JPH0152470B2 - - Google Patents

Info

Publication number
JPH0152470B2
JPH0152470B2 JP55087256A JP8725680A JPH0152470B2 JP H0152470 B2 JPH0152470 B2 JP H0152470B2 JP 55087256 A JP55087256 A JP 55087256A JP 8725680 A JP8725680 A JP 8725680A JP H0152470 B2 JPH0152470 B2 JP H0152470B2
Authority
JP
Japan
Prior art keywords
film
plating
reactive
oxide
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55087256A
Other languages
Japanese (ja)
Other versions
JPS5713172A (en
Inventor
Yoshifumi Shimajiri
Masataka Sato
Shuichi Murooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8725680A priority Critical patent/JPS5713172A/en
Publication of JPS5713172A publication Critical patent/JPS5713172A/en
Publication of JPH0152470B2 publication Critical patent/JPH0152470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、真空メツキ法による太陽エネルギ
ーの選択吸収膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a selective solar energy absorption film using a vacuum plating method.

波長0.3〜2μmの太陽光スペクトル領域におい
て高い吸収率を有し、かつ2μm以上の波長領域
において低い放射率を有する太陽エネルギーの選
択吸収膜としては、従来、多層干渉皮膜やメタル
ブラツク皮膜からなるものがあつた。しかし前者
は透明誘電体皮膜と半透明金属皮膜の適正皮膜厚
範囲が極めて狭いため、皮膜厚の制御が難しく、
さらに皮膜厚の大きさによつて選択吸収性に差が
あるため、品質面でも問題があつた。また、後者
は素地との密着性に問題があり、耐久性にも乏し
いものであつた。
Conventionally, solar energy selective absorption films that have high absorption in the sunlight spectral region of wavelengths 0.3 to 2 μm and low emissivity in the wavelength region of 2 μm or more are made of multilayer interference films or metal black films. It was hot. However, in the former case, the appropriate film thickness range for the transparent dielectric film and the semi-transparent metal film is extremely narrow, making it difficult to control the film thickness.
Furthermore, since the selective absorption properties differ depending on the thickness of the coating, there were also problems in terms of quality. Furthermore, the latter had problems in adhesion to the substrate and was also poor in durability.

この発明は、上記のような問題をことごとく解
決し得る選択吸収膜の形成方法を提供するもので
ある。
The present invention provides a method for forming a selective absorption membrane that can solve all of the above-mentioned problems.

すなわち、この発明は、酸素ガスと不活性ガス
の混合雰囲気中で被メツキ素材の表面に反応性蒸
着、反応性スパツタリングあるいは反応性イオン
プレーテイング等の真空メツキ法を施こして、素
材表面にメツキ金属とその酸化物との混合物より
なるサーメツト皮膜を形成し、必要であれば、サ
ーメツト皮膜の上に透明誘電体皮膜を形成して多
層皮膜を構成することを特徴とする真空メツキ法
による太陽エネルギーの選択吸収膜の形成方法で
ある。
That is, this invention applies a vacuum plating method such as reactive vapor deposition, reactive sputtering, or reactive ion plating to the surface of the material to be plated in a mixed atmosphere of oxygen gas and inert gas to plate the surface of the material. Solar energy using a vacuum plating method characterized by forming a cermet film made of a mixture of a metal and its oxide and, if necessary, forming a transparent dielectric film on top of the cermet film to form a multilayer film. This is a method for forming a selective absorption film.

酸素ガスと不活性ガスの混合割合は、真空メツ
キ装置におけるメツキ金属の蒸発源と被メツキ素
地との距離、蒸着速度、雰囲気圧その他によつて
変動するが、好ましくは、酸素ガス/酸素ガス+
不活性ガスの比=0.25〜0.90の範囲である。形成
された皮膜の厚さは好ましくは200nm以下であ
り、特に10〜100nmが最適である。雰囲気圧は通
常1×10-2〜1paであるが、これは限定されない。
メツキ金属としてはクロム、鉄、ニツケル、コバ
ルト、銀が好ましく使用される。
The mixing ratio of oxygen gas and inert gas varies depending on the distance between the evaporation source of the plating metal and the substrate to be plated in the vacuum plating apparatus, the evaporation rate, the atmospheric pressure, etc., but preferably oxygen gas/oxygen gas +
The ratio of inert gas is in the range of 0.25 to 0.90. The thickness of the formed film is preferably 200 nm or less, particularly preferably 10 to 100 nm. The atmospheric pressure is usually 1×10 −2 to 1 pa, but is not limited to this.
As the plating metal, chromium, iron, nickel, cobalt, and silver are preferably used.

