JPH0451159B2 - - Google Patents

Info

Publication number
JPH0451159B2
JPH0451159B2 JP8372983A JP8372983A JPH0451159B2 JP H0451159 B2 JPH0451159 B2 JP H0451159B2 JP 8372983 A JP8372983 A JP 8372983A JP 8372983 A JP8372983 A JP 8372983A JP H0451159 B2 JPH0451159 B2 JP H0451159B2
Authority
JP
Japan
Prior art keywords
ester
acid
chrysanthemum acid
primary
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8372983A
Other languages
Japanese (ja)
Other versions
JPS59210892A (en
Inventor
Masaru Mitsuta
Ryohei Komaki
Yasumitsu Ando
Hideo Hirohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP8372983A priority Critical patent/JPS59210892A/en
Publication of JPS59210892A publication Critical patent/JPS59210892A/en
Publication of JPH0451159B2 publication Critical patent/JPH0451159B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は(+)−トランス第一菊酸の生化学的
製造法に関するものである。 更に詳しくは、アルスロバクター属、フラボバ
クテリウム属、ロドトルラ属、ロドスポリジウム
属、ノカルデイア属またはサーモミセス属に属
し、一般式() (式中、Rは低級アルキル基を表わす。) で示される(±)−第一菊酸エステルに対して、
不斉加水分解能を有する微生物の生産するエステ
ラーゼを、該エステルに作用させ、これを不斉加
水分解して(+)−トランス第一菊酸と、その対
掌体のエステルに分割することを特徴とする
(+)−トランス第一菊酸の生化学的製造法に関す
る。 第一菊酸は下記式()示されるカルボン酸で
あり、アレスリン、テトラメスリン、レスメスリ
ン、フラメスリン、フエノスリンなどいわゆるピ
レスロイドと総称される低毒速効性殺虫エステル
の酸成分を構成する化合物である。 第一菊酸には、そのC1位およびC3位に、不斉
炭素が存在し、C1位の絶対配置がRのものは旋
光性が(特定の溶媒中で)(+)であることから、
(+)−第一菊酸と称され、また、C1位の絶対配
置がSのものは(−)−第一菊酸と称される。 これらのピレスロイドエステルとしての殺虫効
力においては、(+)−第一菊酸のみが有効であ
り、(−)−第一菊酸は殆んど無効である。またシ
スとトランス異性体の効力相関は対象害虫、効力
の性質により一概に論じ難いが、(+)−トランス
第一菊酸のピレスロイドが(+)−シス第一菊酸
のピレスロイドに比してノツクダウン効力または
致死効力において優れている事が多い(吉岡宏
輔、有機合成化学、第38巻、第12号、1980年)。 従つて、工業的に有利に(+)−第一菊酸を製
造することは非常に重要である。 ところで、現在知られている(+)−第一菊酸
の製造方法は、主として有機合成化学的な分割法
であるが、比較的高価な光学活性試薬を必要とす
ること、あるいは煩雑な工程を必要とすることな
どの点から、より経済的に有利な光学分割法の開
発が望まれているのが現状である。 本発明者らは経済的に有利な製法となりうる
(+)−第一菊酸の製造法を開発すべく研究を重ね
た結果、アルスロバクター属、フラボバクテリウ
ム属、ロドトルラ属、ロドスポリジウム属、ノカ
ルデイア属またはサーモミセス属に属する微生物
の産生するエステラーゼが前記一般式()で示
される(±)−第一菊酸エステルに作用して、こ
れを光学特異的に不斉加水分解しうることを見い
出し、本発明を完成するに至つた。 すなわち、本発明はアルスロバクター属、フラ
ボバクテリウム属、ロドトルラ属、ロドスポリジ
ウム属、ノカルデイア属またはサーモミセス属に
属し、一般式()で示される(±)−第一菊酸
エステルに対して、不斉加水分解能を有する微生
物の生産するエステラーゼを、該エステルに作用
させ、これを光学特異的に不斉加水分解して
(+)−トランス第一菊酸とその対掌体のエステル
に分解することによる新規でかつ純度的にも有利
な(+)−トランス第一菊酸の生化学的製造法を
提供するものである。 次に本発明方法について説明する。 本発明の原料として用いられる一般式()で
示される(±)−第一菊酸エステルは、2,5−
ジメチル−ヘキサ−2、4−ジエンと種々のジア
ゾ酢酸エステルを反応させることにより得られ、
その入手の容易さから、エチルエステルが最も一
般的である。 本発明において用いることができるエステラー
ゼはアルスロバクター属、フラボバクテリウム
属、ロドトルラ属、ロドスポリジウム属、ノカル
デイア属またはサーモミセス属に属し、上記の
(±)−第一菊酸エステルに対して、不斉加水分解
能を有する微生物の生産するエステラーゼであ
る。 本発明において特に有用な微生物株を下記に例
示する。 (1) アルスロバクター・グロビフオルミス
Arthrobacter globiformis IF−12958 (2) フラボバクテリウム・エステロアロマテイカ
ム Flavobacterum esteroaromaticum IF
−3751 (3) ロドトルラ・ルブラ Rhodotorula rubra
IF−0714 (4) ロドトルラ・ミヌータ・バール・テキセシン
ス Rhodotorula minuta var.texensis IF
−1102 (5) ロドスポリジウム・トルロイデス
Rhodosporidium toruloides IF−0871 (6) ノカルデア・アステロイデス Nocardia
asteroides IF−3424 (7) ノカルデイア・エリスロポリス Nocardia
erythropolis IF−12682 (8) サーモミセス・ラヌギノサス
Thermomyces lanuginosus IF−9738 これらの菌株はいずれもAmerican Type
Culture Collection(ATCC)または大阪市の財
団法人醗酵研究所(IF)に保存され、この保
存機関によりう入手することができる。 上記微生物の培養は常法に従つて液体培養、例
えば滅菌した液体培地に微生物を接種し、通常20
−40℃で1〜8日間往復振とう培養を行うことも
できるし、また、必要に応じて固体培養を行うこ
ともできる。 培地の組成については、通常の微生物の培養に
用いられるもので、上記微生物により利用可能な
ものであれば特に制限はなく、例えば炭素源及び
窒素源としてはグリコース、デンプン、デキスト
リン、糖密、油脂類、大豆粉、脱脂大豆粉、脂肪
大豆粕、コーンステイープリカー等を用いること
ができる。また無機塩類としては、硫安、リン酸
ニカリ、硫酸マグネシウム、尿素等を使用するこ
とができる。また、場合によつては培地中に第一
菊酸エステルや脂肪酸エステルを添加することも
可能である。 本発明方法を実施するに際し、(±)−第一菊酸
エステルの不斉加水分反応は、前記微生物を培養
