JPH0150399B2 - - Google Patents

Info

Publication number
JPH0150399B2
JPH0150399B2 JP62023698A JP2369887A JPH0150399B2 JP H0150399 B2 JPH0150399 B2 JP H0150399B2 JP 62023698 A JP62023698 A JP 62023698A JP 2369887 A JP2369887 A JP 2369887A JP H0150399 B2 JPH0150399 B2 JP H0150399B2
Authority
JP
Japan
Prior art keywords
solution
chamber
concentrate
circulation system
acetyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62023698A
Other languages
Japanese (ja)
Other versions
JPS62186799A (en
Inventor
Kooberushutain Edogaa
Reeman Toomasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of JPS62186799A publication Critical patent/JPS62186799A/en
Publication of JPH0150399B2 publication Critical patent/JPH0150399B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • C12P41/007Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving acyl derivatives of racemic amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、L−アミノ酸アシラーゼの存在にお
けるN−アセチル−DL−アミノカルボン酸の酵
素的ラセミ分割からの酵素の分離後に残留する溶
液を電気透析により後処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for electrodialyzing the solution remaining after separation of the enzyme from the enzymatic racemic resolution of N-acetyl-DL-aminocarboxylic acids in the presence of L-amino acid acylase. Concerning how to post-process.

従来の技術 エナンチオマー純粋なL−アミノ酸の合成時
に、多くの場合に、まず得られるラセミ体をアセ
チル化し、次いでラセミ性N−アセチル−DL−
アミノ酸をL−アミノ酸アシラーゼにより分割さ
せることよりなる迂回が行なわれる。酵素の分離
の後に、この加水分解により遊離されたL−アミ
ノ酸は、適当な方法で単離される。加水分解され
ていないN−アセチル−D(L)−アミノ酸はラセミ
化の後に新たにラセミ体分割に提供されうる。
Prior Art During the synthesis of enantiomerically pure L-amino acids, the racemate obtained is often first acetylated and then the racemic N-acetyl-DL-
A bypass consists of splitting the amino acids by L-amino acid acylase. After separation of the enzyme, the L-amino acids liberated by this hydrolysis are isolated in a suitable manner. The unhydrolyzed N-acetyl-D(L)-amino acids can be provided fresh for racemic resolution after racemization.

酵素的ラセミ体分割からの酵素の分離後に残留
する溶液は、例えばL−アミノ酸0.15〜0.7モ
ル/、N−アセチル誘導体(主としてN−アセ
チル−D−アミノ酸及び少量のN−アセチル−L
−アミノ酸)0.15〜0.9モル/及び酢酸0.15〜
0.7セル/(各々アルカリ金属塩有利にナトリ
ウム塩の形で)及び少量の有効塩
(Effektorsalzen)例えばCoCl2を含有する。
The solution remaining after separation of the enzyme from enzymatic racemic resolution contains, for example, 0.15-0.7 mol/L-amino acid, N-acetyl derivatives (mainly N-acetyl-D-amino acids and small amounts of N-acetyl-L
-amino acid) 0.15 to 0.9 mol/and acetic acid 0.15 to
0.7 cells/(each in the form of an alkali metal salt, preferably in the form of a sodium salt) and a small amount of active salt, such as CoCl 2 .

この溶液を、通例は、強酸性カチオン交換体の
充填されたイオン交換体カラム上に加えることに
より脱塩後処理する。作業法に応じて、かなり脱
塩されたアミノ酸溶液、遊離酸としての陰イオン
を含有する強酸性のフラクシヨン及び更に著るし
い量の交換された陽イオンを含有し、一般に廃水
として排除されるべき使用済み再生溶液が得られ
る。溶解性の悪い又は僅かに可溶性のアミノ酸で
は、これらは遊離酸としてイオン交換体カラム中
に沈殿し、カラムを目づまりさせるおそれがある
付加的問題が現われる。これは一般に、温度を高
めることにより対処されるが、このことが熱的に
不安定な化合物の存在する場合には更に欠点とな
りうる。
This solution is usually post-desalted by applying it onto an ion exchange column packed with a strongly acidic cation exchanger. Depending on the working method, a highly desalted amino acid solution, a highly acidic fraction containing anions as free acids and even a significant amount of exchanged cations, should generally be rejected as wastewater. A spent regeneration solution is obtained. An additional problem presents itself with poorly or only slightly soluble amino acids, where they may precipitate as free acids into the ion exchanger column, potentially clogging the column. This is generally addressed by increasing the temperature, but this can be a further drawback in the presence of thermally unstable compounds.

