JPH0151771B2 - - Google Patents

Info

Publication number
JPH0151771B2
JPH0151771B2 JP53147308A JP14730878A JPH0151771B2 JP H0151771 B2 JPH0151771 B2 JP H0151771B2 JP 53147308 A JP53147308 A JP 53147308A JP 14730878 A JP14730878 A JP 14730878A JP H0151771 B2 JPH0151771 B2 JP H0151771B2
Authority
JP
Japan
Prior art keywords
humidity
sensor
sensitive material
humidity sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53147308A
Other languages
Japanese (ja)
Other versions
JPS5494090A (en
Inventor
Anchikainen Beiyo
Yaraba Yoko
Sarasumaa Eeroo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaisala Oy
Original Assignee
Vaisala Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaisala Oy filed Critical Vaisala Oy
Publication of JPS5494090A publication Critical patent/JPS5494090A/en
Publication of JPH0151771B2 publication Critical patent/JPH0151771B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • G01N27/225Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials

Description

【発明の詳細な説明】 この発明は、インピーダンスの変化に基いて作
動する電気的湿度センサ、特に感湿材料を有機重
合体で形成した容量型湿度センサの望ましくない
特性を最小限にする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for minimizing undesirable characteristics of electrical humidity sensors that operate based on changes in impedance, particularly capacitive humidity sensors in which the moisture sensitive material is formed from an organic polymer. .

インピーダンスの変化が、測定すべき湿度に比
例するようになつている電気検出系を備えた、い
くつかの湿度センサが知られている。この種の湿
度センサは、例えば米国特許第3168829号明細書、
米国特許第3350941号明細書およびフインランド
国特許第48229号明細書にそれぞれ記載されてい
る。
Several humidity sensors are known with an electrical detection system in which the change in impedance is proportional to the humidity to be measured. This type of humidity sensor is described, for example, in US Pat. No. 3,168,829;
They are described in US Pat. No. 3,350,941 and Finnish Patent No. 48,229, respectively.

フインランド国特許第48229号明細書に記載さ
れている容量型湿度センサでは、誘電体材料が重
合体膜からなり、その誘電係数が重合体膜に吸収
された水の量の関数である。これら湿度センサお
よびインピーダンスの変化に基く別の湿度センサ
では、特に高い湿度を測定するときには望ましく
ない現象が存在する。この現象は、例えば種々の
要因から生じるセンサの緩いクリープである。こ
の場合に問題となるのは、一般に可逆現象であ
る。
In the capacitive humidity sensor described in Finnish Patent No. 48229, the dielectric material consists of a polymer film, the dielectric coefficient of which is a function of the amount of water absorbed into the polymer film. With these humidity sensors and other humidity sensors based on changes in impedance, an undesirable phenomenon exists, especially when measuring high humidity. This phenomenon is, for example, a slow creep of the sensor resulting from various factors. In this case, the problem is generally a reversible phenomenon.

そこで、本発明の目的は、センサの応答性を増
大させることによつて、前述した現象の抑制を改
善し、かつ特に例えば90%を越えるような高い相
対湿度を測定する際の測定精度を向上させること
にある。
Therefore, the purpose of the present invention is to improve the suppression of the above-mentioned phenomenon by increasing the responsiveness of the sensor, and to improve the measurement accuracy, especially when measuring high relative humidity, for example, exceeding 90%. It's about letting people know.

前記目的を達成するため、この発明は、湿度セ
ンサの感湿材料を少くとも高い相対湿度のときに
周囲温度をより高い温度に加熱することを主たる
特徴とする。
To achieve the above object, the main feature of the invention is that the humidity sensitive material of the humidity sensor is heated to a higher temperature than the ambient temperature, at least when the relative humidity is high.

以下、本発明の実施例として、有機重合体と感
湿材料とする容量型湿度センサを図示した添付図
面を参照しながら詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, which illustrate a capacitive humidity sensor using an organic polymer and a moisture-sensitive material.