した培養液、培養液、菌体懸濁液、エステラー
ゼ油出液または濃縮液などのエステラーゼ含有
物、あるいはこれらの処理物、例えば粗製エステ
ラーゼ、精製エステラーゼを含有する水溶液と該
(±)−第一菊酸エステルを混合し、撹拌または振
盪することにより行われる。 必要に応じ、非エステル系の界面活性剤を添加
してもよく、また酵素を固定化して使用すること
も可能である。 また、この時反応温度としては10〜65℃が適当
であり、高温ではエステラーゼの安定性が低下し
やすいことおよびあまり低温では反応速度が遅い
ことから20〜50℃が好ましい。 また、反応中のPHはPH4〜9、好ましくはPH7
附近であることが望ましい。 次に、このようにして不斉加水分解反応を行な
つた後、遊離した第一菊酸と未反応のエステルを
分離回収する。この分離回収に際しては溶媒抽
出、カラムクロマトグラフイー分別蒸留などの操
作を適宜採用することができる。 例えば、反応液をクロロホルム、エーテル、ベ
ンゼンあるいはトルエンなどの有機溶媒で抽出
し、この抽出物を減圧で分別蒸留し、遊離の第一
菊酸と未反応エステルとを分離取得する。 次に本発明を実施例によつてさらに詳細に説明
するが、本発明はこれらに限定されるものではな
い。 実施例 1〜9 500ml肩付フラコに液体培地〔細菌類用(実施
例1〜5)には加糖ブイヨン培地(水1にグル
コース10.0g、ペプトン5.0g、肉エキス5.0g、
食塩3.0gを溶解しPH7.2とする。)、かび類、酵母
類用(実施例6〜9)には麦芽エキス、酵母エキ
ス培地(水1にペプトン5.0g、グルコース
10.0g、麦芽エキス3.0g、酵母エキス3.0gを溶
解し、PH6.5とする。)〕150mlを入れて殺菌した
後、表1に記載した各微生物を斜面培養から2白
金耳接種し、30℃で80時間往復振盪培養した。次
いで(±)−第一菊酸エチル(シス/トランス
比;35/65)1.0gを添加し、30℃で振盪しつつ
40時間反応させた。反応後、反応物をエチルエー
テルで抽出した。抽出物をガスクロマトグラフイ
ー(カラム:10%FFAP、2.1m、170℃)で分析
し、第一菊酸と第一エチルのピーク面積比より加
水分解率を算出した。 抽出液を濃縮し、減圧下で分別蒸留を行ない、
遊離の第一菊酸と未反応の第一菊酸エチルを分離
取得した。得られた遊離第一菊酸のうち5mgをト
ルエン1mlに溶解し、等モルの塩化チオニル、ピ
リジンおよび(+)−2−オクタノールを加えて
反応させ、第一菊酸の(+)−2−オクタノール
のジアステレオマーとしガスクロマトグラフイー
(カラム:10%DCQF−1、5.1m、140℃)で異
性体分析を行つた。 結果を下記表1に示す。
TECHNICAL FIELD The present invention relates to a biochemical production method of (+)-trans primary chrysanthemum acid. More specifically, it belongs to the genus Arthrobacter, Flavobacterium, Rhodotorula, Rhodosporidium, Nocardia or Thermomyces, and has the general formula () (In the formula, R represents a lower alkyl group.) For the (±)-primary chrysanthemum acid ester,
A feature of this method is that an esterase produced by a microorganism having an asymmetric hydrolyzing ability is applied to the ester to asymmetrically hydrolyze it and split it into (+)-trans primary chrysanthemum acid and its enantiomer ester. The present invention relates to a biochemical production method of (+)-trans primary chrysanthemum acid. Chrysanthemum acid is a carboxylic acid represented by the following formula (), and is a compound constituting the acid component of low-toxicity, fast-acting insecticidal esters collectively called pyrethroids, such as allethrin, tetramethrin, resmethrin, flamethrin, and phenothrin. Daiichichrysanthemum acid has asymmetric carbon atoms at the C 1 and C 3 positions, and those with an absolute configuration of R at the C 1 position have (+) optical rotation (in a specific solvent). Therefore,
It is called (+)-primary chrysanthemum acid, and those whose absolute configuration at the C 1 position is S are called (-)-primary chrysanthemum acid. Regarding the insecticidal efficacy of these pyrethroid esters, only (+)-phenolic acid is effective, and (-)-phenolic acid is almost ineffective. Furthermore, although it is difficult to generalize the relationship between the efficacy of cis and trans isomers depending on the target pest and the nature of the efficacy, (+)-trans pyrethroids are more effective than pyrethroid cis-(+)-cis pyrethroids. They often have superior knock-down efficacy or lethal efficacy (Kosuke Yoshioka, Organic Synthetic Chemistry, Vol. 38, No. 12, 1980). Therefore, it is very important to industrially advantageously produce (+)-phenolic acid. By the way, the currently known method for producing (+)-daisylchrysanthemum acid is mainly an organic synthetic chemical resolution method, but it requires relatively