JPH0152025B2 - - Google Patents

Info

Publication number
JPH0152025B2
JPH0152025B2 JP56211752A JP21175281A JPH0152025B2 JP H0152025 B2 JPH0152025 B2 JP H0152025B2 JP 56211752 A JP56211752 A JP 56211752A JP 21175281 A JP21175281 A JP 21175281A JP H0152025 B2 JPH0152025 B2 JP H0152025B2
Authority
JP
Japan
Prior art keywords
group
medical material
blood
material according
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56211752A
Other languages
Japanese (ja)
Other versions
JPS58109062A (en
Inventor
Kazuaki Kira
Fumio Kawakubo
Katsuhiko Isayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP56211752A priority Critical patent/JPS58109062A/en
Publication of JPS58109062A publication Critical patent/JPS58109062A/en
Publication of JPH0152025B2 publication Critical patent/JPH0152025B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、架橋性シリル基を有する化合物の硬
化物からなる医療用材料に関する。更に詳しく
は、架橋性シリル基を分子中に少なくとも1個有
し、主鎖が実質的にポリエーテル、ポリエステ
ル、ポリウレタン、ポリウレタンウレア、ポリシ
ロキサン、ポリカーボネート、ビニル系重合体の
少なくとも1種類からなる、分子量500〜15000の
重合体を有効成分とした硬化物からなる生体適合
性(特に抗血液凝固性)、成形性、作業性に優れ
た医療用材料に関するものである。 近年、医療技術の進歩に伴つて、血液の採取、
保存、輸送用具、あるいは生体組織・器官や臓器
の治療や代替に合成高分子材料が数多く使用さ
れ、人間の健康回復・維持に大きく役立つてい
る。この場合、使用する高分子材料は生体適合性
を有することが必要である。 生体適合性とは、生体に対する“なじみやす
さ”であつて、簡単に定義したりその内容を示す
ことは困難である。それは、使用個所、使用目的
により材料に対する要請が多岐に亘るからであ
る。一般には、材料の生体系に及ぼす影響とし
て、毒性、刺激性、発癌性、突然変異誘発性、溶
血性、血液凝固性などの無いことが生体側の要請
であり、生体系の材料に及ぼす影響として機械
的、物理的、化学的劣化変性の無いことが材料側
の要請となる。このように生体適合性とは巾広い
性質を含むが、この中でも特に重要で、かつ技術
的に困難なのが、抗血液凝固性である。また医療
用材料は、ほとんどの場合、各々の個体に適合す
るように成形する必要があることから、優れた成
形性と作業性も要求される。 従来、医療用材料としては、塩化ビニル樹脂、
ポリウレタン樹脂、ポリアミド樹脂、シリコーン
樹脂、弗素樹脂などが使用され、具体的な用途と
しては、採血用具、血液バツグ、輸血用具、輸液
用具、カテーテル、モニタリングチユーブ、人工
腎臓や人工心肺等の体外循環回路、A―Vシヤン
ト、血液バイパスチユーブ、血液ポンプ、人工心
臓、補助人工心臓等があつた。しかし、生体適合
性、成形性、作業性を同時に満足させる材料は無
く、特に、抗血液凝固性に優れ、成形性、作業性
が良い高分子材料は存在しなかつた。 本発明者らは、このような問題に鑑みて、生体
適合性(特に抗血液凝固性)と成形性、作業性に
優れた医療用材料を鋭意検討した結果、特開昭50
―156599号、特開昭54―6096号、特開昭55―
13767号等に開示されている、架橋性シリル基を
含有する化合物の硬化物が、これらの性質を満足
することを見出し本発明に到達した。 すなわち本発明は、主鎖が実質的にポリエーテ
ル、ポリエステル、ポリウレタン、ポリウレタン
ウレア、ポリシロキサン、ポリカーボネート、ビ
ニル系重合体の少なくとも1種類からなり、下記
の式で示される架橋性シリル基を1分子中に少な
くとも1個有する分子量500〜15000の重合体(以
下A成分と称す)の硬化物からなることを特徴と
する医療用材料である。 (式中、Rは炭素数1〜20の同種又は異種の置換
もしくは非置換の1価の有機基又はトリオルガノ
シロキシ基、Xはヒドロキシル基、ハイドライド
基、ハロゲン基、アルコキシ基、アシルオキシ
基、ケトキシメート基、アミド基、酸アミド基、
アミノオキシ基、アルケニルオキシ基およびメル
カプト基から選ばれる基、aは0、1また2の整
数、bは0または1の整数、mは0〜18の整数を
示す) ここにおいてA成分は成形又は塗布後の硬化に
あたつて有効量存在すればよく、A成分のほかに
一部架橋性シリル基を有しない重合体分子が含ま
れていてもよい。 本発明のA成分の主鎖は、実質的にポリエーテ
ル、ポリエステル、ポリウレタン、ポリウレタン
ウレア、ポリシロキサン、ポリカーボネート、ビ
ニル系重合体の少なくとも1種類から成ることが
必須であるが、抗血液凝固性や生体内での耐加水
分解性の良いものを得るためには、ポリエーテ
ル、ポリウレタン、ポリウレタンウレア、ポリシ
ロキサンの少なくとも1種類から実質的に成るも
のであることが好ましい。これ等のうち、特に、
ポリエーテル単独、ポリエーテルとポリウレタン
との組合せ、ポリエーテルとポリウレタンウレア
の組合せ、ポリエーテル、ポリウレタン、ポリシ
ロキサンの組合せ、ポリエーテル、ポリウレタン
ウレア、ポリシロキサンの組合せの1種類から実
質的になるものが好ましい。 これらの主鎖を構成する成分のうち好ましい例
は、ポリエーテルとしては、(―O―CH2―CH2)―
o
The present invention relates to a medical material comprising a cured product of a compound having a crosslinkable silyl group. More specifically, it has at least one crosslinkable silyl group in the molecule, and the main chain consists essentially of at least one of polyether, polyester, polyurethane, polyurethane urea, polysiloxane, polycarbonate, and vinyl polymer. The present invention relates to a medical material that is made of a cured product containing a polymer with a molecular weight of 500 to 15,000 as an active ingredient and has excellent biocompatibility (especially anti-blood coagulability), moldability, and workability. In recent years, with advances in medical technology, blood collection,
