JPH0152652B2 - - Google Patents

Info

Publication number
JPH0152652B2
JPH0152652B2 JP21733484A JP21733484A JPH0152652B2 JP H0152652 B2 JPH0152652 B2 JP H0152652B2 JP 21733484 A JP21733484 A JP 21733484A JP 21733484 A JP21733484 A JP 21733484A JP H0152652 B2 JPH0152652 B2 JP H0152652B2
Authority
JP
Japan
Prior art keywords
fluidized bed
sand
fluidized
amount
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21733484A
Other languages
Japanese (ja)
Other versions
JPS6196317A (en
Inventor
Shigeru Kosugi
Harumitsu Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP21733484A priority Critical patent/JPS6196317A/en
Publication of JPS6196317A publication Critical patent/JPS6196317A/en
Publication of JPH0152652B2 publication Critical patent/JPH0152652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/0007Pressure measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、都市ゴミや産業廃棄物の流動床焼却
炉或いは流動床熱分解炉などの流動床熱反応炉に
おいて、流動媒体中に含有される不燃物等の流動
化不適物の量を検出、把握し、その量をほぼ一定
に維持しながら運転する流動床熱反応炉の制御方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to a fluidized bed thermal reactor such as a fluidized bed incinerator or a fluidized bed pyrolysis furnace for municipal waste or industrial waste. The present invention relates to a method of controlling a fluidized bed thermal reactor that detects and grasps the amount of materials unsuitable for fluidization, such as incombustible materials, and operates while maintaining the amount substantially constant.

なお、本明細書において「不燃物」とは、燃焼
しない物のほか、熱分解しない物も指すものとす
る。
Note that in this specification, the term "non-combustible material" refers to not only non-combustible materials but also materials that do not thermally decompose.

〔従来技術〕[Prior art]

例えば砂等の流動媒体により形成された流動層
によつて都市ゴミや産業廃棄物等の被処理物を焼
却する流動床焼却炉においては、運転中に燃焼物
中に含まれたビン、カン、石、金属製品等の不燃
物が炉内に蓄積してくるため、砂と共にその不燃
物を抜き出す必要がある。
For example, in a fluidized bed incinerator that incinerates materials to be treated such as municipal garbage and industrial waste in a fluidized bed formed of a fluidized medium such as sand, bottles, cans, etc. Since non-combustible materials such as stones and metal products accumulate in the furnace, it is necessary to extract the non-combustible materials along with the sand.

この場合、不燃物の抜き出し量が供給量より少
ない時には、不燃物は炉内に益々蓄積してゆくこ
とになり、ついには流動不良に陥つてしまう。ま
た不燃物の抜き出し量が供給量より多い時には、
不燃物は炉内にそれ以上蓄積することはないが、
不燃物と共に排出される砂を必要以上に多量に抜
き出すことになり、熱損失が大きくなる。
In this case, when the amount of incombustibles extracted is less than the amount of incombustibles supplied, the incombustibles will accumulate more and more in the furnace, eventually leading to poor flow. Also, when the amount of incombustibles extracted is greater than the amount supplied,
Incombustibles will not accumulate further in the furnace, but
This results in a larger amount of sand being discharged together with incombustibles being extracted than necessary, resulting in increased heat loss.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来は、炉内の不燃物濃度(流動媒体中の不燃
物の含有量)を検出することが困難であつたた
め、常時一定量の砂と不燃物との混合物を抜き出
して、砂のみを炉内へ戻すことにより、炉内の不
燃物濃度を調整していた。
Conventionally, it was difficult to detect the concentration of noncombustibles in the furnace (the content of noncombustibles in the fluid medium), so a certain amount of the mixture of sand and noncombustibles was constantly extracted, and only the sand was kept in the furnace. The concentration of incombustibles inside the furnace was adjusted by returning it to

この場合供給される燃焼物中の不燃物量と排出
される砂中の不燃物量とのバランスがくずれた場
合、流動不良になつたり、もしくは熱損失が過大
となり、低質ゴミが自燃しない或いは熱分解に必
要な熱量が増えるというような事態を招く欠点が
あつた。
In this case, if the balance between the amount of noncombustibles in the supplied combustible material and the amount of noncombustibles in the discharged sand is lost, poor flow may occur, or heat loss may become excessive, resulting in low-quality waste not combusting on its own or undergoing thermal decomposition. The drawback was that the amount of heat required increased.

