JPH0151474B2 - - Google Patents
Info
- Publication number
- JPH0151474B2 JPH0151474B2 JP8118284A JP8118284A JPH0151474B2 JP H0151474 B2 JPH0151474 B2 JP H0151474B2 JP 8118284 A JP8118284 A JP 8118284A JP 8118284 A JP8118284 A JP 8118284A JP H0151474 B2 JPH0151474 B2 JP H0151474B2
- Authority
- JP
- Japan
- Prior art keywords
- explosive
- specific gravity
- emulsion
- hollow spheres
- explosives
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002360 explosive Substances 0.000 claims description 76
- 230000005484 gravity Effects 0.000 claims description 31
- 239000011521 glass Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 20
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 239000007800 oxidant agent Substances 0.000 claims description 7
- 239000003995 emulsifying agent Substances 0.000 claims description 6
- 239000007762 w/o emulsion Substances 0.000 claims 2
- 239000000839 emulsion Substances 0.000 description 59
- 239000000203 mixture Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 230000035945 sensitivity Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 238000010998 test method Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000005474 detonation Methods 0.000 description 9
- 238000004880 explosion Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- -1 alkali metal chlorates Chemical class 0.000 description 8
- 238000005422 blasting Methods 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 7
- 239000002002 slurry Substances 0.000 description 5
- 238000009863 impact test Methods 0.000 description 4
- HZTVIZREFBBQMG-UHFFFAOYSA-N 2-methyl-1,3,5-trinitrobenzene;[3-nitrooxy-2,2-bis(nitrooxymethyl)propyl] nitrate Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O.[O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O HZTVIZREFBBQMG-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910001964 alkaline earth metal nitrate Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- HTKIMWYSDZQQBP-UHFFFAOYSA-N 2-hydroxyethyl nitrate Chemical compound OCCO[N+]([O-])=O HTKIMWYSDZQQBP-UHFFFAOYSA-N 0.000 description 1
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Chemical class 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910001963 alkali metal nitrate Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910001485 alkali metal perchlorate Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- RAESLDWEUUSRLO-UHFFFAOYSA-O aminoazanium;nitrate Chemical compound [NH3+]N.[O-][N+]([O-])=O RAESLDWEUUSRLO-UHFFFAOYSA-O 0.000 description 1
- KZTZJUQNSSLNAG-UHFFFAOYSA-N aminoethyl nitrate Chemical compound NCCO[N+]([O-])=O KZTZJUQNSSLNAG-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000002666 chemical blowing agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000003975 dentin desensitizing agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000000281 laser microprobe mass spectrometry Methods 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- XMYQHJDBLRZMLW-UHFFFAOYSA-N methanolamine Chemical compound NCO XMYQHJDBLRZMLW-UHFFFAOYSA-N 0.000 description 1
- 229940087646 methanolamine Drugs 0.000 description 1
- PTIUDKQYXMFYAI-UHFFFAOYSA-N methylammonium nitrate Chemical compound NC.O[N+]([O-])=O PTIUDKQYXMFYAI-UHFFFAOYSA-N 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000010688 mineral lubricating oil Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- UKVHGIVBDDWFSH-UHFFFAOYSA-N n-methylmethanamine;nitric acid Chemical compound CNC.O[N+]([O-])=O.O[N+]([O-])=O UKVHGIVBDDWFSH-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Colloid Chemistry (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Description
本発明は油中水滴型(以下W/O型という)エ
マルジヨン爆薬に関するものである。
W/O型エマルジヨン爆薬は米国特許第
3161551号により初めて公開されたが、最近その
研究が急速に進められ、特開昭54−126714、特開
昭54−110308、特開昭55−95699、特開昭56−
100192、特開昭56−129694、特開昭58−125681、
特開昭58−190890、米国特許第4110134号、米国
特許第4218272号、米国特許第4310364号、米国特
許第4371408号等数多くの改良発明がなされ、日
本でも既に昭和56年頃より市販されているもので
ある。
これらの発明によるW/O型エマルジヨン爆薬
は雷管起爆型の感度の高いものから、ブースター
起爆の感度の低いものまで、広い用途に使用され
るものである。W/O型エマルジヨン爆薬は組成
内に水を含むために従来のダイナマイトに較べて
非常に安全である事および、微細なエマルジヨン
を形成させているため、性能が従来のスラリー爆
薬(ウオーターゲル)に較べて飛躍的に向上して
いる事、および従来のスラリー爆薬(ウオーター
ゲル)では困難であつた紙包装が可能となつた
事、などから従来のスラリー爆薬(ウオーターゲ
ル)あるいはダイナマイトに置き替つて市場で広
く使用される事が期待されるものである。
しかし、従来のスラリー爆薬(ウオーターゲ
ル)も、これらの発明によるW/O型エマルジヨ
ン爆薬も産業用爆薬の中心的存在であるダイナマ
イトに較べて取扱上の安全性は著しく優れている
が、発破の際に不発・残留が多いという欠点がみ
られた。岩石等を破砕する作業である発破におい
て不発・残留が発生するという事は所期の目的を
達成出来ないばかりでなく、使用した爆薬が計算
通りの結果を発輝せずコスト的にも大きな損失で
あり、ダイナマイトに置き換つて広範囲に使用さ
れるには致命的な欠陥である。従つてW/O型エ
マルジヨン爆薬の不発残留をいかに少なくするか
という事が当業者の大きな課題であつた。
本発明者等はこの問題を解決するため、鋭意研
究した結果、W/O型エマルジヨン爆薬の不発残
留は主として段発発破という発破法を実施した場
合に、後段に装薬されたW/O型エマルジヨン爆
薬に生じる事を見出したものである。更に詳しく
述べれば、段発々破において前段の発破(換言す
れば前段の爆薬の爆発)によつて発生した衝撃波
が後段の装薬に影響を与え、このために後段の
W/O型エマルジヨン爆薬が不発残留し易くなる
事を見い出したものである。即ち前段の発破によ
る衝撃波が後段のW/O型エマルジヨン爆薬中に
含まれている微小中空体を圧縮破壊し、いわゆる
当業者の言う死圧状態となり不発・残留が発生す
ることを見い出したものである。
この問題を解決するためには、W/O型エマル
ジヨン爆薬に含まれる微小中空球体の強度を強く
するという方法も考えられるが、しかしW/O型
エマルジヨン爆薬の起爆性・伝爆性を保証するい
わゆる感度は一般にその中に含まれる微小中空球
体によつて維持されており、従つて単に微小中空
体の強度を強くしただけでは該爆薬の感度、即ち
性能を著しく低下させてしまうのが通例であり、
感度すなわち性能を保持しながら、しかもW/O
型エマルジヨン爆薬に耐衝撃性を付与するという
事は極めて困難な事であつた。
本発明者等はこれを解決するため、長期に亘り
研究した結果、W/O型エマルジヨン爆薬に含ま