expensive optically active reagents or involves complicated steps. At present, there is a desire to develop a more economically advantageous optical resolution method in view of the requirements. The present inventors have conducted repeated research to develop a method for producing (+)-phenolic acid, which can be an economically advantageous production method, and have found that Arthrobacter, Flavobacterium, Rhodotorula, Rhodosporidium spp. An esterase produced by a microorganism belonging to the genus Nocardia or Thermomyces can act on the (±)-primary chrysanthemum acid ester represented by the general formula () to optically specifically asymmetrically hydrolyze it. This discovery led to the completion of the present invention. That is, the present invention relates to (±)-primary chrysanthemum acid esters belonging to the genus Arthrobacter, Flavobacterium, Rhodotorula, Rhodosporidium, Nocardia, or Thermomyces and represented by the general formula (). Then, an esterase produced by a microorganism capable of asymmetric hydrolysis is allowed to act on the ester, and the ester is optically specifically asymmetrically hydrolyzed into (+)-trans primary chrysanthemum acid and its enantiomer ester. The present invention provides a novel biochemical method for producing (+)-trans primary chrysanthemum acid by decomposition, which is advantageous in terms of purity. Next, the method of the present invention will be explained. The (±)-primary chrysanthemum acid ester represented by the general formula () used as a raw material of the present invention is 2,5-
Obtained by reacting dimethyl-hexa-2,4-diene with various diazoacetic esters,
Ethyl ester is the most common because of its availability. Esterases that can be used in the present invention belong to the genus Arthrobacter, Flavobacterium, Rhodotorula, Rhodosporidium, Nocardia, or Thermomyces, and are , is an esterase produced by microorganisms with asymmetric hydrolysis ability. Particularly useful microbial strains in the present invention are illustrated below. (1) Arthrobacter globifuormis
Arthrobacter globiformis IF−12958 (2) Flavobacterium esteroaromaticum IF
−3751 (3) Rhodotorula rubra
IF−0714 (4) Rhodotorula minuta var.texensis IF
−1102 (5) Rhodosporidium toruloides
Rhodosporidium toruloides IF−0871 (6) Nocardia asteroides
asteroides IF−3424 (7) Nocardia erythropolis
erythropolis IF−12682 (8) Thermomyces lanuginosus
Thermomyces lanuginosus IF−9738 All of these strains are American Type.
It is preserved at the Culture Collection (ATCC) or the Fermentation Research Institute ( IFO ) in Osaka City, and can be obtained through these institutions. The above-mentioned microorganisms are cultured in a liquid culture according to a conventional method, for example, by inoculating the microorganisms into a sterilized liquid medium.
Reciprocating shaking culture can be performed at -40°C for 1 to 8 days, and solid culture can also be performed if necessary. The composition of the medium is not particularly limited as long as it is used for the cultivation of ordinary microorganisms and can be used by the above microorganisms.For example, carbon sources and nitrogen sources include glycose, starch, dextrin, molasses, fats and oils. Soybean flour, defatted soybean flour, fatty soybean meal, cornstarch liquor, etc. can be used. Further, as inorganic