多層皮膜を構成する透明誘電皮膜は、真空蒸
着、スパツタリング、イオンプレーテイング、反
応性蒸着、反応性スパツタリング、反応性イオン
プレーテイング等によつて形成され、Al2O3
SiO,SiO2,NiO,Cr2O3,TiO2等からなる。そ
の厚さは100nm以下である。
The transparent dielectric film constituting the multilayer film is formed by vacuum evaporation, sputtering, ion plating, reactive evaporation, reactive sputtering, reactive ion plating, etc., and includes Al 2 O 3 ,
Consists of SiO, SiO 2 , NiO, Cr 2 O 3 , TiO 2 , etc. Its thickness is less than 100 nm.

この発明は以上のとおり構成されているので、
つぎのような効果がある。
Since this invention is configured as described above,
It has the following effects.

イ サーメツト皮膜を形成するため、皮膜厚の大
きさによる選択吸収性の差異が少なく、また適
正皮膜厚範囲が比較的広い。
Since it forms an inert film, there is little difference in selective absorption depending on the thickness of the film, and the range of suitable film thickness is relatively wide.

ロ サーメツト皮膜は薄膜の選択吸収膜であるた
め、その放射率は被メツキ素材の放射率に近
く、したがつて放射熱損失が極めて少ない。
Since the cermet film is a thin selective absorption film, its emissivity is close to that of the material to be plated, so radiation heat loss is extremely small.

ハ 被メツキ素材が合成樹脂のような赤外波長領
域での反射率の小さい材料でできている場合に
は、その上にアルミニウム、銅、銀のような赤
外線反射特性の良好な金属を蒸着すればよい。
C. If the material to be plated is made of a material with low reflectance in the infrared wavelength region, such as synthetic resin, a metal with good infrared reflective properties such as aluminum, copper, or silver may be deposited on top of it. Bye.

ニ 乾式であるため、メツキ廃液その他の公害問
題を生じるおそれがない。
D. Because it is a dry method, there is no risk of causing waste liquid or other pollution problems.

ホ 真空を利用するので、放出ガスが少なく、特
に真空式コレクターの場合に好適である。
(e) Since vacuum is used, less gas is emitted, making it particularly suitable for vacuum type collectors.

つぎに、この発明の実施例を挙げる。 Next, examples of this invention will be described.

実施例 1 第1図に示す真空メツキ装置を用いて選択吸収
膜を形成する。まず、アセトンで脱脂した銅板1
を被メツキ素材としてベルジヤー2内の頂部に配
して陰極とし、ジヤー底部に配したタンタル製の
メツキ金属収容ボート3を陽極とし、ジヤー内部
を0.97paのアルゴン雰囲気とする。この状態で両
極間に電圧3KVを印加してグロー放電を形成さ
せ、アルゴンイオンによつて銅板1をスパツタ
ー・クリーニングする。ついでジヤー内に酸素ガ
スとアルゴンガスをそれぞれ10ml/分の流速で導
入しながら、排気口4から一定流量で排気を行つ
て、内部雰囲気を1.2paに保持する。この状態で
両極間に電圧3KVを印加し、アルゴンと酸素の
混合プラズマを形成する。このプラズマ中に抵抗
加熱によつてボート3内のクロム5を蒸発させ、
その一部を酸化させる。こうしてクロムとその酸
化物の混合物からなるサーメツト皮膜を素材表面
に68μg/cm2形成する。
Example 1 A selective absorption film was formed using the vacuum plating apparatus shown in FIG. First, copper plate 1 degreased with acetone
is placed at the top of the bell jar 2 as a material to be plated to serve as a cathode, a plating metal storage boat 3 made of tantalum placed at the bottom of the jar serves as an anode, and the inside of the jar is set to an argon atmosphere of 0.97 pa. In this state, a voltage of 3 KV is applied between the two electrodes to form a glow discharge, and the copper plate 1 is sputter cleaned with argon ions. Next, while introducing oxygen gas and argon gas into the jar at a flow rate of 10 ml/min each, exhaust is performed from the exhaust port 4 at a constant flow rate to maintain the internal atmosphere at 1.2 pa. In this state, a voltage of 3KV is applied between the two electrodes to form a mixed plasma of argon and oxygen. Chromium 5 in the boat 3 is vaporized by resistance heating in this plasma,
Some of it is oxidized. In this way, a cermet film consisting of a mixture of chromium and its oxide was formed on the surface of the material at a rate of 68 μg/cm 2 .

この皮膜はA.M.2.に対する太陽エネルギーの
吸収率0.92を有し、かつ373〓黒体放射エネルギ
ーに対する放射率0.05を有する。
This coating has an absorption rate of solar energy of 0.92 for AM2. and an emissivity of 0.05 for 373〓 black body radiant energy.