以上のことから、炉内の砂等の流動媒体中の不
燃物の濃度は、或る一定の範囲の値を保つことが
望ましく、例えば、都市ゴミ焼却炉の場合、不燃
物濃度は5〜10%の範囲にあるのが望ましい。と
くに不燃物含有率の高い産業廃棄物を焼却する場
合には、この不燃物の供給と排出のバランスを、
砂抜き出し量を最低に抑えたままで達成すること
が不可欠である。そのためには、炉内の不燃物濃
度をできるだけ正確に検出し、不燃物濃度が高い
場合には砂の抜き出し量を増加させ低い場合には
抜き出し量を減少させるか、或いは燃焼物の供給
を増減する必要があるが、簡単に不燃物濃度を検
出する方法がなかつた。
From the above, it is desirable that the concentration of incombustibles in the fluidized medium such as sand in the furnace is kept within a certain range.For example, in the case of a municipal waste incinerator, the concentration of incombustibles is between 5 and 10%. % range is desirable. In particular, when incinerating industrial waste with a high content of noncombustibles, the balance between the supply and discharge of noncombustibles must be
It is essential to achieve this while keeping the amount of sand removed to a minimum. To do this, it is necessary to detect the concentration of noncombustibles in the furnace as accurately as possible, and if the concentration of noncombustibles is high, increase the amount of sand extracted, and if it is low, reduce the amount of sand removed, or increase or decrease the supply of combustibles. However, there was no easy way to detect the concentration of noncombustibles.

本発明は、従来のものの上記の問題点を解決
し、簡単な方法により流動床焼却炉内の不燃物の
濃度を検出し、この値をほぼ一定の範囲内に収め
るようにして、流動層につねに良好な流動状態を
維持させ、燃焼物の完全な焼却を達成しようとす
ることを目的とするものである。
The present invention solves the above-mentioned problems of the conventional incinerator, detects the concentration of incombustibles in a fluidized bed incinerator by a simple method, keeps this value within a substantially constant range, and incinerates the fluidized bed. The purpose is to always maintain a good fluid state and achieve complete incineration of the combustible material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、焼却炉内の不燃物の濃度の変化に伴
つて流動空気の圧力変動波形が変化することに着
目してなされたもので、上記の問題点を解決する
ための手段として、底部に流動化気体の分散器を
備え、その上方に流動層を形成する流動床熱反応
炉の制御方法において、前記分散器から流動層に
吹き込まれる気体の圧力変動周波数を検出し、該
検出値に基づいて被処理物の供給量又は流動層内
の流動媒体の抜き出し量を制御することにより、
流動媒体中の不燃物等の流動化不適物の含有量を
ほぼ一定範囲内に維持するようにすることを特徴
とする、流動床熱反応炉の制御方法を提供する。
The present invention was made by focusing on the fact that the pressure fluctuation waveform of flowing air changes with the change in the concentration of noncombustibles in the incinerator. In a method for controlling a fluidized bed thermal reactor that is equipped with a fluidized gas distributor and forms a fluidized bed above the fluidized bed thermal reactor, the pressure fluctuation frequency of the gas blown into the fluidized bed from the distributor is detected, and based on the detected value. By controlling the supply amount of the material to be treated or the amount of fluidized medium withdrawn from the fluidized bed,
A method for controlling a fluidized bed thermal reactor is provided, which is characterized in that the content of substances unsuitable for fluidization, such as incombustible substances, in a fluidized medium is maintained within a substantially constant range.