西ドイツ特許出願公開第2907450号明細書から、
電気透析によるこのような溶液の後処理法が公知
である。この公知方法は、交互にカチオン−及び
アニオン−交換体膜により相互に分離されてい
て、それらが個々の電極対の間に配置されている
多数の室から成つている電気透析装置中で実施さ
れる。陽極−及び陰極−セルは別としても、これ
らの室は、絶えず交互に1室が供給−及び稀液−
室としてかつ隣接室が濃縮液室としての役目をす
るように作動される。この供給−及び稀液室中で
は、後処理すべき溶液が回転され、電気透析の間
に、溶液中に含有される陰イオン及び陽イオン
は、アニオン交換体膜もしくはカチオン交換体膜
を透過してそれぞれ隣接の濃縮液室に入りうる。
両性のアミノ酸は、供給−及び稀液室中で、電気
透析装置を限界電流密度に近い高い電流密度で作
動することにより保持される。この際、この膜の
所で、両性アミノ酸を膜通過させないPH−ボツク
ス(PH−Schrank)が形成される。この公知方法
で、エナンチオマ−純粋なアミノ酸が良好な収率
でその水溶液の形で稀液室から流出すことができ
るが、当初に含有された陰イオン及び陽イオン
は、再び混合し、その結果、濃縮液室からは塩水
溶液のみを流出できるという欠点を有する。
From West German Patent Application No. 2907450,
Methods for working up such solutions by electrodialysis are known. This known method is carried out in an electrodialysis apparatus consisting of a number of chambers which are alternately separated from each other by cation- and anion-exchanger membranes and which are arranged between individual pairs of electrodes. Ru. Apart from the anode and cathode cells, these chambers are constantly alternated with one supplying and diluting solution.
chamber and an adjacent chamber serves as a concentrate chamber. In this feed and dilution chamber, the solution to be worked up is rotated, and during electrodialysis the anions and cations contained in the solution permeate through the anion exchanger membrane or the cation exchanger membrane. can enter adjacent concentrate chambers.
Amphoteric amino acids are retained in the feed and dilution chambers by operating the electrodialyzer at high current densities close to the limiting current density. At this time, a PH-box (PH-Schrank) is formed in this membrane, which prevents amphoteric amino acids from passing through the membrane. In this known method, the enantiomerically pure amino acid can flow out of the dilute chamber in the form of its aqueous solution in good yields, but the anions and cations originally contained are mixed again and as a result However, it has the disadvantage that only the salt aqueous solution can flow out from the concentrate chamber.

発明を達成するための手段 本発明方法は次の特徴を有する:使用電気透析
装置は多数の3室パツケージよりなり、これらは
それぞれ供給−及び稀液室1、陰極側に配置され
た濃縮液室2及び陽極側に配置された濃縮液室3
を有し、この際、各々の3室パツケージは双方の
隣接パツケージから、中で水をOH-−イオンと
H+−イオンに分解する装置4により分離されて
おり、電気透析終了後に、稀液室1からL−アミ
ノ酸及び当初に存在する陰イオンの最高50%のそ
の塩の形の水溶液を流出させ、陰極側に配置され
た濃縮液室2から当初に存在する陽イオンの水酸
化物としての水溶液を流出させ、陽極側に配置さ
れた濃縮液室3からN−アセチル−D(L)−アミノ
酸及び酢酸の遊離酸の形の水溶液を流出させる。
Means for Accomplishing the Invention The method according to the invention has the following features: The electrodialysis apparatus used consists of a number of three-chamber packages, each consisting of a feed and dilute compartment 1, a concentrate compartment located on the cathode side. 2 and a concentrated liquid chamber 3 located on the anode side.
In this case, each three-chamber package receives water from both adjacent packages as OH - - ions.
are separated by a device 4 for decomposition into H + - ions, and after the end of the electrodialysis, an aqueous solution in the form of L-amino acids and their salts with up to 50% of the anions initially present is discharged from the diluent chamber 1; An aqueous solution of cations as hydroxides initially present is discharged from the concentrate chamber 2 located on the cathode side, and N-acetyl-D(L)-amino acid and Drain an aqueous solution of the free acid form of acetic acid.

本発明方法で意図される水分解用の装置4は、
室を区切つている膜を透過しない導電性補助剤を
含有する水が充填されている付加的な室より成つ
ていてよい。好適な導電性補助剤は、懸濁性の不
活性導電性物質例えば活性炭、カーボンブラツク
又は球形金属粒子又は高分子量の酸例えばポリア
クリル酸又はポリスチロールスルホン酸又は塩基
例えば置換又は非置換のポリエチレンイミンであ
る。
The device 4 for water splitting contemplated in the method of the invention comprises:
It may consist of an additional chamber filled with water containing a conductive additive which does not permeate the membrane separating the chambers. Suitable conductive auxiliaries are suspended inert conductive substances such as activated carbon, carbon black or spherical metal particles or high molecular weight acids such as polyacrylic acid or polystyrene sulphonic acid or bases such as substituted or unsubstituted polyethyleneimine. It is.

水分解用装置4は、いわゆる両極性の膜より成
つていてもよい。これは、薄い中性の親水性層に
より相互に分けられる各々1枚のカチオン−及び
アニオン交換体膜から構成されている。この構造
は均一ブロツクポリマー又は3枚の上下に貼り付
けられたポリマーシートより成つていてよい。当
業者にとつて類似の装置は容易に入手しうるが、
これらはすべて同じ基本思想即ち、電界内での水
分子の分解及び隣接濃縮液室2,3の必要イオン
での補給を基礎としている。
The water splitting device 4 may also consist of a so-called bipolar membrane. It consists of one cation- and anion-exchanger membrane each separated from one another by a thin neutral hydrophilic layer. The structure may consist of a homogeneous block polymer or three sheets of polymer glued one above the other. Although similar equipment is readily available to those skilled in the art,
They are all based on the same basic idea: the decomposition of water molecules within an electric field and the replenishment of the adjacent concentrate chambers 2, 3 with the necessary ions.

本発明方法で使用すべき電気透析装置内では、
各々の供給−及び稀液室1が2個の異なる濃縮液
室を備えていて、隣接している陰極側に配置され
た濃縮液室2内では当初に存在する陽イオン(こ
れは、水分解用の隣接装置4から生じるOH-
イオンにより補充されて水酸化物になる)のみが
移動することができ、隣接している陽極側に配置
された濃縮液室3内では、当初に存在する陰イオ
ン(これは水分解用の他方の隣接装置4から生じ
るH+−イオンにより補充されて遊離の酸になる)
のみを移動することができるようにされている。
In the electrodialysis apparatus to be used in the method of the invention,
Each feed and dilute chamber 1 comprises two different concentrate chambers, in which the initially present cations (which are OH - - arising from adjacent equipment 4 for
Only the anions initially present (replenished by ions to form hydroxide) can move, and in the concentrate chamber 3 located on the adjacent anode side, the initially present anions (which are replenished by the other side for water splitting) can move. (replenished by H + − ions generated from the adjacent device 4 to become free acid)
It is only possible to move.