第1図および第2図に示す湿度センサそれ自体
は、フインランド国特許出願第48229号明細書に
記載されたものである。湿度センサ10はガラス
のような不活性材料で製作された基板11上に支
持される。基板11上には、薄膜技術で知られて
いる方法により作成された金属メツキ底部接触体
12が存在し、この底部接触体12上には接続導
線21が参照符号16で示す端子部においてろう
付けされる。そして、容量は、第1図にブロツク
20,22で示された装置によつて検出され、測
定されかつ表示される。
The humidity sensor shown in FIGS. 1 and 2 is itself described in Finnish patent application no. 48229. Humidity sensor 10 is supported on a substrate 11 made of an inert material such as glass. On the substrate 11 there is a metal-plated bottom contact 12 made by methods known in thin-film technology, on which a connecting conductor 21 is brazed in the terminal section indicated by the reference numeral 16. be done. The capacitance is then detected, measured and displayed by the devices shown in FIG. 1 as blocks 20 and 22.

湿度センサ10の活性材料すなわち感湿材料
は、10μm程度の厚さの重合体薄膜13である。
この重合体薄膜13上には、底部接触体12にい
ずれにも電気的に接触しない水蒸気を透過する薄
い表面接触体14が真空蒸着またはスパツタリン
グにより被着され、あるいは化学的に作成され
る。測定される容量CMは、dおよびe(第2図)
の区域における底部接触体12と表面接触体14
との間に形成される2つの容量を直列接続したも
のから形成される。
The active or moisture sensitive material of the humidity sensor 10 is a thin polymer film 13 on the order of 10 μm thick.
A thin water vapor permeable surface contact 14 is deposited on this polymer film 13 by vacuum deposition or sputtering, or is chemically created, without making any electrical contact with the bottom contact 12. The measured capacitance C M is d and e (Fig. 2)
Bottom contact 12 and surface contact 14 in the area of
It is formed by connecting two capacitors in series.

水分子が重合体薄膜13からなる感湿材料に吸
収されると、水の定着が2つの相異なる現象によ
つて起る。1つの定着は、分子レベルで起り、容
量CMの変化として迅速かつほぼ直線的な感応を
生じる。別の現象は、極めて湿度の高い状態(一
般に90%を越える相対湿度)で起るいわゆる膨潤
効果であつて、これにより水は重合体薄膜13か
らなる感湿材料のポケツト状空洞の中に閉じ込め
られる。この現象は、前述の現象よりかなり遅
く、かつ高湿度測定時にセンサのクリープを生じ
させる。別の結果は、センサ容量のQ値(力率)
の悪化であり、これは後述するように、前述の望
ましくない現象の影境を削減するために、この発
明の実施例において積極的に利用される。
When water molecules are absorbed into the moisture sensitive material comprising the polymer film 13, water retention occurs through two distinct phenomena. One fixation occurs at the molecular level and produces a rapid and nearly linear response as the capacitance C M changes. Another phenomenon is the so-called swelling effect that occurs in extremely humid conditions (generally above 90% relative humidity), whereby water becomes trapped within the pocket-like cavities of the moisture-sensitive material made of the polymeric film 13. It will be done. This phenomenon is much slower than the previous one and causes sensor creep during high humidity measurements. Another result is the Q value (power factor) of the sensor capacitance
This is actively exploited in embodiments of the present invention in order to reduce the effects of the aforementioned undesirable phenomena, as described below.

第1図に示すように、湿度センサ10には適当
な周波数の測定電流eが供給され、この電流は湿
度センサ10で測定される湿度の基礎をなす。前
述した理由により、特に高い湿度レベルにおい
て、端子部16で測定されるインピーダンスZM
は純粋な容量ではなく、ある抵抗成分を有するの
で、測定すべき容量は M=R0+1/jωC (すなわち、直列に接続された抵抗と容量)で表
示される。ここで、R0は誘電体としての重合体
薄膜13の損失抵抗成分であり、CMは測定され
たインピーダンスの容量成分である。高い湿度レ
ベルにおいて、前述した膨潤効果は損失抵抗成分
ROを増大させる。従つて、損失抵抗成分ROの中
に生じかつ湿度センサ10を加熱する損失効果W
は、I2ROに等しい(W=I2RO)。ここで、Iは定
格測定電流(自乗平均電流)である。
As shown in FIG. 1, the humidity sensor 10 is supplied with a measuring current e of a suitable frequency, which current forms the basis of the humidity measured by the humidity sensor 10. For the reasons mentioned above, especially at high humidity levels, the impedance Z M measured at the terminal section 16
Since is not a pure capacitance but has a certain resistance component, the capacitance to be measured is expressed as M =R 0 +1/jωC (that is, resistance and capacitance connected in series). Here, R 0 is the loss resistance component of the polymer thin film 13 as a dielectric, and C M is the capacitance component of the measured impedance. At high humidity levels, the swelling effect mentioned above becomes a loss resisting component.
Increase R O. Therefore, the loss effect W that occurs in the loss resistance component R O and heats the humidity sensor 10
is equal to I 2 R O (W=I 2 R O ). Here, I is the rated measurement current (root mean square current).