れる微小中空球体としてASTM D3102−72の方
法で計測されかつpsi(1b/in2)単位で表わされ
た10%の破壊強度Sと平均粒子を示す比重dとの
比率r(S/d)が3000から20000にあるようなガ
ラス微小球体を使用すれば、W/O型エマルジヨ
ンの感度および性能を低下させる事なく、しかも
W/O型エマルジヨン爆薬の耐衝撃性を著しく向
上でき、不発・残留がほとんど発生しなくなると
いう事を見い出したものである。
現在市販されているガラス微小中空球体類およ
び本発明者等が自から試製したガラス微小中空球
体の10%破壊強度Sの真比重d、および両者の比
率rを表1に示す。
The present invention relates to a water-in-oil type (hereinafter referred to as W/O type) emulsion explosive. W/O type emulsion explosive has US patent no.
It was first published in No. 3161551, but its research has progressed rapidly recently, and has been published in Japanese Patent Application Publication Nos. 54-126714, 110308-1980, 95699-1980, and 1982-
100192, JP-A-56-129694, JP-A-58-125681,
Many improved inventions have been made such as JP 58-190890, U.S. Patent No. 4110134, U.S. Patent No. 4218272, U.S. Patent No. 4310364, and U.S. Patent No. 4371408, and it has already been commercially available in Japan since around 1988. It is. The W/O type emulsion explosives according to these inventions are used in a wide variety of applications, ranging from highly sensitive detonator-detonated explosives to low-sensitivity booster-detonated explosives. W/O emulsion explosives contain water in their composition, making them much safer than conventional dynamite, and because they form a fine emulsion, their performance is comparable to that of conventional slurry explosives (water gel). It has been replaced with conventional slurry explosives (water gel) or dynamite because it is dramatically improved compared to conventional slurry explosives (water gel) and can be packaged in paper, which was difficult with conventional slurry explosives (water gel). It is expected that it will be widely used in the market. However, although both the conventional slurry explosive (water gel) and the W/O type emulsion explosive developed by these inventions are significantly safer to handle than dynamite, which is the mainstay of industrial explosives, they are difficult to blast. In some cases, the drawback was that there were many non-explosions and residues. Unexploded or residual particles during blasting, which is the process of crushing rocks, etc., not only means that the intended purpose cannot be achieved, but also that the explosives used do not emit the calculated results, resulting in a large loss in terms of cost. This is a fatal flaw for it to be widely used as a replacement for dynamite. Therefore, it has been a major challenge for those skilled in the art how to reduce the amount of unexploded residual W/O emulsion explosives. In order to solve this problem, the present inventors conducted intensive research and found that unexploded residual W/O type emulsion explosives mainly occur when a blasting method called stage blasting is carried out. It was discovered that this occurs in emulsion explosives. More specifically, in stage-by-stage blasting, the shock wave generated by the blasting of the first stage (in other words, the explosion of the first stage explosive) affects the charge of the second stage, and as a result, the W/O emulsion explosive of the second stage It was discovered that the explosions are more likely to remain unexploded. In other words, it was discovered that the shock wave from the blasting of the first stage compresses and destroys the microscopic hollow bodies contained in the W/O type emulsion explosive of the second stage, resulting in what is called a dead pressure state as those skilled in the art would call it, resulting in non-explosion and residue. be. In order to solve this problem, it is possible to increase the strength of the microscopic hollow spheres contained in the W/O emulsion explosive, but the detonation and conductivity of the W/O emulsion explosive cannot be guaranteed. The so-called sensitivity is generally maintained by the microscopic hollow spheres contained therein, and therefore, simply increasing the strength of the microscopic hollow spheres usually significantly reduces the sensitivity, or performance, of the explosive. can be,
While maintaining sensitivity, i.e. performance, and W/O
It has been extremely difficult to impart impact resistance to type emulsion explosives. In order to solve this problem, the present inventors conducted long-term research and found that microscopic hollow spheres contained in W/O emulsion explosives were measured using the ASTM D3102-72 method and in units of psi (1b/in 2 ). If glass microspheres are used in which the ratio r (S/d) between the expressed 10% breaking strength S and the specific gravity d representing the average particle is between 3,000 and 20,000, the sensitivity of the W/O emulsion can be improved. It has been discovered that the impact resistance of W/O emulsion explosives can be significantly improved without degrading performance, and there is almost no misfire or residue. Table 1 shows the true specific gravity d of the 10% breaking strength S of currently commercially available glass micro hollow spheres and the glass micro hollow spheres trial-produced by the present inventors, and the ratio r between the two.
