JPH01503082A - Increased low energy high purity oxygen release pressure - Google Patents

Increased low energy high purity oxygen release pressure

Info

Publication number
JPH01503082A
JPH01503082A JP63502794A JP50279488A JPH01503082A JP H01503082 A JPH01503082 A JP H01503082A JP 63502794 A JP63502794 A JP 63502794A JP 50279488 A JP50279488 A JP 50279488A JP H01503082 A JPH01503082 A JP H01503082A
Authority
JP
Japan
Prior art keywords
column
liquid
air
argon
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63502794A
Other languages
Japanese (ja)
Inventor
エリクソン、ドナルド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPH01503082A publication Critical patent/JPH01503082A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • F25J3/04715The auxiliary column system simultaneously produces oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/08Processes or apparatus using separation by rectification in a triple pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/10Processes or apparatus using separation by rectification in a quadruple, or more, column or pressure system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/923Inert gas
    • Y10S62/924Argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The low energy triple distillation pressure process for producing high purity industrial oxygen is improved in several ways, including higher O2 pressure, higher recovery of both oxygen and crude argon, and lower N2 content in the argon. This is done with the traditional triple pressure column arrangement (columns 22, 24, and 27 of FIG. 1) preferably by totally condensing liquid air in reboiler 21 and then splitting it with valves 42 and 43; by providing all LN2 reflux duty from reboiler 26; by evaporating product oxygen in 23 with partially condensing air; and by intermediate refluxing column 27 with condenser 28 which provides a separate vapor stream to column 22.

Description

【発明の詳細な説明】 本発明は、空気の分別蒸留により多量の高純度(少なくとも約り8%純度)酸素 と所望による共生酸物アルゴンを高い回収レベルかつ低いエネルギー必要量で生 成するための方法および装置に関する。[Detailed description of the invention] The present invention provides a method for producing large amounts of highly pure (at least about 8% pure) oxygen by fractional distillation of air. and optional symbiotic oxide argon with high recovery levels and low energy requirements. and a method and apparatus for achieving the same.

本発明は、上記目的物を達成しつつ高い0.放出圧と主要経費の減少が可能であ る。The present invention achieves the above objectives while achieving a high 0. Reduced discharge pressure and major costs are possible. Ru.

逍梃敗!! この出願は、ドナルド、シイ、エリクソンの米国特許第4578095号(19 86年3月25日付で特許、これに関するPCT出願1!585101596は 1986年2月27日(1086101283)付で公開〕の一部係属出願であ る。Victory! ! This application is filed under U.S. Pat. No. 4,578,095 (No. 19 Patent dated March 25, 1986, PCT application 1!585101596 related thereto This is a partially pending application published on February 27, 1986 (1086101283). Ru.

従来からの高純度酸素製造用二重圧空気蒸留法では、HP精留塔・頂部蒸気を用 いN、除去塔(LP塔)のかん出液を潜熱交換により再沸騰させている。少なく とも約60%の供給空気、時には90%もの多量の供給空気をHP精留塔に供給 して、両方の塔の遺留と多量の酸素回収達成に十分なL N tを確保している 。従来からの方法は技術文献である「改善された2−浴法による多量の酸素生成 」の第1図に定量的に記載されている〔エム・ストレイツクおよびジェイ・ドボ ルシt−り(M、5treich and Dvorschak)、第14回イ ンターナシ1ナル・コンブレス・オブ・レアリジレーhン(Internati onal Congress of Refrigeration)の論文A3 .18,1975年9月、モスクワ、後援ザ・インターナシ運ナル・インスチテ ヱート・オブ・レフリジレイシ1ン(the International I n5titute or Refrigeration))。LPカラムはアル ゴン・ストリッピング・セクション、窒素ストリッピング・セクションおよびア ルゴン精留サイドアームからなり、このサイドアームはかかる2つのストリッピ ング・セクションの結合点で該主要塔に連結されている。The conventional double-pressure air distillation method for producing high-purity oxygen uses an HP rectification column and top steam. The effluent from the nitrogen removal tower (LP tower) is reboiled by latent heat exchange. less In most cases, approximately 60% of the supply air, sometimes as much as 90%, is supplied to the HP rectification column. In this way, sufficient LNt is secured for both towers and for achieving a large amount of oxygen recovery. . The traditional method is described in the technical literature, ``High Oxygen Generation by an Improved Two-Bath Process.'' ” (M. Straitsk and J. Dobo). Lucitary (M, 5treich and Dvorschak), 14th edition International combination of rare onal Congress of Refrigeration) Paper A3 .. 18, September 1975, Moscow, Sponsored by The Internacional Institute The International I n5 orientation or Refrigeration)). LP column is al nitrogen stripping section, nitrogen stripping section and This side arm consists of a Rougon rectification side arm, which has two stripper The main column is connected to the main tower at the junction of the connecting sections.

高純度酸素の蒸留生成に必要なエネルギーを低下すべく、いくつかの試みがなさ れている。成功した試みにおける共通の特徴は、l)アルゴンの精留を、N、除 去塔よりも低い圧力での別の塔操作により行なうこと、2)N、除去塔を、HP 精留塔N、の代わりの分縮空気との潜熱交換により再沸騰させ、したがって空気 供給圧の低下が可能であること、および3)アルゴン・ストリッピング・セクシ ョンをN、除去塔とアルゴン蒸留塔の肋の底部に組み入れていること、すなわち アルゴン塔にN、除去塔の底部生成物よりはむしろそのサイドストリームを供給 していることである。Several attempts have been made to reduce the energy required to produce distilled high-purity oxygen. It is. Common features in successful attempts are: l) rectification of argon, N, removal; 2) the N removal column is operated at a lower pressure than the removal column; The rectifier N, is reboiled by latent heat exchange with the partial condensed air instead of the air 3) argon stripping the N, removal column and the argon distillation column at the bottom of the ribs, i.e. Feed the argon column with N, its side stream rather than the bottom product of the removal column. That's what I'm doing.

これらの、高純度酸素製造における著しく実質的な改善にも拘わらず、以下に記 載のようにいくつかの問題点が残っている。Despite these significant and substantial improvements in high-purity oxygen production, the There are still some problems as mentioned above.

ストレイッヒらの米国特許第3688513号は上記3つの特徴を組み入れた三 重圧、高純度08、空気蒸留装置および方法を開示し、これはさらに以下の点で 特徴付けられる。U.S. Pat. No. 3,688,513 to Streich et al. incorporates the above three features. A heavy pressure, high purity 08, air distillation apparatus and method is disclosed, which further comprises: characterized.

a)N*除去塔を、HP精留塔に供給される空気の分縮により再沸騰させること 、 b)液体アルゴンの回収を全く行なわないこと、すなわちポンプにより粗アルゴ ンをN、除去塔に再循環させること、c)HP精留塔・頂部N、を用い潜熱交換 によりアルゴン塔かん出液とN、除去塔の中間部高さの両方を再沸騰させること 、d)生成物である酸素をHP蒸留塔・頂部N、との潜熱交換により蒸発させる こと、および e)プロセスの冷凍が常法(空気またはN、膨張)によること。a) Reboiling the N* removal column by partial condensation of the air fed to the HP rectification column , b) No recovery of liquid argon, i.e. no recovery of crude argon by means of a pump. c) latent heat exchange using HP rectification column top N; By reboiling both the argon column effluent and the middle height of the N removal column. , d) Evaporate the product oxygen by latent heat exchange with the HP distillation column top N. that, and e) Process refrigeration is by conventional methods (air or N, expansion).