salts, ammonium sulfate, dipotassium phosphate, magnesium sulfate, urea, etc. can be used. In some cases, it is also possible to add primary chrysanthemum acid ester or fatty acid ester to the medium. When carrying out the method of the present invention, the asymmetric hydrolysis reaction of the (±)-primary chrysanthemum acid ester is carried out using a culture solution in which the microorganism is cultured, a culture solution, a bacterial cell suspension, an esterase oil extract, or a concentrated solution. This is carried out by mixing the (±)-primary chrysanthemum acid ester with an aqueous solution containing an esterase-containing product or a processed product thereof, such as crude esterase or purified esterase, and stirring or shaking the mixture. If necessary, a non-ester surfactant may be added, and the enzyme may be immobilized for use. Further, the appropriate reaction temperature at this time is 10 to 65°C, and 20 to 50°C is preferable since the stability of esterase tends to decrease at high temperatures and the reaction rate is slow at too low temperatures. In addition, the PH during the reaction is PH4-9, preferably PH7
Preferably nearby. Next, after carrying out the asymmetric hydrolysis reaction in this manner, the liberated Daishu chrysanthemum acid and unreacted ester are separated and recovered. For this separation and recovery, operations such as solvent extraction, column chromatography, and fractional distillation can be appropriately employed. For example, the reaction solution is extracted with an organic solvent such as chloroform, ether, benzene, or toluene, and the extract is fractionally distilled under reduced pressure to separate and obtain free chrysanthemum acid and unreacted ester. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Examples 1 to 9 Liquid medium in a 500 ml flask with a shoulder [For bacteria (Examples 1 to 5), sweetened bouillon medium (10.0 g of glucose, 5.0 g of peptone, 5.0 g of meat extract in 1 part of water,
Dissolve 3.0g of salt to adjust the pH to 7.2. ), for molds and yeasts (Examples 6 to 9), malt extract, yeast extract medium (1 part water, 5.0 g peptone, glucose
Dissolve 10.0g, malt extract 3.0g, and yeast extract 3.0g, and adjust the pH to 6.5. )] After sterilization, two loopfuls of each microorganism listed in Table 1 were inoculated from the slant culture, and cultured with reciprocating shaking at 30°C for 80 hours. Next, 1.0 g of (±)-ethyl monochrylate (cis/trans ratio; 35/65) was added, and the mixture was shaken at 30°C.
The reaction was allowed to proceed for 40 hours. After the reaction, the reaction product was extracted with ethyl ether. The extract was analyzed by gas chromatography (column: 10% FFAP, 2.1 m, 170°C), and the hydrolysis rate was calculated from the peak area ratio of primary chrysanthemum acid and primary ethyl. Concentrate the extract and perform fractional distillation under reduced pressure.
Free chrysanthemum acid and unreacted ethyl chrysanthemum acid were separated and obtained. 5 mg of the obtained free chrysanthemum acid was dissolved in 1 ml of toluene, and equimolar amounts of thionyl chloride, pyridine and (+)-2-octanol were added and reacted. Isomer analysis was performed using gas chromatography (column: 10% DCQF-1, 5.1 m, 140°C) as a diastereomer of octanol. The results are shown in Table 1 below.