Many synthetic polymer materials are used as storage and transportation tools, as well as in the treatment and replacement of living tissues, organs, and organs, and are of great help in restoring and maintaining human health. In this case, the polymeric material used needs to be biocompatible. Biocompatibility refers to "compatibility" with living organisms, and it is difficult to easily define it or indicate its contents. This is because requirements for materials vary widely depending on the location and purpose of use. In general, living organisms require that materials have no effects on biological systems, such as toxicity, irritation, carcinogenicity, mutagenicity, hemolysis, and blood coagulation. As such, materials are required to be free from mechanical, physical, and chemical deterioration. As described above, biocompatibility includes a wide range of properties, but the most important and technically difficult one is anticoagulability. Furthermore, since medical materials need to be molded to suit each individual in most cases, excellent moldability and workability are also required. Traditionally, medical materials include vinyl chloride resin,
Polyurethane resins, polyamide resins, silicone resins, fluororesins, etc. are used, and specific applications include blood collection devices, blood bags, blood transfusion devices, infusion devices, catheters, monitoring tubes, and extracorporeal circulation circuits such as artificial kidneys and heart-lung machines. , AV shunt, blood bypass tube, blood pump, artificial heart, auxiliary artificial heart, etc. However, there has been no material that satisfies biocompatibility, moldability, and workability at the same time, and in particular, there has been no polymeric material that has excellent anti-blood coagulability, good moldability, and workability. In view of these problems, the present inventors conducted intensive studies on medical materials with excellent biocompatibility (particularly anticoagulant properties), moldability, and workability, and as a result, published in Japanese Patent Application Laid-Open No.
-No. 156599, Japanese Patent Application Publication No. 1973-6096, Japanese Patent Application Publication No. 1973-
The present invention was achieved by discovering that a cured product of a compound containing a crosslinkable silyl group, which is disclosed in No. 13767, satisfies these properties. That is, the present invention provides a polymer whose main chain substantially consists of at least one type of polyether, polyester, polyurethane, polyurethaneurea, polysiloxane, polycarbonate, and vinyl polymer, and one molecule of a crosslinkable silyl group represented by the following formula. This medical material is characterized by being made of a cured product of a polymer (hereinafter referred to as component A) having at least one polymer having a molecular weight of 500 to 15,000. (In the formula, R is a substituted or unsubstituted monovalent organic group having 1 to 20 carbon atoms or a triorganosiloxy group, and X is a hydroxyl group, hydride group, halogen group, alkoxy group, acyloxy group, ketoximate group. group, amide group, acid amide group,
A group selected from aminooxy group, alkenyloxy group and mercapto group, a is an integer of 0, 1 or 2, b is an integer of 0 or 1, m is an integer of 0 to 18) where component A is formed or It only needs to be present in an effective amount for curing after application, and in addition to component A, a polymer molecule not having a crosslinkable silyl group may be partially included. The main chain of component A of the present invention essentially consists of at least one type of polyether, polyester, polyurethane, polyurethane urea, polysiloxane, polycarbonate, and vinyl polymer. In order to obtain a material with good in-vivo hydrolysis resistance, it is preferable that the material consists essentially of at least one of polyether, polyurethane, polyurethane urea, and polysiloxane. Among these, especially
Substantially consisting of one of the following: polyether alone, a combination of polyether and polyurethane, a combination of polyether and polyurethane urea, a combination of polyether, polyurethane, and polysiloxane, and a combination of polyether, polyurethane urea, and polysiloxane. preferable. Among the components constituting the main chain, preferred examples of polyether include (-O-CH 2 -CH 2 )-
o ,