この開示は、アルゴンが全く回収されずかっ0.生成圧が望ましくないほどに低 い問題点がある。アルゴンが評価される地域では、その価値は単独でエネルギー 消費の減少し1;価値にほぼ等しく、したがってそれにより全体的ないずれの利 点も打消される。まn粗アルゴンの市場がない場合には、低い0愛生成圧のため 、0.生成物用の圧縮器の主要装置への実質的な付加が必要となる。また、前記 したストレイツクとドボルシャークの文献の第2図に示されるように、02回収 率は従来からの方法よりも低い(94%対98%)。これも同様に主要コストを 増大させる。This disclosure indicates that no argon was recovered. Production pressure is undesirably low There are some problems. In regions where argon is valued, its value is solely energy consumption decreases 1; approximately equal to value, and therefore reduces any overall benefit. The points will also be cancelled. In the absence of a market for crude argon, due to the low argon production pressure ,0. A substantial addition of a product compressor to the main equipment is required. Also, the above As shown in Figure 2 of the Straitsk and Dvorschak literature, the 02 recovery The rate is lower than traditional methods (94% vs. 98%). This is also the main cost increase

トミサカの米国特許第4507134号は前記3つの特徴を組み入れた3重圧高 純度、空気蒸留装置および方法を開示し、これはさらに以下の点で特徴付けられ る。Tomisaka's U.S. Patent No. 4,507,134 incorporates the three features mentioned above. Purity, air distillation equipment and method are disclosed, which are further characterized in: Ru.

a)供給空気のほぼ半分をHP精留塔に直接供給すること、b)残りの大部分を 2工程連続プロセスに供給すること、すなわち i)分縮によりN、除去塔を再沸騰させ、ついで11)その残りの全縮により0 .生成物を蒸発させること、C)工程b)の酸素豊富液体空気を1)HP精留塔 に、工程b)の酸素欠乏液体空気を1i)Nl除去塔に、各々中間部遺留物とし て供給すること、 d)粗アルゴンをアルゴン塔の頂部から真空圧縮器により回収すること、 e)ストレイツクらと同様に、HP精留器およびN、除去塔の遺留用のLN、を 2つの潜熱交換器(1つはN、除去塔用の中間部再沸騰器である)によって得る こと、 f)従来からの空気膨張冷凍、および g)大気脚により液体酸素を加圧して蒸発させること。a) approximately half of the feed air is fed directly to the HP rectifier; b) most of the remaining Feeding a two-step continuous process, i.e. i) reboiling the N removal column by partial condensation and then 11) reducing the remaining N by total condensation. .. C) vaporizing the product, C) transferring the oxygen-enriched liquid air of step b) to a HP rectification column; Then, the oxygen-deficient liquid air from step b) is transferred to 1i) the Nl removal column as intermediate residue, respectively. to supply d) recovering crude argon from the top of the argon column by means of a vacuum compressor; e) Similar to Straitsk et al., the HP rectifier, N, and LN for residual removal column are Obtained by two latent heat exchangers (one is an intermediate reboiler for the N, removal column) thing, f) conventional air expansion refrigeration; g) Pressurize and evaporate liquid oxygen using an atmospheric leg.

この開示は、少なくとも少量の粗アルゴンが回収されかっ0.放出圧がHP精留 器N、潜熱交換により可能なものよりも増加した点で、ストレイツクらよりも利 点がある。しかしながら、これは以下の不利な点を有する。1)供給空気全量の 半分よりもわずかに少ない空気が分縮に付されるので、高い空気供給圧が必要で ある。2)酸素欠乏空気を分縮ではなく全縮させることによりLOXを蒸発させ ているので、0.放出圧の増加が非常に小さい。3)高い02回収率と高いアル ゴン回収率の両方の達成が不可能である(部分的には、過剰なレベルの中間部還 流と不十分な中間部再沸騰のため)。4)通常の冷凍により、HP精留器とアル ゴン・ストリッパーの両方の周囲に望ましくないほど高い割合の供給空気を迂回 させている。5)HP頂部からN、除去塔・中間部高さへの潜熱交換器もまた両 方のアルゴン・ストリッパー周囲に再沸騰物を迂回させ、高純度酸素の達成をよ り困難にさせる。また、それはN、ストリッピング・セクションの底部セクショ ンにおける再沸騰を減少させ、粗アルゴン中N、レベルの低下達成を非常に困難 にさせる。この問題は、ストレイッヒらによっても経験されている。This disclosure states that at least a small amount of crude argon is not recovered. Discharge pressure is HP rectification N, the benefit is greater than that possible with latent heat exchange than Straitsk et al. There is a point. However, this has the following disadvantages. 1) Total amount of supplied air Slightly less than half of the air is subjected to partial condensation, so a high air supply pressure is required. be. 2) LOX is evaporated by completely condensing oxygen-deficient air instead of partially condensing it. Therefore, 0. The increase in discharge pressure is very small. 3) High 02 recovery rate and high Al It is not possible to achieve both flow and insufficient mid-section reboiling). 4) By normal refrigeration, HP rectifier and alkaline Diverts an undesirably high percentage of supply air around both sides of the gas stripper I'm letting you do it. 5) The latent heat exchanger from the top of the HP to the N, removal tower/mid height is also connected to both sides. Reboils are diverted around the argon stripper on the side to better achieve high purity oxygen. make it difficult to Also, it is N, the bottom section of the stripping section. Reduces reboiling in crude argon, making it very difficult to achieve lower levels of N in crude argon. Let it be. This problem has also been experienced by Streich et al.

米国特許第4578095号は、前記3つの特徴を組み込んだ高純度酸素と所望 による共生酸物アルゴン製造用の三重圧空気蒸発装置および方法を開示し、これ はさらに以下の点で特徴付けられる。U.S. Pat. No. 4,578,095 discloses high purity oxygen and the desired discloses a triple pressure air evaporation device and method for symbiotic argon production by is further characterized by the following points:

a)粗アルゴン回収用の手段(蒸気または液体のいずれか、または両方として) 、 b)中間部高さの蒸気をN、除去塔に提供するための共働手段(供給まhは再沸 騰のいずれか)を含め、アルゴン蒸留塔の中間部遺留用の手段。a) Means for crude argon recovery (either as vapor or liquid, or both) , b) Cooperative means for providing mid-height vapor to the N, removal column (the supply or reboiling argon distillation column).

この設備は、アルゴン蒸留塔底部上方の再沸騰率の著しい増加が可能なのでOt &アルゴン両方の高い収率を得ることが重要である。This equipment allows for a significant increase in the reboiling rate above the bottom of the argon distillation column. It is important to obtain high yields of both &argon.

この第4578095号特許開示の付加的な任意の特徴には以下のものが包含さ れる。Additional optional features of this '095 patent disclosure include: It will be done.

l)ストレイッヒらと同様に、N、除去塔かん出液をHP精留塔への供給空気の 分縮により再沸騰させること、2)N、または空気膨張のいずれかによる通常の 冷凍、3)LOXをHP精留塔N、で蒸発させること、および4)HP精留塔頂 部とN、除去塔中間部高さの間での別の潜熱交換器の排除、すなわち、HP精留 塔頂部とアルゴン塔低部の間での潜熱交換器を完全なL N を能力として設計 することにより、以下の利点が得られること、 i)N、ストリッパーの臨界的な低部セクションを介する再沸騰の増加により、 N、ストリッピング・セクションが粗アルゴン中のN、レベルをより少ないN、 ストリッピング段によるより低いレベルに低下させること、 ii)アルゴン・ストリッパーの増加した再蒸留により、より少ないトレイでの 0.純度の達成が容易になったこと、1ii)1つ少ない熱交換器により、総主 要コストが実質的に減少すること。l) Similar to Streich et al., the effluent of the N removal column was added to the feed air to the HP rectification column. 2) normal boiling by either N, or air expansion. refrigeration, 3) evaporation of LOX in HP rectifier N, and 4) HP rectifier top and N, the elimination of another latent heat exchanger between the middle height of the removal column, i.e. HP rectification The latent heat exchanger between the top of the column and the bottom of the argon column is designed with full LN capacity. By doing so, you will gain the following benefits: i) N, due to increased reboiling through the critical lower section of the stripper; N, the stripping section is in coarse argon, the level is less N, reducing to a lower level by a stripping stage; ii) Increased redistillation of the argon stripper to reduce the need for fewer trays. 0. purity is now easier to achieve; 1ii) one less heat exchanger reduces the overall Substantial reduction in required costs.