【表】
本発明者等は表1に示されたrの数値が3000か
ら20000までの範囲にあるようなガラス微小中空
球体を用いてW/O型エマルジヨン爆薬を調製す
れば、感度および性能を低下せずに、従来のW/
O型エマルジヨン爆薬では改良できなかつた不
発・残留の発生を極度に少なくできることが判つ
た。従来のW/O型エマルジヨン爆薬では本発明
に述べられた事柄については一切考慮がなされて
おらず、ただ爆薬の感度を向上するだけの目的
で、比較的比重が小さく、かつここに言うrの値
が3000以下のガラス微小中空球体を使うのが通例
であつた。
例えば特開昭54−126714ではr=2270のE22X
(商品名)、特開昭54−110308ではr=1670の
B15/250、特開昭55−95699ではr=1250のQ−
cell200、特開昭55−167198ではr=2270の
E22X、特開昭56−100192ではr=2680のB28/
750、特開昭56−109890ではr=2680のB28/
750、特開昭56−129694ではr=2680のB28/
750、特開昭58−125681ではr=1670のC15/
250、特開昭58−190890ではr=1670のB15/
250、米国特許第4110134号ではr=1670のB15/
250とr=1250のQcell200、米国特許第4218272号
ではr=1250のQcell200、米国特許第4310364号
ではr=1670のB15/250、米国特許第4371408号
ではr=1250のQcell200およびr=1670のB15/
250がそれぞれ使用されており、本発明に述べら
れているようなr=3000から20000にあるような
ガラス微小中空球体を使用するような考慮がなさ
れていなかつた事はこれらの実例から見ても明白
である。
本発明のW/O型エマルジヨン爆薬に使用され
るガラス微小中空球体は二酸化ケイ素(SiO2)
を主成分とし、Na2O等のアルカリ金属酸化物
や、その他アルカリ土類金属酸化物ホウ酸等を含
むいわゆるガラスで形成され、その平均粒径dは
10〜500μ、好ましくは30〜200μのものが使用さ
れる。又そのセル厚みは0.1〜10μ、好ましくは
0.3〜5μの範囲のものが使用される。
本発明では通常10%破壊強度と平均粒子比重の
比rが3000から20000にあるようなガラス微小中
空球体が使用できるが、好ましくはrが5000から
15000のものが使用される。
本発明のW/O型エマルジヨン爆薬に使用され
るガラス微小中空球体の量は該爆薬の用途に応じ
て広い範囲で変化し、又該中空球体の比重にもよ
るので、一概には言えないが、通常該爆薬の比重
を1.40g/c.c.以下になる様な量が求められ、好ま
しくは1.3g/c.c.以下になる量が使用される。
本発明に使用される酸化剤水溶液は硝酸アンモ
ニウム、アルカリ金属硝酸塩類、アルカリ土類金
属硝酸塩類、アルカリ金属塩素酸塩類、アルカリ
土類金属塩素酸塩類、アルカリ金属過塩素酸塩
類、アルカリ土類金属過塩素酸塩類、および過塩
素酸アンモニウムをそれぞれ単独、または混合し
て水溶させたものである。また、本発明に使用さ
れる酸化剤水溶液に硝酸モノメチルアミン、硝酸
ヒドラジン、二硝酸ジメチルアミン等の水溶性ア
ミン硝酸塩類、硝酸メタノールアミン、硝酸エタ
ノールアミン等の水溶性アルカノールアミン硝酸
塩類および水溶性の一硝酸エチレングリコールを
補助鈍感剤として使用することが可能である。該
酸化剤水溶液中における水の含有量は酸化剤水溶
液の結晶析出温度が30〜90℃となる範囲で使用さ
れる事が好ましく、通常酸化剤水溶液に対して5
〜40重量%で使用され、好ましくは7〜30重量%
が使用される。酸化剤水溶液中には結晶析出温度
を下げる為に、メチルアルコール、エチルアルコ
ール、ホルムアマイド、エチレングリコール、グ
リセリン等の水溶性有機溶剤が補助溶媒として使
用可能である。
本発明では酸化剤水溶液は全組成物に対して50
〜90重量%の範囲で使用される。
本発明で用いられる油類としては、軽油、灯
油、ミネラルオイル、潤滑油、重油等の石油系油
類、パラフインワツクス、マイクロクリスタリン
ワツクス等の石油系ワツクス等の石油系ワツクス
類、その他疎水性の植物油、植物性ワツクス、動
物油、動物性ワツクスの単独または2種以上の混
合物が使用される。また、上述の油類にエポオキ
シ樹脂、不飽和ポリエステル樹脂、ポリブテン、
ポリイソブチレン、石油樹脂、ブタジエン樹脂、
エチレン酢酸ビニル共重合体、ポリエチレン樹脂
等の樹脂類を配合し変成した油類も使用できる。
本発明における油類の使用量は1〜10重量%の
範囲であるが、好ましくは2〜8重量%である。
本発明に使用される乳化剤としては一般にW/
O型エマルジヨンの生成に用いられる乳化剤が選
ばれる。例えばステアリン酸のアルカリ金属塩ま
たはアンモニウム塩、ポリオキシエチレンアルキ
ルエーテル、脂肪酸グリセライド、ポリエチレン
グリコール脂肪酸エステル、オキサドリン誘導
体、ソルビタン脂肪酸エステル等が単独または2
種以上の混合物として使用される。本発明に用い
られる乳化剤は0.5〜7.0重量%の範囲で使用可能
である。
本発明によるW/O型エマルジヨン爆薬はその
目的に応じてガラス以外の中空球体類、例えばシ
ラスバルーンやパーライト、あるいはTNTやペ
ントリツトのような爆発性物質、あるいは化学的
発泡剤、ないしはアルミ粉、マグネシウム粉等の
金属粉末類、ないしは木粉、澱粉等の粉状の有機
物の添加も可能である。
本発明を実施例を掲げて以下に詳しく説明す
る。
実施例 1
ワツクスレツクス140(モービル石油社製)2.5
重量%と、ポリイソブチレン(エツソ化学社製、
商品名ビスタネツクスLMMS)1.0重量%を90℃
で加熱溶解し、さらに乳化剤としてソルビタンモ
ノオレエート2.8重量%を越えて、W/O型のエ
マルジヨンを調製した。このエマルジヨン100部
に10%破壊強度(S)と平均粒子比重(d)との比r
が5000である米国3M社製のガラス微小中空体