この発明によれば、湿度センサ10の加熱は、
湿度センサ10によつて吸収された有害な湿分を
温度上昇と共に感湿材料から迅速に離脱させる作
用と、周囲空気より若干温かい湿度センサ10が
周囲空気を加温して境界表面の空気の相対湿度を
湿度センサ10の動作点からみて有害な高さまで
上昇させないようにする作用とを有し、あるいは
これら両作用のいずれかを有すると考えられる。
According to this invention, the heating of the humidity sensor 10 is performed by
The harmful moisture absorbed by the humidity sensor 10 is rapidly released from the moisture-sensitive material as the temperature rises, and the humidity sensor 10, which is slightly warmer than the surrounding air, warms the surrounding air and increases the relative humidity of the air at the boundary surface. It is considered to have the function of preventing the humidity from rising to a harmful level from the operating point of the humidity sensor 10, or to have either of these functions.

第1図に示されるように、湿度センサ10の重
合体薄膜13で形成された絶縁層(感湿材料)
は、湿度センサ10自体に直接加えられる電流I
によつて加温される。この電流Iは、センサ自体
の測定電流と同じであり、測定される容量の誘電
体(感湿材料)に損失を生じさせる。第1図に示
すように、前述の感湿材料に対する加温は、実際
上湿度センサ10の入力電圧Uを、適当なレベル
まで上昇させることによつて遂行される。本発明
のこの実施例の利点は、湿度センサ10が自己制
御式であることである。すなわち、この自己制御
式とは、高湿度のときに大きく加温され(比較的
高い損失抵抗ROとなる)、加熱を要しない低い湿
度レベルのときに加温が低くなる(損失抵抗RO
も低くなる)ことである。従つて、この発明によ
る加温は、著しい誤差すなわち湿度測定における
補正の必要を生じない。
As shown in FIG. 1, an insulating layer (moisture sensitive material) formed of a polymer thin film 13 of a humidity sensor 10
is the current I applied directly to the humidity sensor 10 itself.
heated by. This current I is the same as the measuring current of the sensor itself and causes losses in the dielectric (moisture sensitive material) of the capacitance being measured. As shown in FIG. 1, heating of the moisture sensitive material described above is accomplished in practice by increasing the input voltage U of the humidity sensor 10 to an appropriate level. An advantage of this embodiment of the invention is that humidity sensor 10 is self-regulating. In other words, this self-regulating system means that it heats up significantly when the humidity is high (resulting in a relatively high loss resistance R O ), and heats it less at low humidity levels where no heating is required (resulting in a relatively high loss resistance R O ) .
(becomes lower). Therefore, heating according to the invention does not result in significant errors or the need for correction in humidity measurements.

第1図に示した実施例において、誘電体(感湿
材料)の温度TSは、絶縁層(感湿材料)に連結
配置された温度センサ15によつて測定され、こ
の測定結果は導線18を介して取り出し、絶縁層
(感湿材料)の加温に対して適宜使用される。実
際上、前記温度センサ15による測定結果は、温
度TSの関数(これは経験に従つて選択される)
として、入力電圧Uを調節することによつて温度
制御を行う。
In the embodiment shown in FIG. 1, the temperature T S of the dielectric (moisture sensitive material) is measured by a temperature sensor 15 arranged in connection with the insulating layer (moisture sensitive material), and the measurement result is transmitted to the conductor 18. It is taken out through the wafer and used as appropriate for heating the insulating layer (moisture-sensitive material). In practice, the measurement result by said temperature sensor 15 is a function of the temperature T S (which is selected according to experience).
As a result, temperature control is performed by adjusting the input voltage U.