この後者の発明的特徴4)は、この継続出願の1つの重要な態様である。This latter inventive feature 4) is one important aspect of this continuation application.

°095特許は、粗アルゴンおよび高純度酸素の実質的に増大した回収レベルと 粗アルゴン中の低下したN、レベルが可能ではあるが、それは、以下の2つの欠 点を保有する。1)Os生威圧が望ましくないほどに低く、主要なコストを0. 圧縮器にかけることになること、および2)アルゴン塔頂部がアルゴン凍結状態 に望ましくないほどに近づくこと。また、がま液を用いてアルゴン塔を中間部遺 留させる場合、それは、望ましいほど高い0.含量ではない。The °095 patent provides substantially increased recovery levels of crude argon and high purity oxygen. Although reduced N, levels in crude argon are possible, it is due to two deficiencies: Hold the points. 1) Os biointimidation is undesirably low, reducing major costs to 0. 2) The top of the argon column is frozen with argon. to come undesirably close to. In addition, the intermediate part of the argon tower was If it is to be kept at a desirably high 0. Not the content.

低エネルギー、高純度0.二重圧蒸留法に対する望ましい改良点には高いO2回 収率、高い0.放出圧、粗製アルゴンの高い回収率と純度、低い供給空気圧、ア ルゴン凍結に対する大きな限界、および主要コストの最小の増加または好ましく は実際的な減少が包含される。Low energy, high purity 0. Desirable improvements to double pressure distillation include high O2 Yield, high 0. discharge pressure, high recovery and purity of crude argon, low supply air pressure, Large limits to Rougon freezing, and minimal increase in major costs or preferred includes practical reductions.

これらの目的達成に必要な特徴の組合せは、先行技術では個々にある程度まで知 られているが、高純度酸素製造用の低エネルギー三重圧法に関しては、全く知ら れておらず、また所望の改善達成に必要な本明細書開示の特異的な組合せは、全 く知られていない。The combinations of features necessary to achieve these objectives are individually known to some extent in the prior art. However, nothing is known about the low-energy triple pressure method for producing high-purity oxygen. and the specific combinations disclosed herein necessary to achieve the desired improvement are Not very well known.

供給空気の少量部分の全縮により窒素除去塔の底部(かん出液)を再沸騰させる ことは、公知である〔米国特許第3210951.4208199.44103 43および444859号〕。Re-boiling the bottom of the nitrogen removal column (brate) by total condensation of a small portion of the feed air This is known [US Patent No. 3210951.4208199.44103] 43 and 444859].

供給液体空気を2つの中間部還流の流れ(一方はHP精留器用で、他方はN、除 去塔用である)に分割することも公知である〔米国特許第3210951.44 10343および4448595号〕。米国特許第3798917号は液体空気 の3方分割を開示する。Feed liquid air is routed to two intermediate reflux streams (one for the HP rectifier and the other for the N, It is also known to divide the 10343 and 4448595]. U.S. Patent No. 3,798,917 describes liquid air Disclose the three-way division of.

また、HP精留器に供給され分縮される空気との潜熱交換により酸素生成物を蒸 発させることも、公知である〔米国特許第3113854.3371496.3 327489および4560398号〕。In addition, the oxygen products are vaporized by latent heat exchange with the air that is supplied to the HP rectifier and is fractionated. It is also known to emit light [US Pat. No. 3,113,854.3371496.3] 327489 and 4560398].

多くの工程系統図において、例えばLPカラムをHP精留塔のN。In many process diagrams, for example, an LP column is replaced with N in an HP rectification column.

で再沸騰させる場合、LOXBOILは空気凝縮によりなされ、LOXBOIL 圧はLP塔底部圧よりもやや高い。かかる圧力の増加は液体酸素用のポンプで達 成することができるが、好ましい方法は液体酸素の塔の大気脚または静水頭を用 いること、すなわちLP塔底部再蒸発器よりも適切に低い高度でLOXを沸騰さ せることである。これは米国特許第4133662.4507134および45 60398号並びに南アフリカ出願第845542号(1984年7月18日出 願、イズミチおよびオーヤマ)に開示されている。When reboiling is done by air condensation, LOXBOIL The pressure is slightly higher than the LP tower bottom pressure. This pressure increase can be achieved with liquid oxygen pumps. However, the preferred method is to use the atmospheric leg or hydrostatic head of a liquid oxygen column. boiling the LOX at an appropriately lower altitude than the LP bottom reevaporator. It is to make it possible. This is US Patent No. 4133662.4507134 and 45 60398 and South African Application No. 845542 (dated 18 July 1984) (Izumichi, Izumichi, and Ohyama).

冷凍膨張器により生じた仕事を圧縮供給空気の一部の付加的な加温目的の圧縮に 適用することも公知である。これにより得られる圧縮の増加は非常に経済的であ る。なぜなら、その駆動力が免れており、またコンパンダ−の主要コストが、発 生動力吸収用の他の手段を有する膨張器の主要コストと、はとんど差異がないか らである。The work produced by the refrigeration expander is used to compress a portion of the compressed supply air for additional heating purposes. It is also known to apply The increased compression obtained is very economical. Ru. This is because the driving force is free, and the main cost of the compander is Is there almost no difference in the main cost of an expander with other means of absorbing biopower? It is et al.

付加的に圧縮された空気は、その後通常の冷凍(ドイツ特許出願第285450 8号、発行06/19/go、■−デにより出願)またはTCLOXBOIL( 米国特許第4133662号、ソビエト特許第756150号および南アフリカ 出願第845542号(前掲))に使用することができる。The additionally compressed air is then subjected to conventional refrigeration (German patent application no. 285 450) No. 8, Issue 06/19/go, filed by ■-de) or TCLOXBOIL ( US Patent No. 4133662, Soviet Patent No. 756150 and South Africa Application No. 845542 (cited above)).

液体空気・中間部遺留をLP蒸留塔に適用する場合、HP精留塔に供給される気 体空気の添加初期量は、所定の回収率および純度に関し1:1の実質的な減少が 可能である。中間部遺留の利点は添加量の増加につれて「ピンチ」に到達するま で増加し続け、操作ラインはその平衡ラインに緊密に接近する。さらに、該ポイ ントを越える中間部遺留を付加すると、その利点は減少する。すなわち必要な頂 部還流を得るのにHP精留器に供給せねばならない空気量は、これ以上減少しな い。同じ利点は中間部還流HP精留器から得られる。When applying liquid air/intermediate residue to an LP distillation column, the air supplied to the HP rectification column The initial amount of body air added is reduced by a substantial 1:1 for a given recovery and purity. It is possible. The advantage of retaining in the middle part is that as the amount added increases, the “pinch” is reached. continues to increase, and the operating line approaches its equilibrium line closely. Furthermore, the point Adding intermediate retention beyond the point reduces that advantage. i.e. the required peak The amount of air that must be fed to the HP rectifier to obtain partial reflux cannot be further reduced. stomach. The same advantages are obtained from an intermediate reflux HP rectifier.

液体空気を中間部還流に用いる空気分離法に関し、液体空気遺留の最適な量はL P塔およびHP精留器の両方について、供給空気の約5〜lO%である。より速 い液体空気流速は頂部(LN2)還流に必要な量のいずれの付加的な減少をもも たらさない。Regarding the air separation method that uses liquid air for intermediate reflux, the optimal amount of liquid air remaining is L. Approximately 5-10% of feed air for both P column and HP rectifier. faster A lower liquid air flow rate will result in no additional reduction in the amount required for top (LN2) reflux. I don't do it.