(A20/1000)4.0重量部を加えて撹拌混合し、比
重1.12のW/O型エマルジヨン爆薬を得た。
実施例 2
実施例1と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rが7810である米国3M社製のガラス微小中空
体(A32/2500)7.8部を加えて撹拌混合し、比
重1.12のW/O型エマルジヨン爆薬を得た。
実施例 3
実施例1と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rが5410の米国の3M社製のガラス微小中空体
(B37/2000)8.8部を加えて撹拌混合し、比重
1.12のW/O型エマルジヨン爆薬を得た。
実施例 4
実施例1と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rが11430のガラス微小中空球体試料2(表1に
記載のもの)を8.2部加え、撹拌混合し、比重
1.12のW/O型エマルジヨン爆薬を得た。
比較例 1
実施例1と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rが1670である米国3M社製のガラス微小中空
球体(B15/250)3.0部を加え、撹拌混合し、比
重1.12のW/O型エマルジヨン爆薬を得た。
比較例 2
実施例1と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rが2680である米国3M社製のガラス微小中空
球体(B28/750)6.5部を加え、撹拌混合し、比
重1.12のW/O型エマルジヨン爆薬を得た。
比較例 3
実施例1と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rが21250のセントラル硝子社製のガラス微小
中空球体試料3(表1に記載)10.0部を加えて、
比重1.12のW/O型エマルジヨン爆薬を得た。
実施例1〜4、および比較例1〜3のW/O型
エマルジヨン爆薬について、以下に詳述する爆薬
の感度試験法(A)および爆薬の耐衝撃性試験法(B)の
2種の試験を実施した。
感度試験法 A
試験するW/O型エマルジヨン爆薬を径30mmの
紙筒に充填して100gの爆薬薬包とする。この薬
包を適当な冷却装置で一昼夜、希望する温度に冷
却する。充分冷却され一定温度になつた試験爆薬
包を取り出し、市販の6号雷管によつて起爆し試
験爆薬包が爆発するかどうかを調べる。同一温度
で3回の試験を実施し、3回共爆発した場合はそ
の温度よりさらに低い温度で同様の試験を実施す
る。このようにして実験を実施し、試験数3回
共、すべて爆発する最低の温度(限界起爆温度)
を求める。この温度が低い程、試験爆薬は感度が
高く、この温度が高い程感度が低いことを示す。
耐衝撃試験法 B
工業火薬協会誌1982年43巻5号317頁から312頁
の論文に記載されている水中衝撃試験を耐衝撃試
験に適用した。該試験は段発発破における前段の
爆薬が圧力に耐え得る性質を調べるのに適した方
法で本発明者等は励爆薬として実施例1のW/O
型エマルジヨン爆薬(30mm径×100g)に6号瞬
発電気雷管を装置したものを用いた。また受爆薬
として試験爆薬包(30mm径×100g)に250ミリ秒
遅れて爆発するDS−2段段発電気雷管を装置し
たものを用いた。
ドナ−薬(励爆薬)及びアクセプター薬(受爆
薬)を当該論文中に記載されているる様に定めら
れた距離だけ離して水深1mの水中に設置する。
ドナ−およびアクセプターの電気雷管に通電し、
アクセプターがドナーからの衝撃波による影響を
受けずに完全に爆発するかどうかを判定する。同
一距離で3回試験を実施し、アクセプターが3回
共完爆する最小の距離を求めて限界爆発距離とす
る。この距離が短かい程、ドナーの衝撃に対して
耐性がある。換言すれば耐衝撃性が強いか、ない
しはその爆薬は死圧になり難い事になる。また逆
にその距離が長い程、ドナーからの衝撃に対して
耐性がない、換言すれば耐衝撃性が弱いか、ない
しは死圧になり易い爆薬であるという事になる。
実施例1〜4、比較例1〜3の試験結果を表2
にまとめた。[Table] The present inventors have found that sensitivity and performance can be improved by preparing a W/O emulsion explosive using glass micro hollow spheres with r values in the range of 3000 to 20000 as shown in Table 1. Conventional W/
It has been found that the occurrence of unexploded and residual materials, which could not be improved with O-type emulsion explosives, can be extremely reduced. Conventional W/O type emulsion explosives do not take into consideration the matters mentioned in the present invention, and are used only for the purpose of improving the sensitivity of the explosive. It was customary to use glass microscopic hollow spheres with a value of 3000 or less. For example, in JP-A-54-126714, E22X with r=2270
(Product name), in JP-A-54-110308, r=1670.