更に、本発明方法で使用すべき電気透析装置
は、通例次のように構成されている:3室パツケ
ージ及びその都度のそれらを分離する水分解用装
置4が1個の電極対の間に配置されている。すべ
ての個々の室は、アニオン−及びカチオン交換体
膜及び密封枠により区切られていて、場合によつ
ては支持格子を有している。電気透析装置の陽極
側には、まずカチオン交換体膜により区切られる
陽極室が存在する。それに引続くすべての室は、
それぞれ、アニオン交換体膜及びカチオン交換体
膜が規則的に交互に続くように組込まれている。
水分解用装置4としてのいわゆる複極膜の使用の
場合には、これは、アニオン交換側及びカチオン
交換側がその変動に自由に適合するように組込ま
れる。陰極側に配置された最後の3室パツケージ
の濃縮液室2は、同時に陰極室としての役目を有
する。
Furthermore, the electrodialysis apparatus to be used in the method according to the invention is usually constructed as follows: a three-chamber package and the respective water-splitting device 4 for separating them are arranged between one pair of electrodes. has been done. All individual chambers are delimited by anion and cation exchanger membranes and a sealing frame, optionally with support grids. On the anode side of the electrodialysis device there is first an anode chamber delimited by a cation exchanger membrane. All subsequent rooms are
In each case, anion exchanger membranes and cation exchanger membranes are incorporated in regular alternation.
In the case of the use of a so-called bipolar membrane as device 4 for water splitting, this is installed in such a way that the anion exchange side and the cation exchange side are freely adapted to their variations. The concentrate chamber 2 of the last three-chamber package arranged on the cathode side simultaneously serves as cathode chamber.

本発明方法の利点は、殊に、電気透析終了後
に、3種の異なる組成の水溶液を流出することが
できることにある。これによつて、他の処理のた
めの空間がかなり拡大される。第1溶液として供
給−及び稀液−室1から、実際になおL−アミノ
酸のみを含有するか又は少なくとも、それから濃
縮の後に純粋なL−アミノ酸が晶出することので
きるように充分脱塩されている水溶液が流出され
る。晶出したL−アミノ酸の分離後に残る母液を
再循環させることができ、ラセミ体分割からの新
しい溶液と一緒に改めて電気分解に供することが
できる。従つてここでは除去すべき廃水は実際に
生じない。第2の溶液として、陰極側に配置され
た濃縮液室2から当初に存在する陽イオンのその
水酸化物の形での溶液を流出すことができる。こ
の溶液は、同様に完全に再循環させることがで
き、新しいN−アセチル−DL−アミノ酸を溶か
し、酵素的分解に必要なPH値を調節するために役
立つ。ここでも、実際に除去すべき廃水は生じな
い。最後に、第3の溶液として、陽極側に配置さ
れた濃縮液室3からN−アセチル−D(L)−アミノ
酸及び酢酸の水溶液を流出させることができ、こ
れは、H+−イオン以外の陽イオンを含有せず、
従つて酢酸及び場合によつては水の溜去の後に任
意の方法で再ラセミ化し、同様に完全に再循環さ
せることができる。場合によつては、この第3の
溶液をD−エナンチオマーの取得のためにも使用
することができる。
The advantage of the process according to the invention is, inter alia, that after the end of the electrodialysis, three aqueous solutions of different composition can be discharged. This considerably expands the space for other processing. Feed as a first solution - and a dilute solution - from chamber 1 which actually still contains only L-amino acids, or at least has been sufficiently desalted so that after concentration pure L-amino acids can crystallize out. The aqueous solution is drained out. The mother liquor remaining after separation of the crystallized L-amino acids can be recycled and subjected to electrolysis again together with the fresh solution from the racemate resolution. There is therefore virtually no waste water to be removed here. As a second solution, a solution of the cations initially present in their hydroxide form can flow out of the concentrate chamber 2 arranged on the cathode side. This solution can also be completely recycled and serves to dissolve the new N-acetyl-DL-amino acid and to adjust the PH value required for enzymatic degradation. Again, no wastewater is actually produced to be removed. Finally, as a third solution, an aqueous solution of N-acetyl-D(L)-amino acid and acetic acid can be flowed out from the concentrated liquid chamber 3 arranged on the anode side, which contains ions other than H + -ions. Contains no cations,
After distilling off the acetic acid and, if necessary, the water, it can therefore be reracemized in any way and likewise completely recycled. Optionally, this third solution can also be used to obtain the D-enantiomer.

従つて、本発明方法は、いずれにせよ、少量で
生じる排除すべき廃水に基づき、その温和な操作
条件(電気透析装置中の温度は30℃を越えて上昇
しない)に基づき、晶出したL−アミノ酸の達成
可能な高純度及びいずれにせよ僅かな材料ロスに
基づき、ラセミ体分割からの溶液に公知のすべて
の後処理法よりも明らかに優れている。これは、
エナンチオマー純粋な中性及び塩基性L−アミノ
酸例えばリジン、トリプトフアン、ヒスチジン、
フエニルアラニン、ロイシン、イソロイシン、ス
レオニン、メチオニン、バリン又はアルギニンを
得るために好適である。
Therefore, the process of the invention is based on the waste water to be rejected, which occurs in any case in small quantities, and on the basis of its mild operating conditions (the temperature in the electrodialysis machine does not rise above 30°C), the crystallized L It is clearly superior to all known work-up methods for solutions from racemic resolution due to the achievable high purity of the amino acids and the minimal loss of material in any case. this is,
Enantiomerically pure neutral and basic L-amino acids such as lysine, tryptophan, histidine,
Suitable for obtaining phenylalanine, leucine, isoleucine, threonine, methionine, valine or arginine.