いくつかの先行技術の開示は、空気を2つの異なる圧力の冷却ボックスに供給す る必要がある。1つの例は前記したコンパンダ−処理冷凍の特許の群である。付 加的な例には高圧空気を液体酸素の蒸発に使用する方法(米国特許第37540 6.4133662および4372764号)、高圧空気を第2高圧精留器に供 給する方法(米国特許第4356013および4604116号)、および高圧 フラクシッンの全縮により低圧塔を再沸騰させる窒素生成法(米国特許第444 8595号)が包含される。Some prior art disclosures provide air to the cooling box at two different pressures. It is necessary to One example is the group of compander-processed refrigeration patents mentioned above. With Additional examples include the use of high pressure air to evaporate liquid oxygen (U.S. Pat. No. 37,540). 6.4133662 and 4372764), high pressure air is supplied to the second high pressure rectifier. (U.S. Pat. Nos. 4,356,013 and 4,604,116) and high pressure Nitrogen generation method in which a low pressure column is reboiled by total condensation of fruccine (U.S. Pat. No. 444) No. 8595) is included.

従来からの極低温空気分離・工程系統図は、2つの常法のいずれかにより総分離 プロセスに必要な多量の冷凍を得ている。すなわち、HP精留塔・頂部窒素の一 部を排出圧(LP塔の頂部圧よりもわずかに低い圧)に仕事膨張させるか、また は供給空気の一部をLP塔中間部高さ圧に膨張させるかのいずれかである。米国 特許第3324788号は上記工程系統図における上記2つの方法を説明してい るが、経済的な理由かみ、通常一方または他方のみを用いている。Conventional cryogenic air separation/process flow diagrams are based on total separation using one of two conventional methods. Obtaining large amounts of refrigeration for the process. In other words, one of the HP rectification column top nitrogen part is work-expanded to the discharge pressure (slightly lower than the top pressure of the LP column) or Either expands a portion of the feed air to the LP column mid-height pressure. US Patent No. 3324788 describes the above two methods in the above process flow diagram. However, for economic reasons, only one or the other is usually used.

冷凍は熱の漏れ、熱交換器の非効率性および他の作用を代償とする。最も近代的 で効率的な膨張器を用いる場合でさえ、必要な冷凍を得るには、分離プラントの 寸法や設計に応じて約8〜15%の入口空気流の膨張器流れがなお必要である。Refrigeration comes at the expense of heat leakage, heat exchanger inefficiency, and other effects. most modern Even with efficient expanders in the separation plant, obtaining the necessary refrigeration requires An inflator flow of about 8-15% of the inlet airflow is still required depending on size and design.

多量の冷凍ガス流は前記した目的達成に、以下の理由から非効率的である。液流 れをアルゴン・ストリッパーに迂回させるので、0.純度の向上が困難になるこ と。それがアルゴン精留塔で利用されないので、アルゴンの回収率が低下するこ と。それが遺留L N を生成に利用されないので、0゜回収率が減少すること 。A large flow of refrigerated gas is inefficient in achieving the above objectives for the following reasons. liquid flow The argon stripper bypasses the 0. It may become difficult to improve purity. and. Since it is not utilized in the argon rectification column, the recovery rate of argon may decrease. and. Since the residual LN is not used for generation, the 0° recovery rate decreases. .

本発明に必須ではないが、従来からの冷凍に関する問題点の少なくとも一部を回 避する3つの冷凍技術の各記載を、本発明の開示に含める。第1は、前記したよ うに冷凍の流れを加温−コンパンダ−処理に付することでその量を減少させるこ とである。第2は、HP精留塔供給空気を部分的に膨張させることである。これ には、やや高い空気供給圧(約5〜12psi高い圧)が必要であるが、酸素お よびアルゴンの両方の回収率が実質的に増加する。第3は、中間部圧の液体窒素 を好ましくはアルゴン塔中間部高さ液体との潜熱交換により蒸発させ、これを排 出圧に仕事膨張させることである。米国特許第2812645、第390520 1および4303428号は第2の技術の変法を説明している。Although not essential to the present invention, it solves at least some of the problems associated with conventional refrigeration. A description of each of the three refrigeration techniques avoided is included in the present disclosure. The first is as mentioned above. The amount of frozen sea urchin can be reduced by subjecting the frozen sea urchin stream to heating and compandering treatment. That is. The second is to partially expand the HP rectifier feed air. this requires a slightly higher air supply pressure (approximately 5 to 12 psi higher), but oxygen and and argon recovery are substantially increased. The third is liquid nitrogen at intermediate pressure. is preferably evaporated by latent heat exchange with the liquid at the middle height of the argon column, and is then discharged. It is to expand the work to the output pressure. U.S. Patent Nos. 2,812,645, 390,520 No. 1 and No. 4,303,428 describe a variation of the second technique.

本発明に適切な他の先行技術開示の三重正洗には米国特許第4533375およ び4605427号が包含される。Other prior art disclosures suitable for the present invention include U.S. Pat. and No. 4605427.

発明の開示 前記した目的を達成しかつ前記した問題点を回避するには、従来からの低エネル ギ一工程系統図に3つの付加的な特徴を組み込むべきであることを見出すに至っ た。第1の、アルゴン塔に対する中間部遺留とそれに伴うN、除去塔における再 沸騰の中間部増加の組合せは、米国特許第4605427号に開示されている。Disclosure of invention In order to achieve the above objectives and avoid the above problems, conventional low energy We have found that three additional features should be incorporated into a process diagram. Ta. First, the intermediate part remains in the argon tower and the accompanying N, and the re-retention in the removal tower. A combination of mid-range increase in boiling is disclosed in US Pat. No. 4,605,427.

第2は、アルゴン塔の底部を再沸騰させる単一の潜熱交換器によるLN、全量の 遺留能力を達成し、これによりHP頂部−N、除去塔・中間部高さの潜熱交換器 を排除することである。第3は、本明細書に新たに開示したもので、N、除去塔 の底部を、約25%以下、好ましくは約20%以下である所定量の供給空気の全 縮により再沸騰させ、ついで得られた液体空気流を、1つはHP精留塔用で1つ はN、除去塔用の2つの中間部還流物流に分割することである。The second is LN with a single latent heat exchanger that reboils the bottom of the argon column, Achieving residual capacity, which enables HP top-N, removal tower/mid-height latent heat exchanger The goal is to eliminate The third one is newly disclosed in this specification. of the total supply air in a predetermined amount that is no more than about 25%, preferably no more than about 20%. The resulting liquid air stream is reboiled by condensation, one for the HP rectification column and one for the HP rectification column. is split into two intermediate reflux streams for the N, removal column.

上記した開示改善法の3つを、全て組み込んだ場合のみ、以下の改善点の獲得が 可能になる。HP精留塔供給空気の分縮による比較的高い圧力(約1 、6 A TA)ノLOXBOIL:完全な07回収と0.純度:約1%以下のN、含量で 約95%の純度のアルゴンの高い回収率;アルゴン凍結に対する十分な温度限界 (3にのオーダー);わずか5つの別々の潜熱交換器と1つの膨張器(またはコ ンパンダ−):および液体ポンプまたは困難な塔相対的高さの配置が不要なこと 。Only when all three of the disclosure improvement methods described above are incorporated will the following improvements be achieved. It becomes possible. Relatively high pressure (approximately 1,6 A TA) NOLOXBOIL: Complete 07 recovery and 0. Purity: about 1% or less N, content High recovery of argon with approximately 95% purity; sufficient temperature limits for argon freezing (on the order of 3); only 5 separate latent heat exchangers and 1 expander (or pumper): and no need for liquid pumps or difficult tower relative height arrangements .