【表】【table】

【表】 実施例 10 実施例1と同様の方法で調製したアルスロバク
ター・グロビスフオルミス(IFO−12958)の培
養液200mlから遠心分離によつて集菌し蒸留水で
2回洗浄した後、0.1M濃度NaH2PO4
Na2HPO4緩衝液(PH7.0)30mlに懸濁させた。こ
の菌体懸濁液を超音波細胞破砕装置で処理して、
菌体を破砕し、遠心分離により、菌体破片を分離
除去し、粗酵素液を得た。この粗酵素液20mlに
(±)−第一菊酸エチル0.5gを添加し、40℃で撹
拌しつつ24時間反応させた。以後実施例1と同様
の操作で分離分析を行ない、加水分解率と遊離第
一菊酸の異性体比率を求めた。結果を表2に示
す。
[Table] Example 10 Bacteria were collected by centrifugation from 200 ml of Arthrobacter globisformis (IFO-12958) culture solution prepared in the same manner as in Example 1, and washed twice with distilled water. After, 0.1M concentration NaH 2 PO 4
It was suspended in 30 ml of Na2HPO4 buffer (PH7.0). This bacterial cell suspension is treated with an ultrasonic cell disruption device,
The bacterial cells were crushed and the bacterial cell fragments were separated and removed by centrifugation to obtain a crude enzyme solution. To 20 ml of this crude enzyme solution was added 0.5 g of (±)-ethyl monochrylate, and the mixture was reacted at 40° C. for 24 hours with stirring. Thereafter, separation analysis was performed in the same manner as in Example 1, and the hydrolysis rate and the isomer ratio of free chrysanthemum acid were determined. The results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 アルスロバクター属、フラボバクテリウム
属、ロドトルラ属、ロドスポリジウム属、ノカル
デイア属またはサーモミセス属に属し、一般式 (式中、Rは低級アルキル基を表す。) で示される(±)−第一菊酸エステルに対して、
不斉加水分解能を有する微生物の生産するエステ
ラーゼを、該エステルに作用させ、これを不斉加
水分解して、(+)−トランス第一菊酸とその対掌
体のエステルに分割することを特徴とする(+)
−トランス第一菊酸の生化学的製造法。
[Scope of Claims] 1 Belongs to the genus Arthrobacter, Flavobacterium, Rhodotorula, Rhodosporidium, Nocardia or Thermomyces, and has the general formula (In the formula, R represents a lower alkyl group.) For the (±)-primary chrysanthemum acid ester,
The method is characterized in that an esterase produced by a microorganism having an asymmetric hydrolyzing ability is applied to the ester to asymmetrically hydrolyze it and split it into (+)-trans primary chrysanthemum acid and its enantiomer ester. (+)
-Biochemical production method of trans-daisy chrysanthemum acid.
JP8372983A 1983-05-12 1983-05-12 Biochemical preparation of optically active chrysanthemum-monocarboxylic acid Granted JPS59210892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8372983A JPS59210892A (en) 1983-05-12 1983-05-12 Biochemical preparation of optically active chrysanthemum-monocarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8372983A JPS59210892A (en) 1983-05-12 1983-05-12 Biochemical preparation of optically active chrysanthemum-monocarboxylic acid