添付の第1図及び第2図には本発明方法で使用
すべき電気透析装置の2種の実施形が略示されて
いる: 第1図は、水分解用装置4としてそれぞれの3
室パツケージの間に付加的な室が存在する配置を
示している。1は供給−及び稀液室であり、2は
その陰極側に配置された(塩基性)濃縮液室であ
り、3は供給−及び稀液室の陽極側に配置された
(酸性)濃縮液室であり、4は水分解用の付加的
な室であり、Kは、カチオン交換体膜、aはアニ
オン交換体膜、Asはアミノ酸、MXは塩、MOH
はカチオンM+から生じる水酸化物、XHはアニ
オンX-から生じる酸である。
The attached FIGS. 1 and 2 schematically show two embodiments of an electrodialysis apparatus to be used in the process according to the invention: FIG.
Figure 2 shows an arrangement in which additional chambers are present between the chamber packages. 1 is the supply and dilute solution chamber, 2 is the (basic) concentrate chamber placed on the cathode side thereof, and 3 is the (acidic) concentrate chamber placed on the anode side of the supply and dilute solution chamber. 4 is an additional chamber for water splitting, K is a cation exchanger membrane, a is an anion exchanger membrane, As is an amino acid, MX is a salt, MOH
is the hydroxide produced from the cation M + and XH is the acid produced from the anion X - .

第2図は、水分解用の装置4としていわゆる複
極膜(bM)がそれぞれの3室パツケージの間に
存在する配置を示している。従つて、4は、複極
膜であり、他のすべての数字及び略字は第1図に
おけると同じものを意味する。
FIG. 2 shows an arrangement in which a so-called bipolar membrane (bM) as a device 4 for water splitting is present between each three-compartment package. 4 is therefore a bipolar membrane, and all other numbers and abbreviations have the same meaning as in FIG.

本発明の方法を実際に実施するために、第1図
に記載の種類の装置を使用するかぎり、水分解用
の装置4として役に立つ付加的な室内に、導電性
補助剤を含有する水を導入する。第2図に記載の
種類の装置を使用する場合はこの手段は省略され
る。陽極室内に1N H2SO4を充填する。供給−及
び稀液−室1及び濃縮液室2及び3は、3個の相
互に無関係の、それぞれ1個の緩衝容器を有する
ポンプ循環系にまとめられる。稀液室1用のポン
プ循環系に、ラセミ体分割からの後処理すべき溶
液をポンプ循環させ、陰極側に配置された濃縮液
室2用のポンプ循環系内で、装置の作動のために
少量の苛性ソーダを有する水を、かつ陽極側に配
置された濃縮液室3用のポンプ循環系内で装置に
作動のための少量の酢酸を有する水をポンプ循環
させる。すべての3個のポンプ循環系内で、それ
ぞれの含有溶液を一般に、約0.5〜10cm/secの直
線性流動速度でポンプ循環させる。装置は直流で
操作し、その電流密度は、その都度の濃度状況に
依り決まり、一般に、10〜40mA/cm2であるのが
有利である。
In order to carry out the method of the invention in practice, water containing the conductive auxiliary is introduced into an additional chamber which serves as a device 4 for water splitting, provided that a device of the type shown in FIG. 1 is used. do. If a device of the type shown in FIG. 2 is used, this means is omitted. Fill the anode chamber with 1N H 2 SO 4 . The supply and dilution chambers 1 and the concentrate chambers 2 and 3 are combined into three mutually independent pump circulation systems each having one buffer vessel. The solution to be post-treated from the racemate separation is circulated by a pump in the pump circulation system for the dilute solution chamber 1, and the solution to be post-treated from the racemate separation is circulated by a pump in the pump circulation system for the concentrate chamber 2 disposed on the cathode side for the operation of the apparatus. Water with a small amount of caustic soda and a small amount of acetic acid for operation is pumped into the device in a pump circulation system for the concentrate compartment 3 located on the anode side. Within all three pump circulation systems, the respective containing solutions are generally pumped at a linear flow rate of about 0.5 to 10 cm/sec. The device operates with direct current, the current density of which depends on the particular concentration situation and is generally advantageously between 10 and 40 mA/cm 2 .

供給−及び稀液室1用のポンプ循環系内は、4
〜8有利に5〜7のPH値に保持するのが有利であ
り、これは、必要な場合には酢酸又は苛性ソーダ
の添加により調整されうる。陰極側に配置された
濃縮液室2用のポンプ循環系内では、これは、PH
値が、アニオン交換体膜でなお認容性である程度
の上限にする際にアニオン交換体膜の保護のため
に、有利でありうる。可能な最高PH値は、使用ア
ニオン交換体膜の種類及び特性に依り決まる。こ
れは、生じるアルカリ液(Lauge)を固体N−ア
セチル−DL−アミノ酸の添加により少なくとも
部分的に中和することにより保持することができ
る。この場合、この循環系から純粋な母液ではな
く、アルカリ液とN−アセチル−DL−アミノ酸
の相応する塩との混合物が流出される。このアル
カリ液は直ちに新しいN−アセチル−DL−アミ
ノ酸の溶解のために役立つべきであるので、この
混合物も問題なく完全に再循環させることができ
る。
In the pump circulation system for supply and diluted liquid chamber 1, there are 4
It is advantageous to maintain a pH value of ~8, preferably from 5 to 7, which can be adjusted if necessary by adding acetic acid or caustic soda. In the pump circulation system for concentrate chamber 2 located on the cathode side, this is the PH
For the protection of the anion exchanger membrane, it may be advantageous to place the value at the upper limit of what is still tolerable in the anion exchanger membrane. The highest possible PH value depends on the type and properties of the anion exchanger membrane used. This can be maintained by at least partially neutralizing the resulting lauge by addition of solid N-acetyl-DL-amino acids. In this case, not pure mother liquor is discharged from the circulation system, but a mixture of lye and the corresponding salt of the N-acetyl-DL-amino acid. This lye should immediately be available for dissolving the new N-acetyl-DL-amino acid, so that this mixture can also be completely recycled without any problems.