【式】(―O―CH2CH2CH2― CH2)―oが挙げられ、ポリウレタンとしてはポリエーテル
グリコールの少なくとも1種類(例えばポリエチ
レングリコール、ポリプロピレングリコール、ポ
リテトラメチレングリコール、プルロニツク型グ
リコール等)とジイソシアネート化合物の少なく
とも1種類(例えば4,4′―ジフエニルメタンジ
イソシアネート、ヘキサメチレンジイソシアネー
ト、2,4―トリレンジイソシアネート、2,6
―トリレンジイソシアネート等)と、必要に応じ
て鎖延長剤の少なくとも1種類(例えばエチレン
グリコール、プロピレングリコール、ブタンジオ
ール等)から合成されたポリウレタンが挙げら
れ、ポリウレタンウレアとしては、前記ポリウレ
タンにおいて、鎖延長剤として1部あるいは全部
に、例えばエチレンジアミン、プロピレンジアミ
ン、ブチレンジアミン、ヘキサメチレンジアミ
ン、ジフエニルメタンジアミン、ヒドラジン、水
等を用いたものが挙げられ、ポリシロキサンとし
ては、ポリジメチルシロキサン、メチルフエニル
ポリシロキサン、フルオロアルキルメチルポリシ
ロキサン、ポリジメチルシロキサン等が挙げられ
る。 本発明における架橋性シリル基は、A成分の重
合体1分子中に少なくとも1個存在すればよい
が、重合体末端および/または側鎖に1分子中少
なくとも1個存在する事が好ましい。また架橋性
シリル基を有する重合体が水分、特に空気中に含
まれる程度の水分によつて常温硬化するものが好
ましい。 本発明におけるA成分の分子量は、抗血液凝固
性、強度、作業性のバランスから500〜15000が好
ましい。 本発明におけるA成分を有効成分とした硬化性
物は、無触媒で、あるいは硬化触媒を用いて硬化
物となり、驚くべきことに、該硬化物は血液と接
触したとき優れた抗血液凝固性を示す。 また本発明におけるA成分は、分子量が比較的
小さいためにほとんどの有機溶剤に溶解すること
から、成形体を得る場合、あるいはコーテイング
剤として用いる場合に、優れた成形性と作業性を
示し、複雑な形態の成形体を作製したり、複雑な
形態の成形体の表面を被覆する場合にも、容易に
迅速に成形又は塗布が可能であり、かつその後、
硬化させて表面が非常に平滑な硬化物を得ること
ができる。従つてA成分を有効成分とした硬化物
は、このような優れた抗血液凝固性、成形性、作
業性を有するため、各種の医療用材料に使用で
き、特に、少なくとも1つの部位で血液と接触す
る医療用具において、血液に接触する部位の医療
用材料に好適に使用する事ができる。例えば、
膜、チユーブ、コネクター等に成形した医療用具
や、生体組織、輸液と接触する金属、セラミツク
ス、プラスチツクス等から出来ている医療用器具
の表面被覆材として用いるのに好適である。具体
的用途としては、採血用具、血液バツグ、輸血用
具、輸液用具、カテーテル、モニタリングチユー
ブ、人工腎臓や人工心肺等の体外循環回路、A―
Vシヤント、血液バイパスチユーブ、血液ポン
プ、人工心臓、補助人工心臓等がある。 また力学的強度や他の機能を付加するために、
本発明におけるA成分と熱可塑性樹脂を混合した
のち硬化物を得ても良い。熱可塑性樹脂として
は、本発明におけるA成分と共通の溶剤に溶解
し、生体内に溶出する不純物を含有しない樹脂で
あれば特に限定はしないが、好ましくは塩化ビニ
ル樹脂、シリコン樹脂、ポリウレタン樹脂、ポリ
アミド樹脂が良い。 次に本発明におけるA成分の製造方法と硬化方
法について説明する。 A成分の製造方法は特に限定は無く、通常の方
法でできる。架橋性シリル基が水分によつて常温
硬化するものである場合は、従来の常温硬化性シ
ーラントとしての製造方法、例えば特開昭50―
156599号、特開昭55―13767号などに記載されて
いる方法などで製造することができる。そのよう
な製造方法の1例を示すと、主鎖が実質的にポリ
エーテル、ポリエステル、ポリウレタン、ポリウ
レタンウレア、ポリシロキサン、ポリカーボネー
ト、ビニル系重合体の少なくとも1種類からな
り、末端がヒドロキシ基からなる物質の末端のヒ
ドロキシ基を、アルカリ金属、アルカリ金属水酸
化物およびアルカリ金属水素化物から選ばれるア
ルカリ金属化合物を反応させる事によりアルコキ
シ基に転換する。続いて、式
[Formula] (-O-CH 2 CH 2 CH 2 - CH 2 ) - o , Examples of the polyurethane include at least one type of polyether glycol (e.g., polyethylene glycol, polypropylene glycol, polytetramethylene glycol, Pluronic type glycol, etc.) and at least one type of diisocyanate compound (e.g., 4,4'-diphenylmethane diisocyanate). , hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6
- tolylene diisocyanate, etc.) and, if necessary, at least one type of chain extender (e.g., ethylene glycol, propylene glycol, butanediol, etc.). Examples of the extender include those using ethylene diamine, propylene diamine, butylene diamine, hexamethylene diamine, diphenylmethane diamine, hydrazine, water, etc. in part or in whole, and examples of the polysiloxane include polydimethylsiloxane, methyl fluoride, etc. Examples include enylpolysiloxane, fluoroalkylmethylpolysiloxane, polydimethylsiloxane, and the like. In the present invention, at least one crosslinkable silyl group may exist in one molecule of the polymer of component A, but it is preferable that at least one crosslinkable silyl group exists in one molecule at the polymer terminal and/or side chain. Further, it is preferable that the polymer having a crosslinkable silyl group is cured at room temperature by moisture, particularly moisture to the extent that it is contained in the air. The molecular weight of component A in the present invention is preferably 500 to 15,000 in view of the balance of anticoagulability, strength, and workability. The curable product containing component A as an active ingredient in the present invention is cured without a catalyst or with a curing catalyst, and surprisingly, the cured product exhibits excellent anticoagulant properties when it comes into contact with blood. show. In addition, component A in the present invention has a relatively small molecular weight and dissolves in most organic solvents, so when obtaining a molded article or using it as a coating agent, it exhibits excellent moldability and workability, and has a complex Even when producing a molded article with a complicated shape or coating the surface of a molded article with a complicated shape, it can be easily and quickly molded or coated, and after that,
When cured, a cured product with a very smooth surface can be obtained. Therefore, a cured product containing component A as an active ingredient has such excellent anticoagulability, moldability, and workability, and can be used as a variety of medical materials. It can be suitably used for medical materials in contact with blood in medical devices. for example,
It is suitable for use as a surface coating material for medical devices formed into membranes, tubes, connectors, etc., and medical devices made of metals, ceramics, plastics, etc. that come into contact with living tissue or infusion fluids. Specific applications include blood collection tools, blood bags, blood transfusion tools, infusion devices, catheters, monitoring tubes, extracorporeal circulation circuits such as artificial kidneys and heart-lung machines, A-
These include V-shunts, blood bypass tubes, blood pumps, artificial hearts, and auxiliary artificial hearts. Also, to add mechanical strength and other functions,
A cured product may be obtained after mixing component A in the present invention and a thermoplastic resin. The thermoplastic resin is not particularly limited as long as it is a resin that dissolves in the same solvent as component A in the present invention and does not contain impurities that can be eluted into living organisms, but preferably vinyl chloride resin, silicone resin, polyurethane resin, Polyamide resin is good. Next, the manufacturing method and curing method of component A in the present invention will be explained. There are no particular limitations on the method for producing component A, and it can be produced by any conventional method. If the crosslinkable silyl group is one that cures at room temperature with moisture, conventional manufacturing methods for room temperature curable sealants, such as JP-A-1989-1000-1, are used.
It can be manufactured by the method described in No. 156599, JP-A-55-13767, etc. An example of such a production method is a main chain consisting essentially of at least one type of polyether, polyester, polyurethane, polyurethane urea, polysiloxane, polycarbonate, or vinyl polymer, and a terminal consisting of a hydroxy group. The terminal hydroxy group of the substance is converted into an alkoxy group by reacting with an alkali metal compound selected from alkali metals, alkali metal hydroxides, and alkali metal hydrides. Subsequently, the expression