B15/250, Q- of r=1250 in JP-A-55-95699
cell200, r=2270 in JP-A-55-167198
E22X, B28/ of r=2680 in JP-A-56-100192
750, B28/ of r=2680 in JP-A-56-109890
750, B28/ of r=2680 in JP-A-56-129694
750, C15/ of r=1670 in JP-A-58-125681
250, B15/ of r=1670 in JP-A-58-190890
250, in U.S. Pat. No. 4,110,134, B15/ with r=1670
250 and r=1250 Qcell200 in U.S. Pat. No. 4,218,272, B15/250 with r=1670 in U.S. Pat. B15/
250 were used, and it can be seen from these examples that no consideration was given to using glass micro hollow spheres with r = 3000 to 20000 as described in the present invention. It's obvious. The glass micro hollow spheres used in the W/O emulsion explosive of the present invention are made of silicon dioxide (SiO 2 ).
The main component is alkali metal oxides such as Na 2 O, and other alkaline earth metal oxides such as boric acid.The average particle size d is
10 to 500μ, preferably 30 to 200μ is used. Also, the cell thickness is 0.1 to 10μ, preferably
Those in the range of 0.3 to 5μ are used. In the present invention, glass micro hollow spheres having a ratio r of 10% breaking strength to average particle specific gravity of 3,000 to 20,000 can be used, but preferably r is 5,000 to 20,000.
15,000 are used. The amount of glass micro hollow spheres used in the W/O type emulsion explosive of the present invention varies over a wide range depending on the use of the explosive, and also depends on the specific gravity of the hollow spheres, so it cannot be determined with certainty. Usually, the amount used is such that the specific gravity of the explosive is 1.40 g/cc or less, and preferably 1.3 g/cc or less. The oxidizing agent aqueous solution used in the present invention includes ammonium nitrate, alkali metal nitrates, alkaline earth metal nitrates, alkali metal chlorates, alkaline earth metal chlorates, alkali metal perchlorates, and alkaline earth metal nitrates. Chlorates and ammonium perchlorate are dissolved in water, either alone or as a mixture. In addition, water-soluble amine nitrates such as monomethylamine nitrate, hydrazine nitrate, dimethylamine dinitrate, water-soluble alkanolamine nitrates such as methanolamine nitrate, ethanolamine nitrate, etc. Ethylene glycol mononitrate can be used as a co-desensitizing agent. The water content in the oxidizing agent aqueous solution is preferably used within a range where the crystal precipitation temperature of the oxidizing agent aqueous solution is 30 to 90°C, and usually 5% to 90°C.
~40% by weight, preferably 7-30% by weight
is used. In the oxidizing agent aqueous solution, a water-soluble organic solvent such as methyl alcohol, ethyl alcohol, formamide, ethylene glycol, or glycerin can be used as an auxiliary solvent in order to lower the crystal precipitation temperature. In the present invention, the oxidizing agent aqueous solution is 50%
Used in the range of ~90% by weight. Oils used in the present invention include petroleum oils such as light oil, kerosene, mineral oil, lubricating oil, and heavy oil, petroleum waxes such as paraffin wax and microcrystalline wax, and other hydrophobic waxes. One or a mixture of two or more of vegetable oil, vegetable wax, animal oil, and animal wax may be used. In addition, the above-mentioned oils include epoxy resin, unsaturated polyester resin, polybutene,
Polyisobutylene, petroleum resin, butadiene resin,
Oils modified by blending resins such as ethylene vinyl acetate copolymer and polyethylene resin can also be used. The amount of oil used in the present invention ranges from 1 to 10% by weight, preferably from 2 to 8% by weight. The emulsifier used in the present invention is generally W/
The emulsifier used to form the O-type emulsion is selected. For example, alkali metal salts or ammonium salts of stearic acid, polyoxyethylene alkyl ethers, fatty acid glycerides, polyethylene glycol fatty acid esters, oxadoline derivatives, sorbitan fatty acid esters, etc. may be used alone or in combination.
Used as a mixture of more than one species. The emulsifier used in the present invention can be used in a range of 0.5 to 7.0% by weight. Depending on the purpose, the W/O emulsion explosive according to the present invention may be made of hollow spheres other than glass, such as shirasu balloons or perlite, or explosive substances such as TNT or pentrites, or chemical blowing agents, aluminum powder, or magnesium. It is also possible to add metal powders such as powder, or powdered organic substances such as wood flour and starch. The present invention will be described in detail below with reference to Examples. Example 1 Wax Rex 140 (Mobil Oil Company) 2.5
Weight% and polyisobutylene (manufactured by Etsuo Chemical Co., Ltd.,
Product name: Vistanetx LMMS) 1.0% by weight at 90℃
A W/O type emulsion was prepared by heating and dissolving the mixture and adding more than 2.8% by weight of sorbitan monooleate as an emulsifier. For 100 parts of this emulsion, the ratio r of 10% breaking strength (S) and average particle specific gravity (d)
4.0 parts by weight of glass micro hollow bodies (A20/1000) manufactured by 3M Company, USA having a particle diameter of 5000 were added and mixed with stirring to obtain a W/O type emulsion explosive having a specific gravity of 1.12. Example 2 7.8 parts of glass micro hollow bodies (A32/2500) manufactured by 3M Company in the United States having a ratio r of 10% breaking strength to average particle specific gravity of 7810 were added to 100 parts of an emulsion prepared by the same method and composition as in Example 1. was added and mixed with stirring to obtain a W/O emulsion explosive having a specific gravity of 1.12. Example 3 8.8 parts of glass micro hollow bodies (B37/2000) manufactured by 3M Company in the United States having a ratio r of 10% breaking strength to average particle specific gravity of 5410 were added to 100 parts of an emulsion prepared by the same method and composition as in Example 1. Add and stir to mix, and check the specific gravity.