供給−及び稀液−室1用のポンプ循環系で所望
の脱塩度に達したら、このポンプ及び流れを止め
る。3種の循環溶液を別々に取り出し、前記の方
法で更に処理する。
When the desired degree of desalination is reached in the pump circulation system for feed and dilute chamber 1, the pump and flow are stopped. The three circulating solutions are taken off separately and further processed in the manner described above.

連続的操作法で、供給−及び稀液−室1用のポ
ンプ循環系から、この循環系がなお効を奏する程
度の量の脱塩溶液を取り出すことができる。引続
き、その量差を未脱塩分解溶液の添加により再び
補償する。相応して、濃縮液室2及び3用の循環
系内でも実施できる。しかしながら、連続的な供
給−流出−操作法(feed−and−bleed−
Arbeitweise)も可能である。
In continuous operation, it is possible to remove desalinated solution from the pump circulation system for the feed and dilution chamber 1 in such an amount that this circulation system is still effective. Subsequently, the difference in quantity is again compensated for by addition of undesalted decomposition solution. Correspondingly, it can also be carried out in the circulation system for the concentrate compartments 2 and 3. However, continuous feed-and-bleed-operations
Arbeitweise) is also possible.

実施例 次の例で本発明を詳述する。Example The invention is illustrated in the following example.

例 1 第1図に記載の方式の電気透析装置を使用し
た。3個の相互に無関係のそれぞれ緩衝液容器を
案内されるポンプ循環系が設置されており、この
中に、それぞれ平行して接続された供給−及び稀
液室(稀液循環系)、陰極側に配置された濃縮液
室(塩基性濃縮液循環系)及び陽極側に配置され
た濃縮液室(酸性濃縮液循環系)がまとめられて
いる。
Example 1 An electrodialysis apparatus of the type shown in FIG. 1 was used. A pump circulation system is installed, which is guided by three mutually independent buffer containers, in each case connected in parallel with the supply and dilution chambers (dilution circulation system), and the cathode side. The concentrate chamber (basic concentrate circulation system) located on the anode side and the concentrate chamber (acidic concentrate circulation system) located on the anode side are grouped together.

付加的な、水分解用装置としての役目をする室
に、水中の導電性カーボンブラツクの2重量%懸
濁液を装入し、陽極室に1NH2SO4を充填した。
An additional chamber serving as a water splitting device was charged with a 2% by weight suspension of conductive carbon black in water and the anode chamber was filled with 1NH 2 SO 4 .

カチオン交換体膜として、ポリスチロールスル
ホン酸を基礎とするものを、かつイオン交換体膜
として、誘導されたピリジニウム末端基を有する
ものを使用した。
The cation exchanger membrane used was one based on polystyrene sulfonic acid and the ion exchanger membrane used was one with derivatized pyridinium end groups.

稀液循環内に次の組成: L−メチオニン 32g/ ナトリウム塩としてのN−アセチル−D(L)−メチ
オニン 92g/ 酢酸ナトリウム 38g/ の溶液を、塩基性濃縮液循環系に始動時に少量の
苛性ソーダを有する水を、かつ酸性濃縮液循環系
に始動時に少量の酢酸を有する水を充填した。
A solution of 32 g of L-methionine / 92 g of N-acetyl-D(L)-methionine as the sodium salt / 38 g of sodium acetate was added to the basic concentrate circuit with a small amount of caustic soda at startup. and the acid concentrate circulation system was charged with water with a small amount of acetic acid at startup.

3個のポンプを作動させ、約1cm/secの直線
的流動速度に調整した。i=25mA/cm2の直流を
かけ、当初に稀液循環系内に含有されるアニオン
1モル当り0.86フアラデイの電気量が流れるまで
の時間の電気透析を行なつた。
Three pumps were activated and adjusted to a linear flow rate of approximately 1 cm/sec. A direct current of i=25 mA/cm 2 was applied, and electrodialysis was performed for a period of time until an amount of electricity of 0.86 Faraday per mole of anion contained in the dilute solution circulation system initially flowed.

稀液循環系内には次の組成: L−メチオニン 41g/ ナトリウム塩としてのN−アセチル−D(L)−メチ
オニン 36g/ 酢酸ナトリウム 2g/ の溶液が存在した。
A solution with the following composition was present in the dilute circulation system: 41 g of L-methionine/36 g of N-acetyl-D(L)-methionine as the sodium salt/2 g of sodium acetate.

この溶液は約4.9のPH値を有し、約30℃の温度
を有した。その量は、当初量の78%まで減少し
た。
This solution had a PH value of about 4.9 and a temperature of about 30°C. The amount has decreased to 78% of the initial amount.