しかし強調すべきことは、前記3つの特徴各々単独でも、高純度酸素用の低エネ ルギー三重圧工程系統図に関する先行技術の開示よりも、優れた改善への貢献が 可能である。空気分離技術の実施に際し被る種々の環境において、前記した有利 な特徴の全てが必然的に価値を示すものでもない。例えば粗アルゴンを回収せず に排出する場合、粗アルゴン回収を増加させるかまたはN、含量を減少させる方 法は、エネルギー消費を付加的に減少させうる別法に対し、価値を示さない。し たがって、前記した3つの各特徴は、各々他の2つと組合せる場合だけでなく、 他の環境においても同様に価値がある。However, it should be emphasized that each of the above three features alone can reduce energy consumption for high-purity oxygen. Contribution to better improvement than disclosure of prior art regarding Lugie triple pressure process diagram It is possible. In the various environments encountered when implementing air separation technology, the above-mentioned advantages are Not all characteristics necessarily indicate value. For example, without recovering crude argon. If discharging to The method does not offer value over alternatives that could additionally reduce energy consumption. death Therefore, each of the three characteristics described above can be used not only when combined with the other two, but also when combined with the other two. It has value in other environments as well.

さらに形式的には、1つの態様において本発明は清浄化し圧縮した供給空気を分 留することにより少なくとも98%純度の酸素生成物と所望成分の粗アルゴン共 生成物を製造するにあたり、a)分縮される該供給空気の主要部分との潜熱交換 により酸素生成物を蒸発させ、 b)該主要部分の未凝縮残部を高圧(HP)精留塔で精留させて、頂部N、と底 部かま液を生成し、 C)該供給空気の少量部分を窒素除去塔の再沸騰器で全縮させて該塔の底部(か ん出液)を再沸騰させ、d)該液体空気を2つの流れに分割し、各々を該Hp精 留塔と該N、除去塔に、各々の中間部遺留用として供給し、e)液相のがま液を 該N、除去塔に供給し、f)実質的に窒素非含有のサイドストリーム液体酸素− アルゴン混合物を、該供給高さ下方O該N、除去塔の中間部高さかみ回収し、g )アルゴン蒸留塔の該液体サイドストリームを蒸留させて、粗アルゴン・頂部生 成物と液体酸素・底部生成物を生成し、h)液体酸素底部生成物をN、除去塔と アルゴン蒸留塔の両方から回収し、 i)液体酸素の圧力を工程a)の蒸発圧に増加させ、j)該加圧液体酸素を上記 蒸発工程に供給し、ついで、k)該粗アルゴンと該蒸発酸素を回収することを特 徴とする方法からなる。More formally, in one aspect the invention separates purified and compressed supply air. The oxygen product of at least 98% purity and the desired component of crude argon are produced by distillation. In producing the product, a) latent heat exchange with the main part of the feed air to be partialled; evaporates the oxygen products by b) The uncondensed residue of the main portion is rectified in a high pressure (HP) rectification column to form a top part N and a bottom part. produces particulate liquid, C) A small portion of the feed air is completely condensed in the reboiler of the nitrogen removal column to the bottom of the column. d) splitting the liquid air into two streams, each containing the Hp Supply the distillation column, the N, and the removal column for each intermediate section retention, e) liquid phase boiler liquid. f) substantially nitrogen-free sidestream liquid oxygen; The argon mixture is collected below the feed height and at the middle height of the removal column, g ) The liquid side stream of the argon distillation column is distilled to produce crude argon and overhead product. h) converting the liquid oxygen bottom product into a nitrogen removal column; Argon is recovered from both distillation columns, i) increasing the pressure of the liquid oxygen to the evaporation pressure of step a); and j) increasing the pressure of the pressurized liquid oxygen to the k) recovering said crude argon and said vaporized oxygen; It consists of the method of using it as a sign.

上記と関連して、または別に独立して、本発明は、清浄化し圧縮し冷却した供給 空気を分別蒸留することにより少なくとも98%純度の酸素生成物と任意成分の 粗アルゴン共生成物を製造するにあたり、 a)該供給空気から得られ該供給空気よりも0.含有が少ない蒸気を高圧(HP )精留器で精留させて、N、頂部生成物と底部かま液生成物を生成し、 b)液相の該かま液を窒素除去塔に供給しそれを蒸留させることにより該がま液 の窒素を除去し、 C)該窒素除去塔の底部を、少なくとも分縮される該供給空気の一部との潜熱交 換により再沸騰させ、 d)実質的に窒素非含有のサイドストリーム液体酸素−アルゴン混合物を該供給 高さよりも低い該窒素除去塔の中間部高さから回収し、 e)アルゴン蒸留塔の液体サイドストリームを蒸留させて、粗アルゴン・頂部生 成物と液体酸素・底部生成物を生成し、f)HP精留塔頂部N、とアルゴン塔・ かん出液の間で潜熱交換させて、該アルゴン塔の少なくとも底部を再沸騰させ、 またHP精留塔およびN、除去塔の両方を実質的に全てのL N を頂部遺留さ せ、ついで g)アルゴン塔と窒素除去塔の両方の液体酸素・底部生成物を蒸発させて、これ を生成物として回収することを特徴とする方法からなる。In conjunction with the above, or separately and independently, the present invention provides Fractional distillation of air produces an oxygen product of at least 98% purity and optional components. In producing the crude argon co-product, a) 0.0. High pressure (HP) ) is rectified in a rectifier to produce N, a top product and a bottom bottom product; b) Supplying the liquid phase of the kettle to a nitrogen removal column and distilling it to produce the kettle removes nitrogen from C) latent heat exchange of the bottom of the nitrogen removal column with at least a portion of the feed air to be partialized; Boil it again by replacing it with d) supplying said substantially nitrogen-free sidestream liquid oxygen-argon mixture; collected from the middle height of the nitrogen removal column lower than the height of the nitrogen removal column; e) Distilling the liquid side stream of the argon distillation column to produce crude argon and overhead raw material. f) HP rectification column top N, and argon column reboiling at least the bottom of the argon column by exchanging latent heat between the effluent; Additionally, both the HP rectification column and the N removal column have substantially all of the LN retained at the top. Well then g) Evaporating the liquid oxygen/bottoms product of both the argon column and the nitrogen removal column; The method is characterized in that the product is recovered as a product.

さらに付加的な発明的特徴は、以下に詳述するように、添付の請求の範囲および 図面に記載する。Further additional inventive features reside in the appended claims and as detailed below. Describe it on the drawing.

図面の簡単な記載 39の図面は、高純度酸素製造用の低エネルギー三重圧空気蒸留法を単純化した 模式的工程系統図である。第1図は、3つの特徴全てを組み込んでいる。すなわ ち、液体空気分割による全縮−再沸騰、単一の熱交換器の完全L N を還流能 力、およびアルゴン塔の中間部還流である。これらの特徴は、コンパンダ−処理 ・空気冷凍と共に、高pat・分縮LOXBOIL蒸発器を可能にする。また、 がま液から得られるが液液とは異なる所望の0.含量レベルを有する液体をアル ゴン塔用の各還流凝縮器に供給するための、新規な手段を図示する。Brief description of the drawing 39 drawings simplify low energy triple pressure air distillation process for high purity oxygen production It is a schematic process flow diagram. Figure 1 incorporates all three features. Sunawa Total condensation-reboiling by liquid air division, complete reflux capacity of a single heat exchanger power, and reflux in the middle of the argon column. These features are due to compander processing - Enables high pat/partial condensation LOXBOIL evaporator along with air refrigeration. Also, The desired amount of 0.0% obtained from the gama liquid but different from the liquid liquid. Aluminum liquid with content level 1 illustrates a novel means for feeding each reflux condenser for a gas column;

後者には、がま液の向流気液接触域と、平行に代わる連続的な2つの凝縮器への 供給が包含される。The latter includes a countercurrent gas-liquid contact area of the boiler liquid and two continuous condensers instead of parallel ones. Supply is included.