〔実施例〕〔Example〕

以下、図面を参照し焼却炉における実施例に基
づいて本発明を説明する。
Hereinafter, the present invention will be described based on an example in an incinerator with reference to the drawings.

第1図において、1は焼却炉本体で、その底部
には多数の空気噴出孔を有する空気分散器2を備
え、その上方には相当の高さに砂が載置され、流
動層12を形成している。空気分散器2の下方に
は、流動空気を供給するためのウインドボツクス
3が設けられている。
In Fig. 1, reference numeral 1 denotes an incinerator main body, the bottom of which is equipped with an air disperser 2 having a large number of air ejection holes, and above which sand is placed at a considerable height to form a fluidized bed 12. are doing. A wind box 3 is provided below the air distributor 2 for supplying flowing air.

炉底には、砂及び不燃物を抜け出すための不燃
物取り出しコンベア7があり、それより砂と不燃
物の混合物が抜き出された後、振動篩9によつて
分級される。そして不燃物、即ち流動化不適物は
残渣として炉外へ排出され、砂、即ち流動媒体は
図示しない移動手段によつて炉内へ返送されて再
使用される。
At the bottom of the furnace is a non-combustible material removal conveyor 7 for removing sand and non-combustible materials, from which a mixture of sand and non-combustible materials is extracted and then classified by a vibrating sieve 9. The incombustible materials, ie, the materials unsuitable for fluidization, are discharged from the furnace as residue, and the sand, ie, the fluidizing medium, is returned to the furnace by a moving means (not shown) and reused.

ウインドボツクス3から空気分散器2を通して
流動層に供給される流動空気は、流動層の流動状
態に応じてその状態に特有な圧力変動を示すこと
が知られている。圧力変動周波数fは、 f=K・Lx・VY で表される。ここに、 L:静止時の流動層の高さ V:流動速度 X、Y:定数 K:流動媒体によつて定まる定数 である。
It is known that the fluidized air supplied from the wind box 3 to the fluidized bed through the air distributor 2 exhibits pressure fluctuations specific to the fluidized state of the fluidized bed. The pressure fluctuation frequency f is expressed as f=K・L x・V Y. Here, L: Height of the fluidized bed at rest V: Flow velocity X, Y: Constant K: Constant determined by the fluid medium.

従つて、L及びVが一定の場合、圧力変動周波
数fは、流動媒体によつて決定される。この圧力
変動周波数fは、第1図に示すように、ウインド
ボツクス3内にひずみゲージ4を設置し、その検
出値を動歪計5によつて増幅した後、FFTアナ
ライザ6を用いて周波数分析を行うことにより、
簡単に求めることができる。
Therefore, if L and V are constant, the pressure fluctuation frequency f is determined by the flowing medium. As shown in FIG. 1, this pressure fluctuation frequency f is determined by installing a strain gauge 4 in a wind box 3, amplifying the detected value with a dynamic strain meter 5, and then frequency-analyzing it using an FFT analyzer 6. By doing
can be easily found.

そこで、流動層における圧力変動現象について
考えてみるに、分散器からの流動空気を徐々に増
加させてゆくと、最初、空気は砂の間を静かに流
れる状態(固定層)を示すが、空気量が或る程度
以上になると、空気は砂の間を気泡となつて流
れ、砂が躍動する状態となる。これを流動層と称
する。この状態では、空気は分散器真上に噴出し
たとき気泡を生成し、気泡は合体して次第に成長
しながら上昇し、層の表面に達したとき破裂して
排出する。層内の圧力変動現象はこの気泡の生
成、成長、破裂によつて起こり、ランダムな変動
波形を示すが、波はかなり周期的である。
Therefore, when considering the pressure fluctuation phenomenon in a fluidized bed, when the fluidized air from the disperser is gradually increased, at first the air appears to flow quietly between the sand (fixed bed), but then When the amount exceeds a certain level, the air flows between the sand in the form of bubbles, causing the sand to move. This is called a fluidized bed. In this state, air generates bubbles when it is ejected directly above the disperser, the bubbles coalesce and gradually grow as they rise, and when they reach the surface of the layer they burst and are discharged. The pressure fluctuation phenomenon in the layer is caused by the formation, growth, and bursting of these bubbles, and shows a random fluctuation waveform, but the waves are quite periodic.