塩基性濃縮液循環系内で、場合によりアニオン
交換体膜を害する8を越えるPH値の上昇を阻止す
るために、生じるアルカリ液を固体N−アセチル
−DL−メチオニンの添加により絶えず部分的に
中和させると、N−アセチル−DL−メチオニン
のナトリウム塩約115g/を少量の苛性ソーダ
と共に有する溶液が生じた。
In the basic concentrate circulation system, the resulting alkaline liquid is constantly partially neutralized by addition of solid N-acetyl-DL-methionine in order to prevent an increase in pH values of more than 8, which would possibly harm the anion exchanger membrane. Upon mixing, a solution containing approximately 115 g of the sodium salt of N-acetyl-DL-methionine was obtained along with a small amount of caustic soda.

酸性濃縮液循環系内には、電気透析の終了後に
次の組成の溶液が存在した: 遊離酸としてのN−アセチル−D(L)−メチオニン
130g/ 酢 酸 38g/ この溶液は、1.95のPH値を有した。アニオンの
移動のための電流効率は約90%であつた。
In the acidic concentrate circulation system, after the end of electrodialysis, a solution with the following composition was present: N-acetyl-D(L)-methionine as free acid.
130g/38g acetic acid/This solution had a PH value of 1.95. The current efficiency for anion transfer was approximately 90%.

稀液循環系からの溶液を引続きその量の約45%
まで蒸発濃縮させた。冷却時に、L−メチオニン
が晶出するから、これを遠心分離し、乾燥させ
た。遠心分離した生成物は99.7%の純度を有し、
〔α〕20 D=24゜の比旋光度を有し、測定可能な量の
硫酸塩灰分を生ぜず、N−アセチル−D(L)−メチ
オニン0.1%及び不純物としてのD−メチオニン
0.2%のみを含有した。結晶母液を再循環させ、
ラセミ体分割からの新しい溶液と一緒に改めて電
気透析に供した。
The solution from the dilute circulation system continues to be about 45% of its volume.
It was evaporated and concentrated. Upon cooling, L-methionine crystallized and was centrifuged and dried. The centrifuged product has a purity of 99.7%,
[α] 20 D = 24° specific rotation, no measurable amounts of sulfate ash, 0.1% N-acetyl-D(L)-methionine and D-methionine as an impurity.
Contained only 0.2%. Recirculating the crystal mother liquor,
It was subjected to electrodialysis again with the fresh solution from the racemate resolution.

塩基性濃縮液循環系からの溶液を酵素的ラセミ
体分割に再循環させた。
The solution from the basic concentrate circulation system was recycled to the enzymatic racemate resolution.

酸性濃縮液循環系からの溶液を減圧下に殆んど
乾燥するまで蒸発濃縮した。この際、約0.5%の
残留酢酸を有するN−アセチル−D(L)−メチオニ
ンの融液固化物が残つた。引続く再ラセミ化の後
に、この生成物も、酵素的ラセミ体分割に再循環
させることができた。
The solution from the acidic concentrate circuit was evaporated to almost dryness under reduced pressure. At this time, a melt-solidified product of N-acetyl-D(L)-methionine with about 0.5% residual acetic acid remained. After subsequent reracemization, this product could also be recycled to the enzymatic racemate resolution.

例 2 例1におけると同じ電気透析装置を使用した。Example 2 The same electrodialysis equipment as in Example 1 was used.

水分解作用をする室に、水中の15重量%ポリア
クリル酸の溶液を装入した。室を区切る膜とし
て、残留膜積層体(restlichen Membranstapel)
中で使用される同一のアニオン−及びカチオン−
交換体膜を使用した。
The water-splitting chamber was charged with a solution of 15% by weight polyacrylic acid in water. Residual membrane laminate as a membrane separating the chambers
The same anions and cations used in
An exchanger membrane was used.

例1におけると同じ溶液の脱塩は、その他は同
じ条件下で、2個の稀液室及び合計4個の濃縮液
室を用い、約40Vの平均セル電圧で同じ結果を提
供した。濃縮液室中へのポリアクリル酸のロスは
立証できなかつた。
Desalting of the same solution as in Example 1, using two diluent chambers and a total of four concentrate chambers, under otherwise identical conditions, provided the same results at an average cell voltage of about 40V. Loss of polyacrylic acid into the concentrate chamber could not be proven.

例 3 先の例におけると同じ膜積層体中で、水分解室
を複極膜で代えた。積層体は3個の稀液室、合計
6個の濃縮液室及び2個の電極室を含有した。
Example 3 In the same membrane stack as in the previous example, the water splitting chamber was replaced by a bipolar membrane. The stack contained three dilute compartments, a total of six concentrate compartments, and two electrode compartments.

稀液循環系内に次の組成: L−バリン 35g/ ナトリウム塩としてのN−アセチル−D(L)−バリ
ン 54g/ 及び 酢酸ナトリウム 11g/ の溶液を充填し、例1におけると同様な濃縮液循
環系に相応する始動溶液を、かつ電極循環系に
0.5M Na2SO4−溶液を充填した。ポンプの始動
の後に、電流密度i=25mA/cm2での直流をこの
セルにかけ、この際、30Vの平均セル電圧に適合
した。当初に稀液循環系内に含有するアニオン1
セル当り0.92フアラデイの電気量の通過の後に、
脱塩された溶液は次の組成を有した: L−バリン 41g/ ナトリウム塩としてのN−アセチル−D(L)−バリ
ン 22g/ 及び 酢酸ナトリウム 0g/ この溶液は約5のPH値を有し、その温度は約30
℃であつた。
A solution of the following composition: L-valine 35 g/N-acetyl-D(L)-valine as sodium salt 54 g/ and sodium acetate 11 g/ is charged into the dilute liquid circulation system, and a concentrated solution similar to that in Example 1 is added. Start-up solution suitable for the circulation system and electrode circulation system
Filled with 0.5M Na2SO4 - solution. After starting the pump, a direct current with a current density i=25 mA/cm 2 was applied to the cell, adapting to an average cell voltage of 30 V. Anion 1 initially contained in the dilute liquid circulation system
After passing a quantity of electricity of 0.92 Huaraday per cell,
The desalted solution had the following composition: L-valine 41 g/ N-acetyl-D(L)-valine as sodium salt 22 g/ and sodium acetate 0 g/ The solution had a PH value of approximately 5. , its temperature is about 30
It was warm at ℃.