第1図に示したように、周囲温度TOも温度セ
ンサ17で測定され、この測定結果は導線19を
介して測定装置20へ送られて湿度センサ10の
加温の調節に対し、適当な方法で使用される。な
お、第1図において、ブロツク22は相対湿度
(RH)指示器を示す。
As shown in FIG. 1, the ambient temperature T O is also measured by the temperature sensor 17, and the measurement result is sent via the conductor 19 to the measuring device 20 for adjusting the heating of the humidity sensor 10 as appropriate. used in methods. In FIG. 1, block 22 represents a relative humidity (RH) indicator.

前述したように、本発明方法によれば、湿度セ
ンサ10自体によつて与えられる湿度情報を、加
熱エネルギの調節に使用できる。また、誘電体
(感湿材料)の温度TSおよび周囲温度TOとして得
られる情報も、例えば90%を越えるような高い相
対湿度のときに、測定結果を温度差△T=TS
TOに比例する信号で補正するよう温度を調節す
るために使用できる。
As mentioned above, according to the method of the invention, the humidity information provided by the humidity sensor 10 itself can be used to adjust the heating energy. In addition, the information obtained as the temperature T S of the dielectric (humidity sensitive material) and the ambient temperature T O can also be used to calculate the temperature difference ΔT = T S − when the relative humidity is high, for example over 90%.
It can be used to adjust the temperature to compensate with a signal proportional to T O.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一部をブ
ロツク線図で示した線図、第2図は第1図に示し
た実際の温度センサの−線断面図である。 10……湿度センサ、11……基板、12……
底部接触体、13……重合体薄膜、14……表面
接触体、15……温度センサ、16……端子部、
17……温度センサ、18……導線、19……導
線、20……測定装置、21……接続導線、22
……相対湿度表示器。
FIG. 1 is a block diagram showing a part of an apparatus for carrying out the method of the present invention, and FIG. 2 is a sectional view taken along the line -- of the actual temperature sensor shown in FIG. 10... Humidity sensor, 11... Board, 12...
Bottom contact body, 13... Polymer thin film, 14... Surface contact body, 15... Temperature sensor, 16... Terminal part,
17...Temperature sensor, 18...Conductor, 19...Conductor, 20...Measuring device, 21...Connecting conductor, 22
...Relative humidity indicator.

【特許請求の範囲】[Claims]

1 空燃比によつて抵抗変化を生ずる酸化物半導
体センサと、酸素イオン伝導体から成る板あるい
は円筒の一面に陰極層を、これと対向する他の面
に陽極層を設け、陰極層を多孔質層で又は有孔函
体で被覆し、陽極層に正、陰極層に負の電圧を印
加して流れる電流の大きさが酸素濃度によつて変
化することから空燃比を検出するセンサ(以下、
限界電流式酸素センサという)とから成るセンサ
部と、 前記酸化物半導体の広範囲の抵抗を測定する抵
抗測定部と、 前記酸化物半導体の抵抗から理論空燃比よりも
燃料過剰か又は燃料不足かを判定する部分と、 燃料不足の場合のみ前記限界電流式酸素センサ
に電圧を印加し、限界電流を検出する限界電流検
出部と、 燃料過剰であれば前記酸化物半導体センサから
求めた空燃比を選択し、燃料不足であれば限界電
流式酸素センサから求めた空燃比を選択する選択
部と、 を備えたことを特徴とする空燃比検出装置。 2 前記酸化物半導体センサに基いて求める空燃
比出力が、燃料過剰領域においては正規の値とな
1. An oxide semiconductor sensor that changes resistance depending on the air-fuel ratio, a cathode layer on one side of a plate or cylinder made of an oxygen ion conductor, and an anode layer on the other side facing this, and a porous cathode layer. A sensor (hereinafter referred to as a sensor) that detects the air-fuel ratio by applying a positive voltage to the anode layer and a negative voltage to the cathode layer, and detecting the air-fuel ratio by applying a positive voltage to the anode layer and a negative voltage to the cathode layer.
a sensor section consisting of a limiting current type oxygen sensor); a resistance measuring section that measures the resistance of the oxide semiconductor over a wide range; and a resistance measurement section that determines whether there is an excess of fuel or an insufficient amount of fuel compared to the stoichiometric air-fuel ratio from the resistance of the oxide semiconductor. a limiting current detection section that applies a voltage to the limiting current type oxygen sensor and detects the limiting current only in the case of fuel shortage; and selecting the air-fuel ratio determined from the oxide semiconductor sensor if there is excess fuel. an air-fuel ratio detection device comprising: a selection unit that selects an air-fuel ratio obtained from a limiting current type oxygen sensor if there is a fuel shortage; 2 The air-fuel ratio output determined based on the oxide semiconductor sensor is a normal value in the excess fuel region.