Publications (2)

Publication Number Publication Date
JPS59210892A JPS59210892A (en) 1984-11-29
JPH0451159B2 true JPH0451159B2 (en) 1992-08-18

Family

ID=13810605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8372983A Granted JPS59210892A (en) 1983-05-12 1983-05-12 Biochemical preparation of optically active chrysanthemum-monocarboxylic acid

Country Status (1)

Country Link
JP (1) JPS59210892A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69225009T2 (en) * 1991-01-10 1998-11-19 Sumitomo Chemical Co A gene encoding asymmetrically active esterase

Also Published As

Publication number Publication date
JPS59210892A (en) 1984-11-29

Similar Documents

Publication Publication Date Title
EP0264457B1 (en) Process for preparing optically active cyclopropanecarboxylic acids
JPS61239899A (en) Biotechnological production of optically active alpha-arylalkanoic acid
EP0149674B1 (en) Process for biochemical optical resulution of cyclopentenolone derivative
EP0080827B1 (en) Method for biotechnologically preparing (s)-(-)-alpha-cyano-3-phenoxybenzyl alcohol
US4985365A (en) Process for producing optically active benzyl alcohol compound
JPS5847495A (en) Biochemical optical resolution of cyclopentenolone derivative
US5180671A (en) Method for producing optically active cyclopropane carboxylic acid
EP0356912A2 (en) A method for the preparation of an optically active 2-substituted carboxylic acid
JP2995870B2 (en) New microorganism
JPH0532035B2 (en)
JPH0451159B2 (en)
JP3732535B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
EP0118163B1 (en) Method for biotechnologically preparing optically active alpha-cyano-3-phenoxybenzyl alcohol
EP0148272B1 (en) Process for producing optically active benzyl alcohol compounds
JPH0147159B2 (en)
JPH0559718B2 (en)
US5238828A (en) Method for the preparation of an optically active 2-substituted carboxylic acid
JP3741758B2 (en) Process for producing optically active glycerol derivatives
JPS6254479B2 (en)
JPH0679557B2 (en) Process for producing optically active cis-cyclopropanecarboxylic acid
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JP4711367B2 (en) Method for producing optically active amino alcohol derivative
JPH0789953B2 (en) Biochemical production method of optically active 2- (4-phenoxyphenoxy) propan-1-ol
JPH1080298A (en) Production of optically active substance of 2-halo-2-fluorocyclopropanecarboxylic acid
JPS59130188A (en) Biochemical preparation of optically active alpha-cyano-3-phenoxybenzyl alcohol