実施例 2 第2図に示す真空メツキ装置を用いる。まずベ
ルジヤー11内に酸素ガスとアルゴンガスをそれ
ぞれ10ml/分と5ml/分の流速で導入しながら、
排気口12から一定流量で排気を行つて、内部雰
囲気圧を9.7×10-2paに保持する。そして電子ビ
ーム加熱法により、クロム13を蒸発させ、その
一部を酸化させる。こうしてアルミニウム板14
上に厚さ63nmのクロムブラツク皮膜を形成する。
Example 2 A vacuum plating apparatus shown in FIG. 2 is used. First, while introducing oxygen gas and argon gas into the bell gear 11 at flow rates of 10 ml/min and 5 ml/min, respectively,
The internal atmospheric pressure is maintained at 9.7×10 -2 pa by exhausting air from the exhaust port 12 at a constant flow rate. Then, chromium 13 is evaporated and a part of it is oxidized by an electron beam heating method. In this way, the aluminum plate 14
A chrome black film with a thickness of 63 nm is formed on top.

この皮膜は吸収率0.90、放射率0.02を有する。 This film has an absorption rate of 0.90 and an emissivity of 0.02.

実施例 3 実施例2と同じ操作によつて形成した厚さ
84nmのクロムブラツク皮膜上に、真空蒸着法に
よつて厚さ57nmの酸化クロム皮膜を形成する。
こうして構成したクロムブラツクと酸化クロムの
2層皮膜は吸収率0.94、放射率0.03を有する。
Example 3 Thickness formed by the same operation as Example 2
A 57 nm thick chromium oxide film is formed on the 84 nm chrome black film by vacuum evaporation.
The two-layer film of chrome black and chromium oxide thus constructed has an absorption rate of 0.94 and an emissivity of 0.03.

この2層皮膜の分光反射特性曲線を第3図に示
す。同図からわかるように、この皮膜はすぐれた
太陽エネルギーの選択吸収性能を有する。
The spectral reflection characteristic curve of this two-layer film is shown in FIG. As can be seen from the figure, this film has excellent ability to selectively absorb solar energy.

実施例 4 実施例3と同じ操作によつて構成した2層皮膜
の上に、真空蒸着法により、厚さ69nmのSiO2
膜を形成する。このクロムブラツク・酸化クロ
ム・酸化ケイ素の3層皮膜は吸収率0.95、放射率
0.03を有する。
Example 4 A SiO 2 film with a thickness of 69 nm is formed on the two-layer film constructed by the same procedure as in Example 3 by vacuum evaporation. This three-layer coating of chrome black, chromium oxide, and silicon oxide has an absorption rate of 0.95 and an emissivity of
has 0.03.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は実施例1および2において使
用した真空メツキ装置の正面図、第3図は2層皮
膜の分光反射特性を示すグラフである。
1 and 2 are front views of the vacuum plating apparatus used in Examples 1 and 2, and FIG. 3 is a graph showing the spectral reflection characteristics of the two-layer coating.

Claims (1)

【特許請求の範囲】 1 酸素ガスと不活性ガスの混合雰囲気中で被メ
ツキ素材の表面に反応性蒸着、反応性スパツタリ
ングあるいは反応性イオンプレーテイング等の真
空メツキ法を施こして、素材表面にメツキ金属と
その酸化物との混合物よりなるサーメツト皮膜を
形成し、必要であれば、サーメツト皮膜の上に透
明誘電体皮膜を形成して多層皮膜を構成すること
を特徴とする真空メツキ法による太陽エネルギー
の選択吸収膜の形成方法。 2 メツキ金属がクロム、鉄、ニツケル、コバル
ト、銀から選ばれる特許請求の範囲第1項記載の
方法。 3 混合雰囲気の組成ガス比が容量で酸素ガス/
酸素ガス+不活性ガス=0.25〜0.90である特許請
求の範囲第1項記載の方法。 4 透明誘電体皮膜を真空蒸着、スパツタリン
グ、イオンプレーテイング、反応性蒸着、反応性
スパツタリング、反応性イオンプレーテイングの
いずれかの方法によつて形成する特許請求の範囲
第1項記載の方法。 5 サーメツト皮膜の上に酸化クロム、酸化ケイ
素、酸化アルミニウムまたは酸化ニツケルの皮膜
を形成する特許請求の範囲第1項記載の方法。 6 サーメツト皮膜の上に酸化クロム皮膜を形成
し、さらに酸化クロム皮膜の上に酸化ケイ素皮膜
を形成する特許請求の範囲第1項記載の方法。
[Claims] 1. A vacuum plating method such as reactive vapor deposition, reactive sputtering, or reactive ion plating is applied to the surface of the material to be plated in a mixed atmosphere of oxygen gas and inert gas to coat the surface of the material. A solar plating method using a vacuum plating method characterized by forming a cermet film made of a mixture of a plating metal and its oxide, and if necessary, forming a transparent dielectric film on the cermet film to form a multilayer film. Method for forming a selective energy absorption film. 2. The method according to claim 1, wherein the plating metal is selected from chromium, iron, nickel, cobalt, and silver. 3 The composition gas ratio of the mixed atmosphere is oxygen gas/
The method according to claim 1, wherein oxygen gas + inert gas = 0.25 to 0.90. 4. The method according to claim 1, wherein the transparent dielectric film is formed by any one of vacuum deposition, sputtering, ion plating, reactive vapor deposition, reactive sputtering, and reactive ion plating. 5. The method according to claim 1, wherein a chromium oxide, silicon oxide, aluminum oxide or nickel oxide film is formed on the cermet film. 6. The method according to claim 1, wherein a chromium oxide film is formed on the cermet film, and a silicon oxide film is further formed on the chromium oxide film.
JP8725680A 1980-06-28 1980-06-28 Formation of selective absorption menbrane for solar energy by vacuum plating method Granted JPS5713172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8725680A JPS5713172A (en) 1980-06-28 1980-06-28 Formation of selective absorption menbrane for solar energy by vacuum plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8725680A JPS5713172A (en) 1980-06-28 1980-06-28 Formation of selective absorption menbrane for solar energy by vacuum plating method