A W/O type emulsion explosive of 1.12 was obtained. Example 4 8.2 parts of glass micro hollow sphere sample 2 (listed in Table 1) having a ratio r of 10% breaking strength to average particle specific gravity of 11430 was added to 100 parts of an emulsion prepared by the same method and composition as in Example 1. Add, stir to mix, and check the specific gravity.
A W/O type emulsion explosive of 1.12 was obtained. Comparative Example 1 3.0 parts of glass micro hollow spheres (B15/250) manufactured by 3M Company in the United States having a ratio r of 10% breaking strength and average particle specific gravity of 1670 were added to 100 parts of an emulsion prepared by the same method and composition as in Example 1. was added and mixed with stirring to obtain a W/O emulsion explosive having a specific gravity of 1.12. Comparative Example 2 6.5 parts of glass micro hollow spheres (B28/750) manufactured by 3M Company in the United States and having a ratio r of 10% breaking strength to average particle specific gravity of 2680 were added to 100 parts of an emulsion prepared by the same method and composition as in Example 1. was added and mixed with stirring to obtain a W/O emulsion explosive having a specific gravity of 1.12. Comparative Example 3 Glass micro hollow sphere sample 3 manufactured by Central Glass Co., Ltd. with a ratio r of 10% breaking strength and average particle specific gravity of 21250 was added to 100 parts of an emulsion prepared by the same method and composition as in Example 1 (listed in Table 1). Add 10.0 parts,
A W/O emulsion explosive with a specific gravity of 1.12 was obtained. The W/O emulsion explosives of Examples 1 to 4 and Comparative Examples 1 to 3 were subjected to two types of tests: the explosive sensitivity test method (A) and the explosive impact resistance test method (B), which are detailed below. was carried out. Sensitivity test method A: Pack the W/O type emulsion explosive to be tested into a paper tube with a diameter of 30 mm to make a 100 g explosive cartridge. The medicine packet is cooled to the desired temperature overnight using a suitable cooling device. The test explosive package that has been sufficiently cooled to a constant temperature is taken out and detonated using a commercially available No. 6 detonator to see if the test explosive package explodes. Perform three tests at the same temperature, and if all three explosions occur, repeat the test at a lower temperature. The experiment was conducted in this way, and the lowest temperature at which it exploded (limit detonation temperature) was reached in all three tests.
seek. The lower the temperature, the more sensitive the test explosive is, and the higher the temperature, the less sensitive it is. Impact test method B The underwater impact test described in the paper published in Journal of Industrial Explosives Association, Vol. 43, No. 5, 1982, pages 317 to 312 was applied to the impact test. This test is a method suitable for investigating the pressure-resistant properties of the explosive in the first stage of stage blasting, and the inventors used W/O of Example 1 as the exciter.
A type emulsion explosive (30 mm diameter x 100 g) equipped with a No. 6 instantaneous electric detonator was used. In addition, a test explosive package (30 mm diameter x 100 g) equipped with a DS-2 stage electric detonator that detonated with a delay of 250 milliseconds was used as the explosive charge. A donor agent (exciter) and an acceptor agent (detonator) are placed in water at a depth of 1 meter, separated by a predetermined distance, as described in the paper.
energize the donor and acceptor electric detonators;
Determine whether the acceptor completely explodes without being affected by the shock wave from the donor. The test is conducted three times at the same distance, and the minimum distance at which the acceptor detonates completely three times is determined as the critical detonation distance. The shorter this distance, the more resistant it is to donor impact. In other words, the impact resistance is strong, or the explosive is difficult to reach dead pressure. On the other hand, the longer the distance, the less resistant the explosive is to impact from the donor, in other words, the impact resistance is weak or the explosive is susceptible to dead pressure. Table 2 shows the test results of Examples 1 to 4 and Comparative Examples 1 to 3.
summarized in.