【式】 (式中、Qは塩素、臭素およびヨウ素から選ばれ
るハロゲン原子、R′は水素又は炭素数1〜20の
1価の有機基、R″は炭素数1〜20の2価の有機
基) で示される不飽和ハロゲン化合物を反応させ、次
に、式 (式中、Rは炭素数1〜20の同種又は異種の置換
もしくは非置換の1価の有機基又はトリオルガノ
シロキシ基、Xはヒドロキシル基、ハイドライド
基、ハロゲン基、アルコキシ基、アシルオキシ
基、ケトキシメート基、アミド基、酸アミド基、
アミノオキシ基、アルケニルオキシ基およびメル
カプト基から選ばれる基、aは0、1または2の
整数、bは0または1の整数、mは0〜18の整数
を示す。) で示される水素化珪素化合物を白金系触媒を用い
て付加反応させる事により、A成分を製造する事
ができる。 このようにして製造された本発明のA成分は、
単独あるいは他の成分を混合した後、又は有機溶
剤で希釈した後、硬化される。 硬化方法としては通常の硬化方法である。例え
ば水分によつて常温硬化しうる架橋性シリル基を
有するA成分重合体の場合であれば、水分によつ
て常温硬化せしめればよい。又シラノール縮合触
媒を使用してもよいし、しなくてもよい。縮合触
媒を使用する場合は、アルキルチタン酸塩、有機
珪素チタン酸塩、オクチル酸錫、ジブチル錫ラウ
レートおよびジブチル錫マレエート、ジブチル錫
フタレートなどの如きカルボン酸の金属塩、ジブ
チルアミン―2―エチルヘキソエートなどの如き
アミン塩、ならびに他の酸性触媒および塩基性触
媒など公知のシラノール縮合触媒が有効に使用さ
れる。 このようにして製造した本発明のA成分を有効
成分とした硬化物からなる医療用材料の抗血液凝
固性は、in vitroでの抗血液凝固テスト〔Lee
White法(金井泉、金井正光編著、臨床検査法提
要、VI―82、金原出版株式会社、昭和53年)、
Imai―Nose法(Y.Imai,et al,J.Biomed.
mater.Res.,6,165(1972))〕を行つたところ優
れた抗血液凝固性を示した。 本発明の医療用材料は、A成分の有効成分とし
て、樹脂分単独あるいは溶液として、コーテイン
グ法、デイツピング法、キヤステイング法等で、
成形体や被覆物が作製可能で、複雑な成形体でも
容易に成形できると共に、従来多量の溶剤を用い
ていたデイツピング法やキヤステイング法に準ず
る成形方法においても無溶剤あるいは少量の溶剤
で処理できるなど作業性も良い。これらの結果か
ら本発明の医療用材料は、医療用具、特に、血液
と直接接触する医療用具の血液接触面に好適に使
用することができる。 以下に実施例により本発明を説明する。 実施例 1 アリルエーテル基(CH2=CHCH2O―)を末
端に含有する、平均分子量8000のポリプロピレン
オキシド800gを撹拌機付耐圧反応容器にとつた。
[Formula] (wherein, Q is a halogen atom selected from chlorine, bromine, and iodine, R' is hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and R'' is a divalent organic group having 1 to 20 carbon atoms. ) is reacted with an unsaturated halogen compound represented by the formula (In the formula, R is a substituted or unsubstituted monovalent organic group having 1 to 20 carbon atoms or a triorganosiloxy group, and X is a hydroxyl group, hydride group, halogen group, alkoxy group, acyloxy group, ketoximate group. group, amide group, acid amide group,
A group selected from an aminooxy group, an alkenyloxy group and a mercapto group, a is an integer of 0, 1 or 2, b is an integer of 0 or 1, and m is an integer of 0 to 18. ) Component A can be produced by subjecting a silicon hydride compound represented by the following formula to an addition reaction using a platinum-based catalyst. Component A of the present invention produced in this way is:
It is cured alone or after being mixed with other components, or after being diluted with an organic solvent. The curing method is a normal curing method. For example, in the case of a component A polymer having a crosslinkable silyl group that can be cured by moisture at room temperature, it may be cured by moisture at room temperature. Further, a silanol condensation catalyst may or may not be used. When using condensation catalysts, metal salts of carboxylic acids such as alkyl titanates, organosilicon titanates, tin octylate, dibutyltin laurate and dibutyltin maleate, dibutyltin phthalate, dibutylamine-2-ethyl Known silanol condensation catalysts such as amine salts, such as xoates, and other acidic and basic catalysts are usefully used. The anti-blood coagulation properties of the medical material made of the cured product containing component A of the present invention as an active ingredient, produced in this way, were determined by an in vitro anti-blood coagulation test [Lee
White method (edited by Izumi Kanai and Masamitsu Kanai, Summary of Clinical Testing Laws, VI-82, Kanehara Publishing Co., Ltd., 1978),
Imai-Nose method (Y. Imai, et al, J. Biomed.
Mater.Res., 6, 165 (1972)] and showed excellent anticoagulant properties. The medical material of the present invention can be used as the active ingredient of component A, using the resin component alone or as a solution, by a coating method, a dipping method, a casting method, etc.
It is possible to create molded objects and coatings, and even complex molded objects can be easily molded, and molding methods similar to dipping and casting methods that conventionally used large amounts of solvent can be processed without solvent or with a small amount of solvent. It also has good workability. From these results, the medical material of the present invention can be suitably used for medical devices, particularly blood contact surfaces of medical devices that come into direct contact with blood. The present invention will be explained below with reference to Examples. Example 1 800 g of polypropylene oxide containing an allyl ether group (CH 2 =CHCH 2 O-) at the end and having an average molecular weight of 8000 was placed in a pressure-resistant reaction vessel equipped with a stirrer.