酸性濃縮液循環系では次の組成: 遊離酸としてのN−アセチル−D(L)−バリン
130g/ 及び 酢 酸 86g/ の溶液が流出できた。
In the acidic concentrate circulation system the following composition: N-acetyl-D(L)-valine as free acid
A solution of 130g/ and acetic acid of 86g/ was able to flow out.

アニオンの移動のための電流効率は約75%であ
つた。
The current efficiency for anion transfer was about 75%.

稀液循環からの溶液を蒸発濃縮してその量の約
40%とし、冷却した。遠心分離により60%の結晶
収率でL−バリンが単離できた。
Evaporate and concentrate the solution from the dilute circulation to approximately
40% and cooled. L-valine could be isolated by centrifugation with a crystal yield of 60%.

結晶生成物は、99%の含有率、〔α〕25 D=27.4゜の
旋光度及び0.01%の灰分含有率を有した。
The crystalline product had a content of 99%, an optical rotation of [α] 25 D =27.4° and an ash content of 0.01%.

酸性濃縮液溶液を例1におけると同様にラセミ
分割に再循環させた。
The acidic concentrate solution was recycled to the racemic resolution as in Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するために使用され
る電気透析装置の1実施形を示す図、第2図はも
う1つの実施形を示す図である。 1……供給−及び稀液室、2……塩基性濃縮液
室、3……酸性濃縮液室、4……水分解室、K…
…カチオン交換体膜、a……アニオン交換体膜、
As……アミノ酸、MX……塩、MOH……カチオ
ンM+から生じる水酸化物、XH……アニオンX-
から生じる酸、bM……複極膜。
FIG. 1 shows one embodiment of an electrodialysis apparatus used to carry out the method of the invention, and FIG. 2 shows another embodiment. 1... Supply and dilute liquid chamber, 2... Basic concentrate chamber, 3... Acidic concentrate chamber, 4... Water decomposition chamber, K...
...Cation exchanger membrane, a...Anion exchanger membrane,
As...amino acid, MX...salt, MOH...hydroxide generated from cation M + , XH...anion X -
Acid generated from bM...Bipolar membrane.

【特許請求の範囲】[Claims]

1 活性メチレンまたは活性メチンから水素原子
一個が除去された残基を有する化合物部分と発螢
光部分とからなることを特徴とする過酸化水素定
量用試薬。 2 過酸化水素を含有した試料に、活性メチレン
または活性メチンから水素原子一個が除去された
残基を有する化合物部分と発螢光部分とからなる
過酸化水素定量用試薬、水素供与体およびペルオ
キシダーゼを作用させ、その結果生じた発螢光物
質の螢光強度を測定することを特徴とする過酸化
水素の定量方法。
1. A reagent for quantifying hydrogen peroxide, comprising a compound portion having a residue obtained by removing one hydrogen atom from active methylene or active methine, and a fluorescent portion. 2. A hydrogen peroxide quantitative reagent consisting of a compound moiety having a residue from which one hydrogen atom has been removed from active methylene or active methine and a fluorescent moiety, a hydrogen donor, and peroxidase is added to a sample containing hydrogen peroxide. 1. A method for quantifying hydrogen peroxide, which comprises causing hydrogen peroxide to react and measuring the fluorescence intensity of the resulting fluorescent substance.

Claims (1)

液を後処理する方法。 2 水分解用の装置4は、室を区切つている膜を
透過しない導電性補助剤を含有する水で充填され
ている付加的な室より成つている、特許請求の範
囲第1項記載の方法。 3 導電性補助剤は懸濁された不活性の導電性物
質である、特許請求の範囲第2項記載の方法。 4 導電性補助剤は高分子量の酸又は塩基であ
る、特許請求の範囲第3項記載の方法。 5 水分解用の装置4は、いわゆる複極膜より成
つている、特許請求の範囲第1項記載の方法。
How to post-process the liquid. 2. The method according to claim 1, wherein the device 4 for water splitting consists of an additional chamber filled with water containing a conductive auxiliary agent which does not permeate through the membrane delimiting the chamber. . 3. The method of claim 2, wherein the conductive aid is a suspended inert conductive material. 4. The method according to claim 3, wherein the conductive auxiliary agent is a high molecular weight acid or base. 5. The method according to claim 1, wherein the water splitting device 4 comprises a so-called bipolar membrane.
JP62023698A 1986-02-08 1987-02-05 Post-treatment of residual solution after separation enzymerfrom enzymatic raceme splitting of n-acetyl-dl-aminocarboxylic acid in presence of l-amino acidacylase Granted JPS62186799A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863603986 DE3603986A1 (en) 1986-02-08 1986-02-08 METHOD FOR PROCESSING THE SOLUTION REMAINING FROM THE ENZYMATIC RACEMAT CLEAVING OF AN N-ACETYL-DL-AMINOCARBONIC ACID IN THE PRESENCE OF A L-AMINO ACID ACYLASE
DE3603986.1 1986-02-08

Publications (2)

Publication Number Publication Date
JPS62186799A JPS62186799A (en) 1987-08-15
JPH0150399B2 true JPH0150399B2 (en) 1989-10-30

Family

ID=6293696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023698A Granted JPS62186799A (en) 1986-02-08 1987-02-05 Post-treatment of residual solution after separation enzymerfrom enzymatic raceme splitting of n-acetyl-dl-aminocarboxylic acid in presence of l-amino acidacylase