【表】
冬期におけるW/O型エマルジヨン爆薬の使用
を考慮すると、限界起爆温度は少なくとも−5℃
以下であることが必要である。この点から考える
と、10%破壊強度と平均粒子比重の比rが極端に
大きい比較例3は明らかに実用性を欠いたガラス
中空球体を選択したものである。実施例1〜4お
よび比較例1〜2は冬期の使用に十分耐える感度
を有しているが、実際の段発発破において、あら
ゆる種類の岩石中で不発残留の発生の恐れが極め
て少なくなる限界爆発距離は本発明者の研究によ
れば、1.0mであり、比較例1〜2はこの点で実
用性に難点がある。これに対し実施例1〜4に示
される限界爆発距離は1.0m以下である。耐衝撃
性は比較例に較べて明らかに向上している事が判
る。また限界起爆温度も低く、冬期の実用性につ
いても何等問題はない。
実施例 5
流動パラフイン3.5重量%を90℃で加熱溶解し、
これに酸化剤水溶液として水14.1重量%、硝酸ア
ンモニウム70.0重量%、硝酸ナトリウム5.0重量
%、過塩素酸ナトリウム4.6重量%をあらかじめ
90℃で加熱溶解したもの、さらに乳化剤としてポ
リグリセリン・リノール酸エステル2.8重量%を
加えてW/O型エマルジヨンを調製した。このエ
マルジヨン100部に10%破壊強度と平均粒子比重
の比rが7810の米国3M社製のガラス微小中空球
体(A32/2500)3.8部を加えて、撹拌混合し、
比重1.25のW/O型エマルジヨン爆薬を得た。
実施例 6
実施例5と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rが14060の米国3M社製のガラス微小中空球体
(D32/4500)4.0部を加えて撹拌混合し、比重
1.25のW/O型エマルジヨン爆薬を得た。
実施例 7
実施例5と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rを6670のセントラル硝子社製のガラス微小中
空球体試料1(表1に記載のもの)を3.2部加えて
撹拌混合し、比重1.25のW/O型エマルジヨン爆
薬を得た。
比較例 4
実施例5と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rが1250である米国のフライデルフイアクオル
ツ社製のガラス微小中空球体Qcell200 2.0重量%
加えて撹拌混合し比重1.25のW/O型エマルジヨ
ン爆薬を得た。
比較例 5
実施例5と同じ組成、同じ方法で調製したエマ
ルジヨン100部に10%破壊強度と平均粒子比重の
比rを21250のセントラル硝子社製のガラス微小
中空球体試料3を5.5部加えて撹拌混合し、W/
O型エマルジヨン爆薬を得た。完成爆薬の比重は
1.23であつた。
実施例5〜7、および比較例4〜5で調製した
W/O型エマルジヨン爆薬について以下に詳細す
る感度試験法(C)および耐衝撃試験法(D)の試験を実
施した。
感度試験法 C
試験するW/O型エマルジヨン爆薬を径40mmの
合成樹脂フイルム筒に充填し、重さ500gの爆薬
薬包とした。この薬包を感度試験法Aと同じ方法
で冷却する。充分冷却され一定温度になつた試験
薬包をTNT/PETN50:50から成る爆薬ペント
ライト20grで起爆し、感度試験法Aと同じよう
にして限界爆発温度を求める。
耐衝撃試験法 D
原理的には前述の耐衝撃試験法Bと同じである
が、試験するW/O型エマルジヨン爆薬の薬包で
あるアクセプター薬(30mm径、100g)の起爆部
分に感度試験法Cで用いるTNT/PETN50:50
爆薬(ペントライト)20gを取付け、この中に
DS−2段の段発電気雷管を装着する方法をとる。
その他は耐衝撃試験法Bと全く同じ方法でその限
界爆発距離を求める。
実施例5〜7および比較例4〜5で調製した
W/O型エマルジヨン爆薬の限界起爆温度及び限
界爆発距離を上述の試験法に従つて求め、表3に
一括して記載した。[Table] Considering the use of W/O type emulsion explosives in winter, the limit detonation temperature is at least -5℃.
It is necessary that the following is true. Considering this point, Comparative Example 3, in which the ratio r of the 10% breaking strength to the average particle specific gravity is extremely large, is a glass hollow sphere that is clearly lacking in practicality. Examples 1 to 4 and Comparative Examples 1 to 2 have sensitivity sufficient to withstand use in winter, but there is a limit at which the risk of unexploded residue occurring in all types of rocks is extremely low in actual stage blasting. According to research by the present inventors, the explosion distance is 1.0 m, and Comparative Examples 1 and 2 have a drawback in practicality in this respect. On the other hand, the critical explosion distance shown in Examples 1 to 4 is 1.0 m or less. It can be seen that the impact resistance is clearly improved compared to the comparative example. In addition, the limit detonation temperature is low, so there is no problem with its practicality in winter. Example 5 3.5% by weight of liquid paraffin was dissolved by heating at 90°C,
To this, 14.1% by weight of water, 70.0% by weight of ammonium nitrate, 5.0% by weight of sodium nitrate, and 4.6% by weight of sodium perchlorate were added in advance as an oxidizing agent aqueous solution.
A W/O emulsion was prepared by heating and dissolving the mixture at 90° C. and adding 2.8% by weight of polyglycerin linoleic acid ester as an emulsifier. To 100 parts of this emulsion, 3.8 parts of glass micro hollow spheres (A32/2500) manufactured by 3M Company in the United States having a ratio r of 10% breaking strength to average particle specific gravity of 7810 were added and mixed by stirring.
A W/O type emulsion explosive with a specific gravity of 1.25 was obtained. Example 6 4.0 parts of glass micro hollow spheres (D32/4500) manufactured by 3M Company in the United States having a ratio r of 10% breaking strength and average particle specific gravity of 14060 were added to 100 parts of an emulsion prepared by the same method and composition as in Example 5. Add, stir to mix, and check the specific gravity.