【式】の構造をもつ水素化珪素化合物 20gを加え、続いて塩化白金酸の触媒溶液
(H2PtCl6・6H2O8.9gをイソプロピルアルコール
18ml、テトラヒドロフラン160mlに溶かした溶液)
0.34mlを加えて80℃で6時間反応させた。残存ヒ
ドロシリル基をIRスペクトルから定量した結果、
ほとんど反応している事がわかり、(CH3O)3Si
―CH2CH2CH2O―基を末端にもつポリエーテル
が得られた。 これに硬化剤として、ジブチル錫ジラウリレー
ト16gを加え、フラツトシヤーレ上で大気中で常
温硬化し、厚さ1mmの膜を作製した。膜は容易に
成形できた。 抗血液凝固性の測定は、37℃の恒温槽でふた付
時計皿上に3cm×3cmの四角に切つた該膜を乗せ
て、該膜及び時計皿のガラス上に犬のACD血
(クエン酸ソーダ、グルコース等を加えて非凝固
性にした保存血)を一定容量乗せた後、塩化カル
シウム水溶液を添加し、所定時間毎の凝固した血
液(血栓)量を測定した。結果は、 血栓生成率(%)=試料上の一定時間後の生成血栓重量
/ガラス上の最終生成血栓重量×100 で求めた。比較のために、塩化ビニル樹脂のフイ
ルムとガラスについて、同時に同じ血液でテスト
を行つた。結果は図1に示したが、この図から分
るように本発明の硬化物は抗血液凝固性に優れて
いることがわかる。 実施例 2 窒素置換された撹拌機付耐圧反応容器に、平均
分子量2000の脱水ポリテトラメチレングリコール
200gをとつた。続いて脱水テトラヒドロフラン
500ml、4,4′―ジフエニルメタンジイソシアネ
ート12.5g、デイアザビシクロウンデセン0.01g
を加え、50℃で2時間反応を行つた。続いてアリ
ルイソシアネート8.3gを加え50℃で10時間反応
させ、平均分子量約4400で、両末端に不飽和基を
有するポリエーテルウレタンを得た。 続いてメチルジメトキシシラン8.5g、塩化白
金酸の触媒溶液(H2PtCl6・6H2O2gをイソプロ
パノール9ml、テトラヒドロフラン82mlにとかし
た溶液)0.2mlを加え、80℃で10時間反応しポリ
エーテル主鎖中に 基を平均して1個含み、
Add 20 g of a silicon hydride compound having the structure of [Formula], and then add 8.9 g of a catalyst solution of chloroplatinic acid (H 2 PtCl 6 6H 2 O to isopropyl alcohol).
18ml, solution dissolved in 160ml of tetrahydrofuran)
0.34 ml was added and reacted at 80°C for 6 hours. As a result of quantifying the residual hydrosilyl group from the IR spectrum,
It was found that most of the reaction occurred, and (CH 3 O) 3 Si
A polyether terminated with -CH 2 CH 2 CH 2 O- groups was obtained. To this was added 16 g of dibutyltin dilaurylate as a curing agent, and the mixture was cured at room temperature in the air on a flat shear to produce a film with a thickness of 1 mm. The membrane was easily formed. To measure the anticoagulant property, place the membrane cut into 3cm x 3cm squares on a watch glass with a lid in a constant temperature bath at 37°C, and add dog ACD blood (citrate) onto the membrane and the glass of the watch glass. After a certain volume of stored blood (preserved blood made non-coagulable by adding soda, glucose, etc.) was added, an aqueous calcium chloride solution was added, and the amount of coagulated blood (thrombus) was measured at predetermined intervals. The results were determined as thrombus formation rate (%) = weight of thrombus formed on the sample after a certain period of time / final weight of thrombus formed on glass x 100. For comparison, a polyvinyl chloride resin film and glass were tested at the same time with the same blood. The results are shown in FIG. 1, and as can be seen from this figure, the cured product of the present invention has excellent anti-blood coagulability. Example 2 Dehydrated polytetramethylene glycol with an average molecular weight of 2000 was placed in a pressure-resistant reaction vessel equipped with a stirrer and replaced with nitrogen.
I took 200g. followed by dehydrated tetrahydrofuran
500ml, 4,4'-diphenylmethane diisocyanate 12.5g, diazabicycloundecene 0.01g
was added, and the reaction was carried out at 50°C for 2 hours. Subsequently, 8.3 g of allyl isocyanate was added and reacted at 50° C. for 10 hours to obtain a polyether urethane having an average molecular weight of about 4,400 and having unsaturated groups at both ends. Subsequently, 8.5 g of methyldimethoxysilane and 0.2 ml of a catalyst solution of chloroplatinic acid (a solution of 2 g of H 2 PtCl 6.6H 2 O dissolved in 9 ml of isopropanol and 82 ml of tetrahydrofuran) were added, and the mixture was reacted at 80°C for 10 hours to form a polyether main chain. inside Contains one group on average,