JP14730878A 1977-12-02 1978-11-30 Method of minimizing undesirable characteristics of humidity sensor Granted JPS5494090A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI773680A FI58402C (en) 1977-12-02 1977-12-02 FARING EQUIPMENT WITHOUT ELECTRICAL EQUIPMENT HOS EN ELECTRICAL FUNCTIONAL EQUIPMENT

Publications (2)

Publication Number Publication Date
JPS5494090A JPS5494090A (en) 1979-07-25
JPH0151771B2 true JPH0151771B2 (en) 1989-11-06

Family

ID=8511289

Family Applications (2)

Application Number Title Priority Date Filing Date
JP14730878A Granted JPS5494090A (en) 1977-12-02 1978-11-30 Method of minimizing undesirable characteristics of humidity sensor
JP61165684A Granted JPS6263852A (en) 1977-12-02 1986-07-16 Capacity type humidity sensor compensating temperature

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP61165684A Granted JPS6263852A (en) 1977-12-02 1986-07-16 Capacity type humidity sensor compensating temperature

Country Status (9)

Country Link
JP (2) JPS5494090A (en)
AU (1) AU4203378A (en)
BR (1) BR7807935A (en)
DE (1) DE2851686C2 (en)
FI (1) FI58402C (en)
FR (1) FR2410821A1 (en)
GB (1) GB2011093A (en)
IT (1) IT1100442B (en)
ZA (1) ZA786573B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509226A (en) * 2013-02-22 2016-03-24 ヴァイサラ オーワイジェー Radiosonde and atmospheric measurement methods performed at high temperatures

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI58403C (en) * 1979-03-29 1981-01-12 Vaisala Oy ADJUSTMENT OF FUNCTIONS
JPS5667742A (en) * 1979-10-26 1981-06-08 Kaelle Eur Control Apparatus for and method of separately providing conductivity* dielectric coefficient and measured value of water content of granular material
US4352059A (en) * 1980-06-13 1982-09-28 Massachusetts Institute Of Technology Determination of moisture level in materials
DE3513065C1 (en) * 1985-04-12 1986-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Probe for measuring the relative humidity of the air without hysteresis
EP0317871A3 (en) * 1987-11-24 1991-03-06 Siemens Aktiengesellschaft Probe for detecting gases
FI82554C (en) * 1988-11-02 1991-03-11 Vaisala Oy Calibration procedure for measuring the relative content of gas or steam
FI95626C (en) * 1993-09-29 1996-02-26 Vaisala Oy Procedure and arrangement for measuring humidity, especially in radio probes
FI99164C (en) * 1994-04-15 1997-10-10 Vaisala Oy Method for measuring the dew point or gas content and equipment for predicting freezing
DE9421962U1 (en) * 1994-07-28 1997-05-28 Vdo Schindling Moisture sensor for a window pane of a motor vehicle
AT1469U1 (en) * 1996-04-10 1997-05-26 E & E Elektronik Gmbh METHOD FOR DETERMINING ABSOLUTE HUMIDITY
DE19729697C1 (en) * 1997-07-11 1999-02-11 Mannesmann Vdo Ag Arrangement for determining the relative humidity
DE19953195A1 (en) * 1999-11-05 2001-05-23 Preh Elektro Feinmechanik Sensor to detect moisture, for commercial vehicle brake system; has printed circuit board with two tracks at different voltages, which are connected, short-circuited or interrupted by moisture
DE10019551A1 (en) * 2000-04-20 2001-10-25 Elk Ges Fuer Erstellung Layout Method and device for determining the relative humidity in air / gas mixtures
DE10051558C2 (en) * 2000-10-18 2003-04-17 Sitronic Elektrotech Ausruest Sensor unit with an air humidity sensor and with an air temperature sensor
DE10141408B4 (en) * 2001-08-23 2005-03-24 Knick Elektronische Meßgeräte GmbH & Co. Method for determining the calibration interval time of electrochemical measuring sensors
DE10335553A1 (en) * 2003-08-02 2005-02-17 E + E Elektronik Ges.M.B.H. Method and arrangement for moisture measurement
CN105229463B (en) 2013-05-30 2019-08-02 维萨拉公司 Double gas sensors structure and measurement method
DE102017210064A1 (en) 2017-06-14 2018-12-20 E + E Elektronik Ges.M.B.H. Method for operating a sensor arrangement and suitable sensor arrangement for this purpose