A W/O type emulsion explosive of 1.25 was obtained. Example 7 To 100 parts of an emulsion prepared in the same manner and with the same composition as in Example 5, glass micro hollow sphere sample 1 manufactured by Central Glass Co., Ltd. with a ratio r of 10% breaking strength and average particle specific gravity of 6670 (listed in Table 1) was added. 3.2 parts of 3.2 parts of 1.0% of the mixture was added and mixed with stirring to obtain a W/O type emulsion explosive with a specific gravity of 1.25. Comparative Example 4 To 100 parts of an emulsion prepared in the same manner and with the same composition as in Example 5, glass micro hollow spheres Qcell 200 manufactured by Freidelphi Quartz Co., Ltd. in the United States having a ratio r of 10% breaking strength and average particle specific gravity of 1250 were added by weight of 2.0 parts. %
In addition, the mixture was stirred and mixed to obtain a W/O type emulsion explosive having a specific gravity of 1.25. Comparative Example 5 To 100 parts of an emulsion prepared in the same manner and with the same composition as in Example 5, 5.5 parts of glass micro hollow sphere sample 3 manufactured by Central Glass Co., Ltd. with a ratio r of 10% breaking strength and average particle specific gravity of 21250 was added and stirred. Mix, W/
An O-type emulsion explosive was obtained. The specific gravity of the finished explosive is
It was 1.23. The W/O emulsion explosives prepared in Examples 5 to 7 and Comparative Examples 4 to 5 were tested using the sensitivity test method (C) and the impact test method (D), which are detailed below. Sensitivity Test Method C The W/O type emulsion explosive to be tested was filled into a synthetic resin film tube with a diameter of 40 mm to form an explosive cartridge weighing 500 g. The capsule is cooled in the same manner as Sensitivity Test Method A. The test cartridge, which has been sufficiently cooled to a constant temperature, is detonated with 20 gr of pentolite, an explosive consisting of 50:50 TNT/PETN, and the critical explosion temperature is determined in the same manner as sensitivity test method A. Impact resistance test method D The principle is the same as the impact resistance test method B described above, but a sensitivity test method is applied to the detonation part of the acceptor charge (30 mm diameter, 100 g), which is the cartridge of the W/O emulsion explosive to be tested. TNT/PETN used in C: 50:50
Attach 20g of explosives (pentolite) and place it inside this
The method is to install a DS-2 stage electric detonator.
Other than that, the critical explosion distance is determined using exactly the same method as impact resistance test method B. The critical detonation temperatures and critical detonation distances of the W/O emulsion explosives prepared in Examples 5 to 7 and Comparative Examples 4 to 5 were determined according to the above-mentioned test method, and are listed in Table 3.
【表】
実施例5〜7及び比較例4〜5におけるペント
ライトにより起爆されたW/O型エマルジヨン爆
薬においても、冬期の起爆感度及び耐衝撃性の両
方を考慮すれば、本発明に依る実施例は、比較例
に較べて著るしく優れている事が明白である。[Table] Regarding the W/O type emulsion explosives detonated by pentolite in Examples 5 to 7 and Comparative Examples 4 to 5, implementation according to the present invention is possible if both detonation sensitivity and impact resistance in winter are considered. It is clear that the example is significantly superior to the comparative example.
Claims (1)
り成る油中水滴型エマルジヨン爆薬において、微
小中空球体がpsi〔lb/in2〕単位で表わした10%
破壊強度Sと、平均粒子比重dの比r(S/d)
が3000〜20000の範囲にあるような、ガラス微小
中空球体からなることを特徴とする油中水滴型エ
マルジヨン爆薬。[Claims] 1. In a water-in-oil emulsion explosive consisting of an oxidizing agent aqueous solution, an oil, an emulsifier, and micro hollow spheres, the micro hollow spheres account for 10% expressed in psi [lb/in2].
Ratio r (S/d) of breaking strength S and average particle specific gravity d
A water-in-oil emulsion explosive characterized by comprising glass microscopic hollow spheres having a particle diameter in the range of 3,000 to 20,000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8118284A JPS60226479A (en) | 1984-04-24 | 1984-04-24 | Water-in-oil emulsion explosive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8118284A JPS60226479A (en) | 1984-04-24 | 1984-04-24 | Water-in-oil emulsion explosive |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60226479A JPS60226479A (en) | 1985-11-11 |
JPH0151474B2 true JPH0151474B2 (en) | 1989-11-02 |
Family
ID=13739327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8118284A Granted JPS60226479A (en) | 1984-04-24 | 1984-04-24 | Water-in-oil emulsion explosive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60226479A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060294A (en) * | 2000-08-11 | 2002-02-26 | Nippon Kayaku Co Ltd | Water drop-in-oil type emulsion explosive |
JP4570218B2 (en) * | 2000-08-14 | 2010-10-27 | カヤク・ジャパン株式会社 | Water-in-oil emulsion explosive |
-
1984
- 1984-04-24 JP JP8118284A patent/JPS60226479A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60226479A (en) | 1985-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Walley et al. | Crystal sensitivities of energetic materials | |
US4110134A (en) | Water-in-oil emulsion explosive composition | |
EP0140534B1 (en) | Water-in-oil emulsion explosive composition | |
JPH0633212B2 (en) | Water-in-oil emulsion explosive composition | |
CA2024611C (en) | Cap sensitive explosive composition containing from 20 to 40% of solid particulate ammonium nitrate | |
US3239395A (en) | Stabilized explosive containing nitromethane and amine | |
JPH0151474B2 (en) | ||
US3096223A (en) | Slurry blasting explosives containing inorganic prechlorate or chlorate | |
Zakusylo | Investigation of the initiating ability of conically shaped charges | |
JP2001039789A (en) | Explosive composition | |
JPS5814397B2 (en) | Water-in-oil emulsion hydrous explosive composition | |
AU625503B2 (en) | High emulsifier content explosives | |
US4424087A (en) | Method for desensitizing particle formed solid explosive substances | |
RU2226522C2 (en) | Gunpowder explosive composition and a method for preparation thereof | |
JP4570218B2 (en) | Water-in-oil emulsion explosive | |
US3255057A (en) | Sensitized ammonium nitrate explosives containing a hydrogen ion indicator | |
Maranda et al. | Explosive mixtures detonating at low velocity | |
RU2330830C1 (en) | Explosive composition | |
JP2001139387A (en) | Emulsion explosive | |
US6702909B2 (en) | High energy explosive containing cast particles | |
RU2293074C1 (en) | Water-containing blasting composition | |
JPH0429635B2 (en) | ||
JP3599623B2 (en) | Explosive composition | |
WO1996011172A1 (en) | An explosive composition | |
RU2237645C1 (en) | Blasting composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |