
加氎分解しお、光孊掻性な−ヒドロキシ−−
メチル−−2′−プロピニル−−シクロペンテ
ノンずその察掌䜓の゚ステルに分割するこずを特
城ずする±−−ヒドロキシ−−メチル−
−2′−プロピニル−−シクロペンテノンの生
化孊的光孊分割法。
1 Esterase produced by a microorganism belonging to the genus Arthrobacter, Pseudomonas, Achromobacter, Alcaligenes or Trichoderma is (±)-4-hydroxy-3-methyl-2-
An optically active 4- Hydroxy-3-
(±)-4-hydroxy-3-methyl- characterized by splitting into esters of methyl-2-2'-propynyl-2-cyclopentenone and its enantiomer
Biochemical optical resolution method of 2-2'-propynyl-2-cyclopentenone.
JP14687981A 1981-09-16 1981-09-16 Biochemical optical resolution of cyclopentenolone derivative Granted JPS5847495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14687981A JPS5847495A (en) 1981-09-16 1981-09-16 Biochemical optical resolution of cyclopentenolone derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14687981A JPS5847495A (en) 1981-09-16 1981-09-16 Biochemical optical resolution of cyclopentenolone derivative

Publications (2)

Publication Number Publication Date
JPS5847495A JPS5847495A (en) 1983-03-19
JPH0153039B2 true JPH0153039B2 (en) 1989-11-10

Family

ID=15417628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14687981A Granted JPS5847495A (en) 1981-09-16 1981-09-16 Biochemical optical resolution of cyclopentenolone derivative

Country Status (1)

Country Link
JP (1) JPS5847495A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115860B1 (en) * 1983-02-03 1988-10-12 Sumitomo Chemical Company, Limited Optically active 4-hydroxy-2-cyclopentenones, and their production
US4607013A (en) * 1983-03-18 1986-08-19 Sumitomo Chemical Company, Limited Biochemical process for optical resolution of cyclopentenolone derivatives
EP0122779B1 (en) * 1983-04-19 1986-07-23 Sumitomo Chemical Company, Limited Production of optically active cyclopentenolones
EP0127386B1 (en) * 1983-05-25 1987-08-05 Sumitomo Chemical Company, Limited Process for producing optically active cyclopentenolones
JPH064035B2 (en) * 1983-07-05 1994-01-19 䜏友化孊工業株匏䌚瀟 Separation method of cyclopentenone derivatives
JPS61215342A (en) * 1985-03-19 1986-09-25 Sumitomo Chem Co Ltd Production of optically active 4-hydroxy-2-substituted-2-cyclopentenone
DE3638760A1 (en) * 1986-11-13 1988-05-26 Schering Ag METHOD FOR PRODUCING OPTICALLY ACTIVE BICYCLO (3.3.0) OCTANDIONCARBONIC ACID ESTERS
JPH06125788A (en) * 1992-05-29 1994-05-10 Kureha Chem Ind Co Ltd Production of optically active 1,2-diol derivative

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562929A (en) * 1979-06-21 1981-01-13 Sumitomo Chem Co Ltd Preparation of optically active cyclopentenolone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562929A (en) * 1979-06-21 1981-01-13 Sumitomo Chem Co Ltd Preparation of optically active cyclopentenolone

Also Published As

Publication number Publication date
JPS5847495A (en) 1983-03-19

Similar Documents

Publication Publication Date Title
EP0149674B1 (en) Process for biochemical optical resulution of cyclopentenolone derivative
JPH0153039B2 (en)
US5061629A (en) Production of 2-hydroxy substituted arylalkanoic acids and esters by enzymatic hydrolysis
EP0904348B1 (en) Process for the preparation of amino alcohols and derivatives thereof
EP0529085B1 (en) Process for producing optically active 3-chloro-1-phenyl-1-propanol and derivative thereof
US5849568A (en) Resolution of racemic indene oxide to yield (1S,2R)-indene oxide using Diplodia gossipina
JP2995870B2 (en) New microorganism
JPH0147159B2 (en)
JPH0559718B2 (en)
JPH0532035B2 (en)
JP3231325B2 (en) Method for producing optically active norborneol
EP0148272B1 (en) Process for producing optically active benzyl alcohol compounds
JP3732535B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP2698627B2 (en) Method for producing optically active amines and derivatives thereof
JP2000175693A (en) Production of (r)-2-hydroxy-1-phenoxypropane derivaive
JP3097210B2 (en) Production method of optically active alcohol
JPH0671436B2 (en) Biochemical production method of optically active 1-ethynyl-2-methyl-2-pentenol
US5238828A (en) Method for the preparation of an optically active 2-substituted carboxylic acid
JPS59140888A (en) Biochemical optical resolution of cyclopentenolone derivative
JP3003315B2 (en) Production method of optically active alcohol
JP3741758B2 (en) Process for producing optically active glycerol derivatives
JP3007461B2 (en) Method for producing optically active 2-cyclohexenylacetic acid and its ester
KR100336443B1 (en) Novel microorganism exhibiting an activity of enantioselective hydrolase and production of (s)-profen using same
JPH0451159B2 (en)
JPH06319572A (en) Production of halide compound