【式】基を末端に 含むシリル基末端ポリエーテルウレタンを得た。 次にこの溶液に、ジブチル錫ジラウレート4g
を加えた。この溶液に直径5mmのガラス棒をつ
け、所謂デイツピング法でチユーブを作製した。
硬化は無塵室、常温で1日かけて行つた。一定厚
みのチユーブが容易に短時間で得られた。 この硬化物の抗血液凝固性の測定は、内径10
mm、長さ100mmのガラス試験管の内壁をこの溶液
でコーテイングした後、新鮮な採血直後の血液を
約1ml入れ、37℃で凝固する時間を測定した。比
較のために、塩化ビニル樹脂でコーテイングを行
つた同様の試験管と、コーテイングを行なつてい
ない同様の試験管について、同時に同じ血液でテ
ストを行つた。結果を表1に示す。この表から分
るように、本発明の硬化物は抗血液凝固性が優れ
ていた。
[Formula] A silyl group-terminated polyether urethane containing a group at the end was obtained. Next, add 4 g of dibutyltin dilaurate to this solution.
added. A glass rod with a diameter of 5 mm was attached to this solution, and a tube was prepared by the so-called dipping method.
Curing was carried out in a dust-free room at room temperature for one day. Tubes of constant thickness were easily obtained in a short time. The anticoagulability of this cured product was measured using an inner diameter of 10
After coating the inner wall of a glass test tube with a diameter of 100 mm and a length of 100 mm with this solution, approximately 1 ml of freshly drawn blood was poured into the tube, and the coagulation time at 37° C. was measured. For comparison, similar test tubes coated with vinyl chloride resin and similar test tubes without coating were tested with the same blood at the same time. The results are shown in Table 1. As can be seen from this table, the cured product of the present invention had excellent anti-blood coagulability.