Country Status (6)

Country Link
US (1) US4909916A (en)
EP (1) EP0232486B1 (en)
JP (1) JPS62186799A (en)
DE (2) DE3603986A1 (en)
ES (1) ES2010657B3 (en)
IL (1) IL81318A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049250A (en) * 1989-08-14 1991-09-17 Allied-Signal Inc. Electrodialytic treatment of aqueous solutions containing amino acids
DE3929137C1 (en) * 1989-09-01 1991-02-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
US5268079A (en) * 1990-01-18 1993-12-07 Monsanto Company Process for the isolation and purification of free acids, starting from their salts, by electrodialysis
US5780704A (en) * 1992-06-04 1998-07-14 Mitsui Chemicals, Inc. Process for treating plastic product
US5451309A (en) * 1994-05-09 1995-09-19 B&W Nuclear Technologies, Inc. Ion exchange resin regeneration apparatus
DE19546532C2 (en) * 1995-12-13 2000-04-20 Degussa Process for obtaining optically active L-alpha-aminocarboxylic acids from corresponding racemic D, L-alpha-aminocarboxylic acids
DE19952961A1 (en) * 1999-11-03 2001-05-10 Basf Ag Process for the purification of amino acid solutions by electrodialysis
EP1882740B1 (en) * 2006-07-26 2010-04-14 Ajinomoto Co., Inc. N-acetyl-(R,S)-B-amino acid acylase gene
JP5119783B2 (en) * 2006-07-26 2013-01-16 味の素株式会社 N-acetyl- (R, S) -β-amino acid acylase gene
EP3406593A1 (en) 2017-05-24 2018-11-28 Evonik Degussa GmbH Method for manufacturing methionine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2835632A (en) * 1958-05-20 Method of producing chemical compounds by ion transfer
US2815320A (en) * 1953-10-23 1957-12-03 Kollsman Paul Method of and apparatus for treating ionic fluids by dialysis
US3330749A (en) * 1958-02-11 1967-07-11 Takeda Chemical Industries Ltd Process for treating amino acid solution
US3231485A (en) * 1960-01-23 1966-01-25 Takeda Chemical Industries Ltd Process for purifying amino acids
US4238306A (en) * 1979-02-14 1980-12-09 Research Products Rehovot Ltd. Electrodialysis process for the separation of non-essential amino acids from derivatives thereof
DE2907450A1 (en) * 1979-02-26 1980-09-04 Rehovot Res Prod Essential amino acids e.g. L-tryptophan sepn. - from derivs. e.g. ester(s) by electrodialysis at ph 4-8
US4238305A (en) * 1979-10-29 1980-12-09 Allied Chemical Corporation Electrodialytic process for the conversion of impure soda values to sodium hydroxide and carbon dioxide
JPS60184053A (en) * 1984-03-01 1985-09-19 Mitsubishi Gas Chem Co Inc Method for recovering alpha-amino acid
DE3508206A1 (en) * 1985-03-08 1986-09-11 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING BIPOLAR MEMBRANES

Also Published As

Publication number Publication date
DE3603986A1 (en) 1987-08-13
EP0232486A1 (en) 1987-08-19
IL81318A0 (en) 1987-08-31
IL81318A (en) 1991-01-31
JPS62186799A (en) 1987-08-15
EP0232486B1 (en) 1989-09-06
US4909916A (en) 1990-03-20
ES2010657B3 (en) 1989-12-01
DE3665408D1 (en) 1989-10-12

Similar Documents

Publication Publication Date Title
US4238307A (en) Electrodialysis process for the separation of essential amino acids from derivatives thereof
US6551803B1 (en) Method for purification of amino acid containing solutions by electrodialysis
US4636295A (en) Method for the recovery of lithium from solutions by electrodialysis
US7141154B2 (en) Single-stage separation and esterification of cation salt carboxylates using electrodeionization
JPH0150399B2 (en)
US4238306A (en) Electrodialysis process for the separation of non-essential amino acids from derivatives thereof
FR2729305A1 (en) REGENERATION OF STRONG ORGANIC ACIDS BY BIPOLAR MEMBRANES
JP3644759B2 (en) Electric regenerative pure water manufacturing method and pure water manufacturing apparatus
CN113582301A (en) Method and device for extracting lithium hydroxide and sodium hydroxide from salt lake brine
JPH01188696A (en) Removal of acid from cathodic electric immersion coating bath by electrodialysis
US20020153261A1 (en) Method for producing basic amino acid solution
US4605477A (en) Electrodialytic recovery of α-amino acid from its amide
JPH10279520A (en) Purification of alpha-, beta-or gamma-substituted carboxylic acid
JPH07313098A (en) Production of low salt soysauce and apparatus therefor
CN112142609B (en) Preparation method of (D) -2-aminobutanol or (L) -2-aminobutanol
JP2004512163A (en) Method for improving the purity of quaternary ammonium hydroxide by electrolysis
FR2787346A1 (en) Regenerating high molecular organic acid, e.g. l-camphorsulfonic acid, from aqueous salt solution, by electrodialysis using apparatus with high permeability anion exchanger dialysis membrane
JPH01111894A (en) Method for purifying dipeptide ester
JPH11188241A (en) Desalting of sulfone amide aqueous solution
RU2412748C2 (en) Method of concentrating basic amino acids through electrodialysis
JPH0337967B2 (en)
RU2426584C2 (en) Method of separating amino acids and carbohydrates by electrodialysis
JPS6261320B2 (en)
US4620912A (en) Process for the production of dichlorohydrin
JP4166864B2 (en) Method for producing amino acid or salt thereof