Publications (2)

Publication Number Publication Date
JPS5713172A JPS5713172A (en) 1982-01-23
JPH0152470B2 true JPH0152470B2 (en) 1989-11-08

Family

ID=13909695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8725680A Granted JPS5713172A (en) 1980-06-28 1980-06-28 Formation of selective absorption menbrane for solar energy by vacuum plating method

Country Status (1)

Country Link
JP (1) JPS5713172A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305163A (en) * 1994-05-10 1995-11-21 Itochu Fine Chem Kk Low-reflection chromium-base film
JP2006214654A (en) * 2005-02-03 2006-08-17 Nippon Electric Glass Co Ltd Solar heat collecting plate, selective absorption film and solar heat water heater

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150736U (en) * 1982-04-02 1983-10-08 日立コンデンサ株式会社 Metal foil for heat ray absorption
DE3308790C2 (en) * 1982-05-27 1984-08-02 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Process for the production of a selectively absorbing layer for solar collectors
ZA836920B (en) * 1982-09-21 1985-04-24 Pilkington Brothers Plc Low emissivity coatings on transparent substrates
SE509933C2 (en) 1996-09-16 1999-03-22 Scandinavian Solar Ab Methods and apparatus for producing a spectrally selective absorbent layer for solar collectors and produced layer
JP5011925B2 (en) * 2006-09-29 2012-08-29 大日本印刷株式会社 Method for producing cermet laminate and cermet laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305163A (en) * 1994-05-10 1995-11-21 Itochu Fine Chem Kk Low-reflection chromium-base film
JP2006214654A (en) * 2005-02-03 2006-08-17 Nippon Electric Glass Co Ltd Solar heat collecting plate, selective absorption film and solar heat water heater

Also Published As

Publication number Publication date
JPS5713172A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
US5523132A (en) Thin film solar selective surface coating
CN102620456B (en) Medium-and-low-temperature solar selective absorption thin film and preparation method thereof
US5377045A (en) Durable low-emissivity solar control thin film coating
US4861669A (en) Sputtered titanium oxynitride films
Randhawa et al. SnO2 films prepared by activated reactive evaporation
AU657014B2 (en) Durable low-emissivity solar control thin film coating
CA2041038C (en) Durable low-emissivity thin film interference filter
NO174845B (en) Glass substrate for solar energy reflectance and process for producing it
CN108351124B (en) Method for depositing functional layer suitable for heat absorption tube
KR20020012610A (en) Protective layers for sputter coated article
Kaneko et al. Preparation and properties of the dc reactively sputtered tungsten oxide films
FI96507B (en) Glass product and method for making a titanium-containing coating on a glass substrate
Sathiaraj et al. Ni-Al2O3 selective cermet coatings for photothermal conversion up to 500 C
US4900630A (en) Glass plate with reflective multilayer coatings to give golden appearance
JPH0152470B2 (en)
US20190368026A1 (en) New high temperature air stable ceramic metallic material used in solar selective surface and its production method
US4348453A (en) Glazing possessing selective transmission and reflection spectra
US5705278A (en) Heat processable metallic vacuum coatings
JPS6135401A (en) Reflection mirror
EP4189304B1 (en) Spectrally selective solar absorber coating
JP2722509B2 (en) Transparent plate exhibiting blue to green reflection color and method of manufacturing the same
Kim et al. DC reactive magnetron sputtering with Ar ion-beam assistance for titanium oxide films
CN114635105A (en) Preparation method of double-texture surface solar selective absorption coating and coating
JP2697000B2 (en) Article coated with optical film
JPS5969658A (en) Forming of solor energy selective absorption film by vacuum plating method