【表】 実施例 3 実施例2の方法で作製したシリル基末端ポリエ
ーテルウレタンのテトラヒドロフラン30%溶液
100mlに、分子量3500の末端トリメトキシポリジ
メチルシロキサン3g、ジブチル錫ジラウレート
0.5gを加え撹拌混合した。血液バツグ(塩化ビ
ニル製)から切り抜いたシートの血液接触面に該
混合物をコーテイングし、次いでテトラヒドロフ
ランを乾燥除去した後、硬化を行つた。硬化物は
無塵室、常温で1日かけて行つた。 抗血液凝固性の測定は実施例1と同じ方法で行
つた。比較のために、コーテイングしていない血
液バツグの血液接触面とガラスについて、同時に
同じ血液でテストを行つた。結果は図2に示した
が、この図からわかるように、本発明の硬化物は
抗血液凝固性に優れていることがわかる。
[Table] Example 3 30% tetrahydrofuran solution of silyl group-terminated polyether urethane prepared by the method of Example 2
To 100ml, 3g of terminal trimethoxypolydimethylsiloxane with a molecular weight of 3500, dibutyltin dilaurate
0.5g was added and mixed by stirring. The mixture was coated on the blood-contacting surface of a sheet cut out from a blood bag (made of vinyl chloride), and then the tetrahydrofuran was removed by drying, followed by curing. The cured product was cured in a dust-free room at room temperature for one day. The anticoagulant properties were measured in the same manner as in Example 1. For comparison, the blood-contacting surface of an uncoated blood bag and the glass were tested with the same blood at the same time. The results are shown in FIG. 2, and as can be seen from this figure, the cured product of the present invention has excellent anti-blood coagulability.

【図面の簡単な説明】[Brief explanation of drawings]

図1、図2は、夫々、実施例1、実施例3にお
ける硬化物の抗血液凝固性テストの結果を示すグ
ラフである。
FIGS. 1 and 2 are graphs showing the results of the anti-blood coagulability test of the cured products in Example 1 and Example 3, respectively.

Claims (1)