この圧力変動の解析は次の式を用いてパワース
ペクトルを求めることにより行つた。
Analysis of this pressure fluctuation was performed by obtaining a power spectrum using the following equation.

φ=1/T|∫X(t)・e-j2ft・dt|2 ここにf:圧力変動周波数、t:時間である。 φ=1/T|∫X(t)・e -j2ft・dt| 2where f: pressure fluctuation frequency, t: time.

この計算は、512個のサンプルを採取した上、
FFTアナライザを用いて行なつた。その結果は
第2図a,bに示すとおりであるが、かなり急な
ピークをもつことから周期的波形であることがわ
かる。
This calculation was performed after collecting 512 samples.
This was done using an FFT analyzer. The results are shown in FIGS. 2a and 2b, and it can be seen that the waveform is periodic because it has a fairly steep peak.

このピークの位置は不燃物の濃度によつて変化
するが、これは不燃物即ち流動化不適物の濃度の
相違により、気泡の生成、成長、破裂の状態が変
化するためである。とくに圧力変動周波数fは、
気泡の個数と密接な関係があり、その数が多い程
圧力変動周波数fは小さくなる傾向がある。従つ
て不燃物即ち流動化適物により、気泡の合体、成
長が促進され、個数が減少するので、不燃物濃度
が高い程ピークの周波数が小さくなるものと考え
られる(第3図参照)。
The position of this peak changes depending on the concentration of noncombustibles, and this is because the conditions of bubble generation, growth, and bursting change depending on the concentration of noncombustibles, that is, fluidization unsuitable materials. In particular, the pressure fluctuation frequency f is
There is a close relationship with the number of bubbles, and the larger the number, the smaller the pressure fluctuation frequency f tends to be. Therefore, it is thought that the non-combustibles, that is, the fluidizing materials, promote the coalescence and growth of bubbles and reduce the number of bubbles, so that the higher the concentration of non-combustibles, the smaller the peak frequency becomes (see Figure 3).

上記のように、L及びVが一定である場合、圧
力変動周波数fは、流動媒体の性質即ち不燃物濃
度によつて決定されることが理解される。そして
第3図に見るように、砂中の不燃物の濃度を適正
な範囲、例えば5〜10%の範囲に維持するために
は、 0.6<f<0.7 になるように調節するのが好ましい。
As mentioned above, it is understood that when L and V are constant, the pressure fluctuation frequency f is determined by the nature of the fluid medium, ie the concentration of non-combustibles. As shown in FIG. 3, in order to maintain the concentration of incombustibles in the sand within an appropriate range, for example within a range of 5 to 10%, it is preferable to adjust the concentration so that 0.6<f<0.7.

それは、制御装置13により焼却炉1の炉頂に
設けた原料投入コンベア8と焼却炉1の炉底に取
り付けられた不燃物取り出しコンベア7とを制御
することにより、即ち、f<0.6の場合には抜き
出し時間を長くし、0.6<f<0.7の場合には抜き
出し時間を短くすることにより、余分な砂の抜き
出しによる熱損失を発生することなく、最善の流
動状態を確保することができる。さもなくば、燃
焼物を供給するコンベアの速度を制御することに
より、不燃物濃度を制御することも勿論可能であ
る。
This is achieved by controlling the raw material input conveyor 8 installed at the top of the incinerator 1 and the incombustible material removal conveyor 7 installed at the bottom of the incinerator 1 using the control device 13. In other words, when f<0.6, By lengthening the extraction time when 0.6<f<0.7, and shortening the extraction time when 0.6<f<0.7, it is possible to ensure the best flow condition without generating heat loss due to extraction of excess sand. Otherwise, it is of course possible to control the concentration of non-combustibles by controlling the speed of the conveyor supplying the combustibles.