第2図は、高いアルゴン回収が付加的なエネルギー減少はどには価値がない状況 を示す。全縮再沸騰空気をコンパンダ−処理に付して必要なエネルギーを付加的 に低下させた場合でも、アルゴン回収は減少するが酸素回収を増加させることか らなる別法の冷凍技術を示す。さらに第3図は、エネルギー低下に関心がなく( 例えば安いエネルギー価格)回収率の増加に対しより関心がある第3の環境を示 す。精留塔空気の部分的膨張による冷凍を用いることにより、最大のLN、を酸 素回収の増加に利用することができる。Figure 2 shows a situation where high argon recovery is not worth the additional energy savings. shows. The necessary energy is added by subjecting the totally condensed and reboiled air to a compander treatment. Even if the argon recovery is lowered to An alternative refrigeration technique is shown below. Furthermore, Figure 3 shows that there is no interest in energy reduction ( (e.g. low energy prices) represents a third environment where there is more interest in increasing recovery rates. vinegar. By using refrigeration by partial expansion of rectifier air, maximum LN, It can be used to increase elementary recovery.

本発明実施の最も好ましい態様 第1図では、圧縮し清浄化した供給空気を主熱交換器20でほぼ露点に冷却し、 25%以下の該少量部分をN!除去塔22の再沸騰器21に送ってそこでそれを 全縮し、該主要部分はPCLOXBOIL蒸発器23に送ってそこでそれを、酸 素生成物を沸騰させながら分縮する。空気の未凝縮部分は、相分離器25による 任意の相分離後、HP精留塔25に供給し、精留して頂部N、と液体酸素豊富空 気底部生成物(通常かま液と呼んでいる)を生成する。頂部蒸気Ntは、アルゴ ン蒸留塔27の単一の潜熱交換器、再沸騰器26だけに供給する。26から得た 液体N、を精留搭24および塔22の頂部に分割し、後者は顕然交換器39、圧 力降下バルブ40および相分離器41を経由する。がま液は、図示するように2 3の分縮液体と合するかまたは別法として別々に(わずかに組成が異なる)保持 することができ、最後には塔22に液相で供給するが、まず、少なくとも一部を 蒸発させてアルゴン塔27を遺留させる。Most preferred mode of carrying out the present invention In FIG. 1, compressed and purified supply air is cooled to approximately the dew point in the main heat exchanger 20, The small portion of 25% or less is N! It is sent to the reboiler 21 of the removal column 22 where it is It is completely deflated and the main part is sent to the PCLOXBOIL evaporator 23 where it is treated with acid. Condensation occurs while boiling the elementary products. The uncondensed part of the air is removed by a phase separator 25. After optional phase separation, it is fed to the HP rectification column 25 and rectified to form the top N and liquid oxygen-enriched air. Produces a bottom product (commonly called scum). The top steam Nt is A single latent heat exchanger in distillation column 27 feeds only reboiler 26. Obtained from 26 liquid N, is divided between the rectification column 24 and the top of the column 22, the latter having an explicit exchanger 39, a pressure Via a force drop valve 40 and a phase separator 41. As shown in the diagram, add the liquid Combined with the partial condensation liquid of 3 or alternatively held separately (slightly different composition) can be fed in liquid phase to the column 22, but first at least a portion is The argon column 27 is left behind by evaporation.

アルゴン塔27の中間部遺留凝縮器28および頂部遺留凝縮器29は、各々可能 な限り高Ot含量の蒸気流をN、除去塔22の各高さに供給することが重要であ る。28の蒸気中の0.含量を多量にすればするほど、それを導入できる塔22 の高さが低くなる。したがって、かかる高さよりも低い塔22の最小再沸騰必要 量が減少し、それに対応して凝縮器28よりも低い塔27の再沸騰可能量が増加 する。この再沸騰の増加はアルゴンの回収増大をもたらす。同様な考慮が凝縮器 29に加えられる。The intermediate residual condenser 28 and the top residual condenser 29 of the argon column 27 are each capable of It is important to supply a vapor stream with as high an Ot content as possible to each height of the N removal column 22. Ru. 0.28 in steam. The higher the content, the more it can be introduced into the column 22. height decreases. Therefore, the minimum reboil requirement of column 22 below such height is The amount decreases and the reboiler capacity of the column 27, which is lower than the condenser 28, increases accordingly. do. This increased reboiling results in increased argon recovery. Similar considerations apply to condensers Added to 29.

約1.5にの代表的な凝縮器LMTDおよび約0.97ATAのアルゴン塔頂部 圧を可能にするには、凝縮器29からバルブ30を介し塔22に送られる蒸気は 、少なくとも約35%の0.含量を有すべきである。これは、がま液の一部の全 縮によって容易に行なうことができる。しかしながら、同じ高0.含量の液体は バルブ31を介する凝縮器28への供給に、全く利用することができない。がま 液から得られたかかる液体を利用するために、向流気液接触域32を設ける。減 圧したがま液は圧力降下バルブ34を介し域32の上方に供給する。接触器32 に入る凝縮器29生成の蒸気量は制御バルブ30で決定される。接触器32の頂 部から放出される蒸気は逆止めバルブ35を介し塔22に供給する。任意のバル ブ45および37は凝縮器28に供給された液体の量と組成をより好適なものに 変えることができる。同様に迂回バルブ38は、接触器32を介し凝縮器29に 供給されるがま液の量の制御が可能であり、特に、アルゴン凍結に対する所望の 限界を維持するのに有用である。Typical condenser LMTD at about 1.5 and argon column top at about 0.97 ATA To enable pressure, the vapor sent from condenser 29 to column 22 via valve 30 is , at least about 35% of 0. It should have a content. This is a part of the liquid. This can be easily done by shrinking. However, the same height 0. The content of liquid is No supply is available to the condenser 28 via the valve 31. Toad A countercurrent gas-liquid contact area 32 is provided to utilize such liquid obtained from the liquid. decrease Pressurized head fluid is supplied above area 32 via a pressure drop valve 34. Contactor 32 The amount of steam produced by the condenser 29 entering the condenser 29 is determined by a control valve 30. Top of contactor 32 The steam released from the section is supplied to the column 22 via a check valve 35. any bar Bulbs 45 and 37 optimize the amount and composition of the liquid supplied to the condenser 28. It can be changed. Similarly, the bypass valve 38 connects the condenser 29 via the contactor 32. It is possible to control the amount of bath fluid supplied, especially to achieve the desired Useful for maintaining limits.

総体的な結果、がま液は、その各々が液相、気相または組合せ(以後、流体相と 呼ぶ)とできる3つの異なる流れとして異なる高さで塔22に供給される。The overall result is that the gama liquid can be in a liquid phase, a gas phase or a combination (hereinafter referred to as a fluid phase), respectively. is fed to the column 22 at different heights as three different streams, which can be called

かま液に代えて、凝縮器27および28のいずれか一方または両方で蒸発される 液体を適当な各高さの塔22中間部高さ液体とすることができものと理解される 。これは、工程系統図の熱力学的またはエネルギー効率に対しいずれの実質的な 作用を有するものではないが、塔の相対的な高さ配置にある種の制限を加えるか または液体のポンプ処理が必要である。It is evaporated in one or both of the condensers 27 and 28 instead of the boiling liquid. It is understood that the liquid can be at the intermediate height of the column 22 at each suitable height. . This indicates that there is no real difference in the thermodynamic or energy efficiency of the process diagram. Although it does not have any effect, does it impose some kind of restriction on the relative height arrangement of the towers? or liquid pumping is required.