【特許請求の範囲】 1 主鎖が実質的にポリエーテル、ポリエステ
ル、ポリウレタン、ポリウレタンウレア、ポリシ
ロキサン、ポリカーボネート、ビニル系重合体の
少なくとも1種類からなり、下記の式で示される
架橋性シリル基を1分子中に少なくとも1個有す
る分子量500〜15000の重合体(以下A成分と称
す)の硬化物からなることを特徴とする医療用材
料。 (式中、Rは炭素数1〜20の同種又は異種の置換
もしくは非置換の1価の有機基又はトリオルガノ
シロキシ基、Xはヒドロキシル基、ハイドライド
基、ハロゲン基、アルコキシ基、アシルオキシ
基、ケトキシメート基、アミド基、酸アミド基、
アミノオキシ基、アルケニルオキシ基およびメル
カプト基から選ばれる基、aは0、1また2の整
数、bは0または1の整数、mは0〜18の整数を
示す) 2 架橋性シリル基を、末端および/または側鎖
に1分子中少なくとも1個有するA成分からなる
特許請求の範囲第1項記載の医療用材料。 3 架橋性シリル基を有する重合体が、水分によ
つて常温硬化するものである特許請求の範囲第1
項記載の医療用材料。 4 少なくとも1つの部位で血液と接触する医療
用具において、血液と接触する部位に使用される
特許請求の範囲第1項記載の医療用材料。 5 形態が膜である特許請求の範囲第1項記載の
医療用材料。 6 形態がチユーブである特許請求の範囲第1項
記載の医療用材料。 7 生体組織、輸液と接触する器具の表面被覆材
である特許請求の範囲第1項記載の医療用材料。
[Scope of Claims] 1 The main chain consists essentially of at least one kind of polyether, polyester, polyurethane, polyurethane urea, polysiloxane, polycarbonate, and vinyl polymer, and has a crosslinkable silyl group represented by the following formula. A medical material comprising a cured product of a polymer having a molecular weight of 500 to 15,000 (hereinafter referred to as component A) having at least one component in one molecule. (In the formula, R is a substituted or unsubstituted monovalent organic group having 1 to 20 carbon atoms or a triorganosiloxy group, and X is a hydroxyl group, hydride group, halogen group, alkoxy group, acyloxy group, ketoximate group. group, amide group, acid amide group,
a group selected from aminooxy group, alkenyloxy group and mercapto group, a is an integer of 0, 1 or 2, b is an integer of 0 or 1, m is an integer of 0 to 18) 2 a crosslinkable silyl group, The medical material according to claim 1, comprising at least one A component per molecule at the terminal and/or side chain. 3. Claim 1, in which the polymer having a crosslinkable silyl group is cured at room temperature by moisture.
Medical materials listed in section. 4. The medical material according to claim 1, which is used in a part of a medical device that comes into contact with blood in at least one part thereof. 5. The medical material according to claim 1, which is in the form of a membrane. 6. The medical material according to claim 1, which has a tube shape. 7. The medical material according to claim 1, which is a surface coating material for an instrument that comes into contact with living tissue or infusion fluid.
JP56211752A 1981-12-23 1981-12-23 Medical material Granted JPS58109062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211752A JPS58109062A (en) 1981-12-23 1981-12-23 Medical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211752A JPS58109062A (en) 1981-12-23 1981-12-23 Medical material

Publications (2)

Publication Number Publication Date
JPS58109062A JPS58109062A (en) 1983-06-29
JPH0152025B2 true JPH0152025B2 (en) 1989-11-07

Family

ID=16610989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211752A Granted JPS58109062A (en) 1981-12-23 1981-12-23 Medical material

Country Status (1)

Country Link
JP (1) JPS58109062A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61340A (en) * 1984-06-12 1986-01-06 日本ゼオン株式会社 Blood bypass tube
JPS6173666A (en) * 1984-09-19 1986-04-15 日本ゼオン株式会社 Polyurethane excellent in antithrombotic property and dynamical characteristics
JPS6198262A (en) * 1984-10-19 1986-05-16 東レ・モノフィラメント株式会社 Catheter
US6100367A (en) * 1998-03-30 2000-08-08 Dow Corning Toray Silicone Co., Ltd. Coating agent, method of preparing same, and coating material
JPH11310756A (en) 1998-04-28 1999-11-09 Dow Corning Toray Silicone Co Ltd Coating agent composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634756A (en) * 1979-08-29 1981-04-07 Shin Etsu Chem Co Ltd Cold curable organopolysiloxane composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634756A (en) * 1979-08-29 1981-04-07 Shin Etsu Chem Co Ltd Cold curable organopolysiloxane composition

Also Published As

Publication number Publication date
JPS58109062A (en) 1983-06-29

Similar Documents

Publication Publication Date Title
EP0068385B1 (en) Thermoplastic elastomers for medical use as moulded articles brought into direct contact with blood
US9255176B2 (en) Surface modification of polymers via surface active and reactive end groups
US6127507A (en) Fluoroligomer surface modifiers for polymers and articles made therefrom
AU661183B2 (en) Thermoplastic polyurethane blends
US4906465A (en) Antithrombogenic devices containing polysiloxanes
JPS6316419B2 (en)
EP0404515A2 (en) Medical devices having a coating of amine rich fluorinated polyurethaneurea and an antithrombogenic agent covalently bonded thereto and method for their preparation
US5250649A (en) Melt processable polyurethaneurea copolymers and method for their preparation
KR940003863B1 (en) Perfluorocarbon-grafted polyurethane with improved blood compatibility and process for their preparation
JPH0523788B2 (en)
US4604412A (en) Stable polymer emulsion composition capable of giving a thromboresistant surface, and process for production thereof
US20220152281A1 (en) Medical device comprising covalently bonded heparin coating
JPH0152025B2 (en)
EP3713979B1 (en) Medical devices
JPS6015335B2 (en) blood handling equipment
JPH0155023B2 (en)
US4469827A (en) Mixtures of polymers for medical use
EP4316541A1 (en) Composition for medical use and application of same
JPH0425966B2 (en)
JP2000037617A (en) Blood-purifying membrane of improved antithrombus
JPS5892363A (en) Production of blood anti-coagulant high molecular material
JPH06184265A (en) Antithrombogenic polyurethane elatomer and medical tool
JP2604844B2 (en) Anticoagulant material
JPH0748431A (en) Polyurethaneurea polymer for medical use
JPH06192377A (en) Antithrombotic polyurethane elastomer and medical supply using the same