以上は流動層焼却炉について述べたが流動層熱
分解炉においても同様である。
The above description has been made regarding a fluidized bed incinerator, but the same applies to a fluidized bed pyrolysis furnace.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明は、空気分散器から流動
層に吹き込まれる流動化気体の変動周波数を検出
し、それに基づいて時々刻々変化する流動層内の
不燃物の含有量を正確に把握し、適確に対応処置
を講ずることができるので、つねに流動層内の不
燃物の濃度を所望の範囲内に維持することによ
り、流動層の最善の流動状態、従つて流動床焼却
炉の最善の運転状態を確保することができる。従
つて、例えばビン、缶等の不燃物を多量に含むも
のであつても、安定した焼却操作が可能となり、
また発熱量が低い廃棄物であつても助燃が不要と
なつたり、又、減つたり、することが期待でき、
都市ゴミまたは産業廃棄物処理に貢献するところ
が大きい。
As described above, the present invention detects the fluctuating frequency of the fluidizing gas blown into the fluidized bed from the air disperser, and based on this, accurately grasps the content of noncombustibles in the fluidized bed, which changes from time to time, Since appropriate countermeasures can be taken, the concentration of incombustibles in the fluidized bed can always be maintained within the desired range, thereby ensuring the best fluidization state of the fluidized bed and therefore the best operation of the fluidized bed incinerator. state can be secured. Therefore, stable incineration operations are possible even for items containing large amounts of non-combustible materials, such as bottles and cans.
In addition, even for waste with a low calorific value, it is expected that auxiliary combustion will become unnecessary or will be reduced.
It greatly contributes to the treatment of municipal garbage or industrial waste.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する流動床焼却炉の説明
図、第2図a,bは空気圧力変動の周波数分析結
果を示す図、第3図は不燃物濃度と空気圧変動周
波数との関係を示すグラフである。 1……焼却炉本体、2……空気分散器、3……
ウインドボツクス、4……ひずみゲージ、5……
動歪計、6……FFTアナライザ、7……不燃物
取り出しコンベア、8……原料投入コンベア、9
……振動篩、12……流動層、13……制御装
置。
Figure 1 is an explanatory diagram of a fluidized bed incinerator implementing the present invention, Figures 2a and b are diagrams showing the frequency analysis results of air pressure fluctuations, and Figure 3 shows the relationship between the concentration of incombustibles and the frequency of air pressure fluctuations. This is a graph showing. 1... Incinerator main body, 2... Air disperser, 3...
Wind box, 4...Strain gauge, 5...
Dynamic strain meter, 6... FFT analyzer, 7... Non-combustible material removal conveyor, 8... Raw material input conveyor, 9
... vibrating sieve, 12 ... fluidized bed, 13 ... control device.

Claims (1)

【特許請求の範囲】[Claims] 1 底部に流動化気体の分散器を備え、その上方
に流動層を形成する流動床熱反応炉の制御方法に
おいて、前記分散器から流動層に吹き込まれる気
体の圧力変動周波数を検出し、該検出値に基づい
て被処理物の供給量又は流動層内の流動媒体の抜
き出し量を制御することにより、流動媒体中の不
燃物等の流動化不適物の含有量をほぼ一定範囲内
に維持するようにすることを特徴とする、流動床
熱反応炉の制御方法。
1. In a method of controlling a fluidized bed thermal reactor that is equipped with a fluidizing gas distributor at the bottom and forms a fluidized bed above the fluidized bed, the pressure fluctuation frequency of the gas blown from the distributor into the fluidized bed is detected; By controlling the supply amount of the material to be treated or the amount of fluidized medium withdrawn from the fluidized bed based on the value, the content of substances unsuitable for fluidization, such as incombustibles, in the fluidized medium can be maintained within a substantially constant range. A method for controlling a fluidized bed thermal reactor, characterized in that:
JP21733484A 1984-10-18 1984-10-18 Control of thermal reaction furnace of fluidized bed type Granted JPS6196317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21733484A JPS6196317A (en) 1984-10-18 1984-10-18 Control of thermal reaction furnace of fluidized bed type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21733484A JPS6196317A (en) 1984-10-18 1984-10-18 Control of thermal reaction furnace of fluidized bed type