21の凝縮液体空気は、バルブ42と43の協働作用により各々HP精留器24 および塔22用の、2つの中間部還流の流れに分割される。各流れは供給空気全 量の約15%以下にすべきで、そうでなければ分割による同様な利点を失う。The condensed liquid air of 21 is passed through the HP rectifier 24 by the cooperative action of valves 42 and 43, respectively. and two intermediate reflux streams for column 22. Each flow is the total supply air It should be no more than about 15% of the volume, otherwise you lose the same benefits of splitting.

酸素的95%および約0.1%以下のNtを含有する液体酸素−アルゴン・サイ ドストリームは塔22から回収され、輸送手段33を介し塔27に供給されるが 、これはポンプ、逆止めバルブまたは単に大気脚とすることができる(相対的な 塔高さに依存する)。塔27と22の両方の液体酸素・底部生成物(かん出液) は、輸送手段44と36によりLOXBOIL蒸発器23に輸送する。23は2 7または22のいずれかよりも高い圧力なので、36と44の場合には単にバル ブであるが、それは必要な圧力増加を大気脚が生成するようなより低い高度に配 置するのが好ましい。同様に、粗アルゴンは蒸気または液体のいずれかとして回 収でき、大気脚を用いてそれを増加した圧力で蒸発させることができる。Liquid oxygen-argon gas containing 95% oxygen and less than about 0.1% Nt The waste stream is recovered from column 22 and fed to column 27 via transport means 33. , this can be a pump, a check valve or simply an atmospheric leg (relative (depending on tower height). Liquid oxygen/bottoms product (brate) of both columns 27 and 22 is transported to the LOXBOIL evaporator 23 by transport means 44 and 36. 23 is 2 7 or 22, so in the case of 36 and 44 it is simply a valve. , but it places the necessary pressure increase at a lower altitude where the atmospheric leg generates it. It is preferable to place Similarly, crude argon can be recycled as either vapor or liquid. The atmospheric leg can be used to evaporate it at increased pressure.

第1図に示したプロセス冷凍技術は、供給空気の該少量部分のN。The process refrigeration technique illustrated in FIG. 1 uses N in the small portion of the supply air.

除去塔圧への従来からの膨張ではあるが(47)、膨張される空気の加温目的の 圧縮は、該膨張器により動力付与される圧縮器46で付加される。このコンパン ダ−処理は、膨張器に要する流れを処理しない場合に必要なものの約374に、 すなわち代表的には供給空気全量の10%以下に減少させる。もちろん、さらに 大きな流れ減少が付加的な外部動力付与圧縮器で可能である。いずれの減少も、 それがHP精留塔に利用可能な空気を増加させ次いでより多量なLN、を生成さ せその結果O1の回収を増大させるので、望ましいことである。審査中の出願に 記載のように、従来からのまたはコンパンダ−処理空気冷凍の代わりに従来から のまたはコンパンダ−処理N才冷凍の置換が可能である。さらに付加的な冷凍の 選択が第2および3図に示した2つの具体例により可能である。また、コンパン ダ−圧縮動力は、第2および3図に例示するように他の有利な目的に適用するこ とができる。Although conventional expansion to removal column pressure (47), the purpose of warming the expanded air is Compression is applied with a compressor 46 powered by the expander. This compan The processing reduces the flow required by the expander to about 374% of what would otherwise be required. That is, it is typically reduced to 10% or less of the total amount of supplied air. Of course, further Large flow reductions are possible with additional externally powered compressors. Both decreases It increases the air available to the HP rectifier and then produces more LN. This is desirable because it results in increased O1 recovery. For applications under examination As described, conventional or compander-treated air refrigeration can be replaced by Replacement of conventional or compander-treated N-year-old refrigeration is possible. Further additional refrigeration A selection is possible with two embodiments shown in FIGS. 2 and 3. Also, Compan The compression power can be applied to other beneficial purposes as illustrated in FIGS. 2 and 3. I can do it.

第2図は、同様な基本的3−塔(三重圧)形態を示す。ただし、異なる蒸気を膨 張させ(中間部圧Nt)、異なる流れを加温−圧縮させ(全縮再沸騰流)、また やや異なるアルゴン塔遺留配置を示す。3つの重要な特徴は未だ存在する。すな わち、2つの中間部遺留物への液体空気分割によるN、除去カラムの全縮再沸騰 、少なくとも2つの垂直方向に間隔を開けたアルゴン塔遺留(各々、N、除去塔 の異なる高さの異なる組成の流れを合した蒸気を有する)、および単一の熱交換 器により達成される全量LN、遺留能力である。かかる特徴の組合せは効率的な PCLOXB01L蒸発器を支持する。成分220〜245は対応した番号の第 1図の成分と同じものである。ただし、25.30.32および35に対応する 成分は必要ないので図示しない。接触器はこの工程系統図では必要ない。なぜな ら、コンパンダ−処理により塔227および224は塔27および24よりも約 1.5〜2に低い温度で操作されるため凝縮器229は余分の接触器を用いずに 高0.含量液体をバルブ231および凝縮器228用に発生させることができる からである。もちろん、ある種の状況ではそれは予め排除せずに望ましいものと できる。FIG. 2 shows a similar basic three-column configuration. However, different steam inflating (intermediate pressure Nt), heating and compressing different streams (total condensation and reboiling stream), and This shows a slightly different arrangement of the argon tower remains. Three important features still exist. sand Namely, total condensation and reboiling of the N removal column by liquid air division into two intermediate retentates. , at least two vertically spaced argon towers (each with a N removal tower) (having steam that combines streams of different compositions at different heights), and a single heat exchanger The total amount LN achieved by the vessel is the residual capacity. The combination of such features makes efficient Supports PCLOXB01L evaporator. Components 220 to 245 are the corresponding numbers. The components are the same as those in Figure 1. However, corresponding to 25.30.32 and 35 The components are not shown because they are not necessary. A contactor is not required in this process diagram. Why Columns 227 and 224 are approximately smaller than columns 27 and 24 due to the compander treatment. Since the condenser 229 is operated at a low temperature of 1.5 to 2, no extra contactor is used. High 0. Content liquid can be generated for valve 231 and condenser 228 It is from. Of course, in certain situations it may be desirable without excluding it. can.

第1図との重要な差異はLINBOIL、凝縮器248であり、これはバルブ2 49を介して部分的に減圧したLN、が供給され、これによりアルゴン塔227 の中間部高さを遺留させ、HP精留塔224または塔227のアルゴン・ストリ ッピングセクションへのいずれにも迂回しない膨張用の蒸気流を生成する。N、 蒸気を部分的に220で加温し、ついで膨張器250で仕事膨張させる。膨張の 圧力比が低いので、供給空気の15%オーダーの、より多量の流れが必要である 。248により227の頂部セフシランで利用可能な再沸騰物が実質的に減少す るので、粗アルゴンの回収も減少する。しかしながら、L N tの増加は圧縮 器251を221に供給される空気に適用できることを意味するので、完全なO 2回収を維持しながら供給圧を減少させることができる。The key difference from FIG. 1 is the LINBOIL condenser 248, which is the valve 2 partially depressurized LN is supplied via argon column 227 . The argon stream in HP rectification column 224 or column 227 is Generates an expanding vapor flow that is not diverted to any of the pipping sections. N, The steam is partially warmed at 220 and then work expanded in an expander 250. of expansion Because the pressure ratio is lower, a higher flow rate is required, on the order of 15% of the supply air. . 248 substantially reduces the available reboil in the top cefsilane of 227. Therefore, recovery of crude argon is also reduced. However, the increase in LNt causes compression This means that the container 251 can be applied to the air supplied to 221, so the complete O 2. Supply pressure can be reduced while maintaining recovery.