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB557613A (en) * 1940-05-03 1943-11-29 British Thomson Houston Co Ltd Improved arrangement for the indication of atmospheric moisture
US3350941A (en) * 1965-05-20 1967-11-07 Johnson Service Co Humidity sensing element
FI48229C (en) * 1972-10-12 1974-07-10 Vaisala Oy Capacitive humidity sensor and manufacturing process for the same.
JPS5434628Y2 (en) * 1973-06-06 1979-10-23
GB1464605A (en) * 1973-08-14 1977-02-16 Nippon Sheet Glass Co Ltd Humidity-sensitive sensor
US3859502A (en) * 1974-02-11 1975-01-07 Anthony S Mfg Co Defrosting system for refrigerator doors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509226A (en) * 2013-02-22 2016-03-24 ヴァイサラ オーワイジェー Radiosonde and atmospheric measurement methods performed at high temperatures

Also Published As

Publication number Publication date
BR7807935A (en) 1979-07-31
ZA786573B (en) 1980-03-26
FI58402B (en) 1980-09-30
FI58402C (en) 1981-01-12
GB2011093A (en) 1979-07-04
FI773680A (en) 1979-06-03
AU4203378A (en) 1979-06-07
JPH0340334B2 (en) 1991-06-18
IT7830461A0 (en) 1978-12-01
DE2851686A1 (en) 1979-06-07
JPS6263852A (en) 1987-03-20
IT1100442B (en) 1985-09-28
JPS5494090A (en) 1979-07-25
DE2851686C2 (en) 1981-10-01
FR2410821A1 (en) 1979-06-29
FR2410821B1 (en) 1984-04-20

Similar Documents

Publication Publication Date Title
JPH0151771B2 (en)
US5050434A (en) Capacitive humidity sensor
JP3704685B2 (en) Capacitance sensor
US4603372A (en) Method of fabricating a temperature or humidity sensor of the thin film type, and sensors obtained thereby
US7710128B2 (en) Method and apparatus for controlling the sensitivity and value of a capacitive humidity sensor
JP2004069708A (en) Relative humidity measuring method, especially in radiosonde and humidity detector using its method
US20060237551A1 (en) Humidity sensor formed on a ceramic substrate in association with heating components
US5814726A (en) Method for determining the absolute humidity of air
GB2288465A (en) Method of measuring dewpoint or gas concentration and apparatus for prediction of icing
JPS58124943A (en) Threshold electric current type oxygen sensor attached microheater and threshold electric current type detecting device of oxygen concentration using said oxygen sensor
US5069069A (en) Moisture-sensitive element for moisture sensors
US6806722B2 (en) Polymer-type humidity sensor
JPH0781974B2 (en) Ceramic humidity sensor
RU2096777C1 (en) Humidity transducer
KR102499009B1 (en) Method for operating sensor assembly and sensor assembly suitable therefor
JP2813423B2 (en) Electrochemical gas sensor
SU1651180A1 (en) Method of manufacture of electrolytic moisture transducer
JP3421192B2 (en) Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method
JPH02179459A (en) Structure of moisture sensitive element and humidity sensor
CN218212746U (en) Two-way three-dimensional heating type humidity sensor and equipment with humidity acquisition function
JP2813424B2 (en) Electrochemical gas sensor device
JP3047138B2 (en) Manufacturing method of humidity sensor
Salasmaa et al. Humicap® thin film humidity sensor
CN114858874A (en) Humidity sensing structure, humidity sensor and manufacturing method of humidity sensing structure
SU787971A1 (en) Apparatus for determining moisture penetration