Publications (2)

Publication Number Publication Date
JPS6196317A JPS6196317A (en) 1986-05-15
JPH0152652B2 true JPH0152652B2 (en) 1989-11-09

Family

ID=16702547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21733484A Granted JPS6196317A (en) 1984-10-18 1984-10-18 Control of thermal reaction furnace of fluidized bed type

Country Status (1)

Country Link
JP (1) JPS6196317A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940000879B1 (en) * 1986-10-08 1994-02-03 배브콕 히다찌 가부시끼가이샤 Operation control device for fluidized bed combustion apparatus
US5022268A (en) * 1989-05-22 1991-06-11 Exxon Research And Engineering Company Passive acoustics system to monitor fluidized bed systems
EP0509684A3 (en) * 1991-04-15 1993-06-23 Foster Wheeler Usa Corporation Fluidized bed reactor with extraction of particulate material
JP2651768B2 (en) * 1992-06-19 1997-09-10 株式会社荏原製作所 Fluid bed boiler facility with back ash classification equipment
JP2011122800A (en) * 2009-12-14 2011-06-23 Sumitomo Heavy Ind Ltd Fluidized bed combustion furnace and method for operating the same
JP5518938B2 (en) * 2012-06-01 2014-06-11 月島機械株式会社 Method of conveying fluid medium in pressurized fluidized furnace system

Also Published As

Publication number Publication date
JPS6196317A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US5078100A (en) Method and apparatus for burning solid or sludge-like fuels in a fluidized bed
US6418866B1 (en) Operating method of fluidized-bed incinerator and the incinerator
US4757771A (en) Method and apparatus for stable combustion in a fluidized bed incinerator
Suksankraisorn et al. Co-firing of Thai lignite and municipal solid waste (MSW) in a fluidised bed: Effect of MSW moisture content
JPH0152652B2 (en)
EP0028021A1 (en) Method and apparatus for pyrolyzing
JPWO2012066802A1 (en) Fluidized bed furnace and waste treatment method
US4291635A (en) Apparatus for feeding fluidized bed incinerator, and method of autogenic operation of same
JP2007271204A (en) Operation control method of gasification melting system, and system
JP2764382B2 (en) Circulating fluidized bed reactor for low-grade fuel
JP2015045486A (en) Fluidized-bed boiler and fluidized-bed boiler operation method
Okasha Modeling combustion of straw–bitumen pellets in a fluidized bed
JPS6260611B2 (en)
JP2004060927A (en) Sludge incinerating method and incinerating equipment using fluidized incinerator
JPH0816526B2 (en) Method and apparatus for controlling circulating particle amount in fluidized bed incinerator
JP2005308259A (en) Fluidized bed partial combustion furnace operating method
JP2004301448A (en) Fluid bed incinerator and its operating method
JP3100365B2 (en) Fluidized bed incinerator
JP2003240209A (en) Circulating fluidized bed furnace and circulating fluidized bed boiler
JP2768145B2 (en) Operation method of waste melting equipment
JPH06241426A (en) Waste incinerator
JPS5634014A (en) Method and device for incineration of heavy crude oil ash
JPH02176313A (en) Combustion control method for fluidized-bed incinerator
JP2000297917A (en) Municipal refuse incinerating device and its operation method
JPH0631343B2 (en) Fluidized bed pyrolysis method