第3図は、開示した特徴の別の有利な組合せを図示する。成分320〜345は 第2図の対応する200番台の成分と同じ記載である。成分352は、一般的に は供給空気の圧縮と浄化作用を示す。第3図では、膨張器353で膨張される蒸 気流は、蒸発器323へ次いで精留塔324に送られる途中の該主要部分である 。少なくとも75%の空気を膨張させるので、それは、非常に小さい膨張圧力比 だけが必要である。FIG. 3 illustrates another advantageous combination of the disclosed features. Ingredients 320-345 are This is the same description as the corresponding component in the 200s in FIG. Ingredient 352 generally includes indicates the compression and purification effect of the supplied air. In FIG. 3, the vapor expanded by an expander 353 The gas stream is the main part on its way to evaporator 323 and then to rectification column 324 . Since it expands at least 75% of the air, it has a very small expansion pressure ratio. only is necessary.

圧縮器354は353で消費される圧縮の約1/4が得られるように都合よく使 用される。最終的な結果、352の供給空気は、例えば第2図の供給空気よりも 約0 、7 ATA高い圧力としなければならない。供給圧の増加(約5〜5  、5 ATA)により321への供給を付加的に圧縮する必要がなく、したがっ て354の圧縮を膨張器供給流に適用できる。Compressor 354 is conveniently used to provide approximately 1/4 of the compression consumed by 353. used. The net result is that the supply air of 352 is smaller than the supply air of e.g. The pressure must be approximately 0.7 ATA high. Increase in supply pressure (approximately 5-5 , 5 ATA), there is no need to additionally compress the supply to 321; 354 compressions can be applied to the expander feed stream.

この数値は、粗アルゴン回収を減少させずに、より多量のエネルギー投入により 第2図の非常に高い02回収特性を達成できる。This number allows for higher energy input without reducing crude argon recovery. The extremely high 02 recovery characteristics shown in FIG. 2 can be achieved.

現時点で最も有利であると思われる、開示した有利な特徴の特異的な組合せおよ び具体例を示したが、多くの他のものも当業者には明白である。従来からの第2 HP精留塔・頂部凝縮器をいずれの工程系統図にも加えることができる。分縮再 沸騰は全縮に置換できる。The specific combination of advantageous features disclosed and Although specific examples have been given, many others will be apparent to those skilled in the art. Conventional second An HP rectifier/top condenser can be added to either process diagram. re-decompression Boiling can be replaced by total contraction.

ある穫の液体も回収できる。種々の塔および熱交換器の物理的形態も公知であり 、可能である。低圧降下塔充てん物も好ましいがZ要ではない。膨張能力は、完 全に別々の蒸気流の膨張からなる変法を含め、2つまたはそれ以上の膨張器の間 に分割させることができる。The liquid from the harvest can also be collected. Various column and heat exchanger physical forms are also known. , is possible. A low pressure drop tower packing is also preferred, but not required. The expansion capacity is between two or more expanders, including variants consisting of expansion of entirely separate vapor streams. It can be divided into

意図した該発明の範囲は請求の範囲にのみに限定されない。The intended scope of the invention is not limited only by the claims.

FIG、 1 国際調査報告FIG. 1 international search report

Claims (11)

【特許請求の範囲】[Claims] 1.清浄化し圧縮した供給空気を分留することにより少なくとも98%純度の酸 素生成物と任意成分の粗アルゴン共生成物を製造するにあたり、 a)分縮される該供給空気の主要部分との潜熱交換により酸素生成物を蒸発させ 、 b)該主要部分の未凝縮残部を高圧(HP)精留塔で精留させて、頂部N2と底 部かま液を生成し、 c)該供給空気の少量部分を窒素除去塔の再沸騰器で全縮させて該塔のかん出液 を再沸騰させ、 d)該液体空気を2つの流れに分割し、各々を該HP精留塔と該N2除去塔に、 各々の中間部還留用として供給し、e)少なくとも1つの流体形のかま液を該N 2除去塔に供給し、f)実質的に窒素非含有のサイドストリーム液体酸素−アル ゴン混合物を、該供給高さ下方の該N2除去塔の中間部高さから回収し、g)ア ルゴン蒸留塔の該液体サイドストリームを蒸留させて、粗アルゴン・頂部生成物 と液体酸素・底部生成物を生成し、h)液体酸素底部生成物をN2除去塔とアル ゴン蒸留塔の両方から回収し、 i)液体酸素の圧力を工程a)の蒸発圧に増加させ、j)該加圧液体酸素を上記 蒸発工程に供給し、ついで、k)該粗アルゴンと該蒸発酸素を回収することから なることを特徴とする方法。1. Acid of at least 98% purity by fractional distillation of purified and compressed feed air In producing the elementary product and the optional crude argon co-product, a) evaporating the oxygen products by latent heat exchange with the main portion of the feed air being depleted; , b) The uncondensed residue of the main portion is rectified in a high pressure (HP) rectification column to form top N2 and bottom N2. produces particulate liquid, c) A small portion of the feed air is completely condensed in the reboiler of the nitrogen removal column to produce a effluent from the column. Re-boil the d) splitting the liquid air into two streams, each to the HP rectification column and the N2 removal column; e) at least one fluid-form boiler liquid for each intermediate reflux; f) substantially nitrogen-free sidestream liquid oxygen-alcohol; g) collecting a nitrogen mixture from a mid-level of the N2 removal column below the feed height; The liquid side stream of the argon distillation column is distilled to produce a crude argon overhead product. and h) transferring the liquid oxygen bottom product to a N2 removal column and an alkaline Collected from both of the Gon distillation towers, i) increasing the pressure of the liquid oxygen to the evaporation pressure of step a); and j) increasing the pressure of the pressurized liquid oxygen to the k) recovering said crude argon and said vaporized oxygen; A method characterized by becoming. 2.さらに、HP精留塔・頂部N2からアルゴン塔・底部液体への潜熱交換によ りアルゴン塔かん出液を再沸騰させると共に全てのしN2をHP精留塔とN2除 去塔の両方で還留させることからなる請求の範囲第1項記載の方法。2. Furthermore, due to latent heat exchange from the top N2 of the HP rectification column to the bottom liquid of the argon column, The effluent from the argon column is re-boiled and all of the N2 is transferred to the HP rectification column for N2 removal. 2. A process according to claim 1, comprising refluxing in both stripping columns. 3.さらに、 (a)アルゴン塔中間部高さの蒸気と i)工程1.a)の酸素豊富液体 ii)かま液、および iii)N2除去塔・中間部高さ液体 の少なくとも1つから得られる蒸気の間での潜熱交換により、該供給高さ上方の アルゴン塔を中間部還流させ、またサイドストリーム回収高さ上方のN2除去塔 の再沸騰率を増加させ、ついで(b)上記潜熱交換により得られた蒸気をN2除 去塔中間部高さに供給する ことからなる請求の範囲第2項記載の方法。3. moreover, (a) Steam at the middle height of the argon column and i) Step 1. a) Oxygen-rich liquid ii) Stainless steel, and iii) N2 removal tower/middle height liquid above the feed height by latent heat exchange between the vapors obtained from at least one of the The argon column is refluxed in the middle, and the N2 removal column is placed above the side stream recovery height. and then (b) remove N2 from the vapor obtained by the latent heat exchange. Supply to the middle height of the removal tower 3. A method according to claim 2, comprising: 4.さらに、 (a)アルゴン塔中間部高さの蒸気と 1)工程1.a)の酸素豊富液体 ii)かま液および iii)N2除去塔・中間部高さ液体 の少なくとも1つから得られる液体の間での潜熱交換により、該供給高さ上方の アルゴン塔を中間部還流させ、またサイドストリーム回収高さ上方のN2除去塔 の再沸騰率を増加させ、ついで(b)上記潜熱交換により得られた蒸気をN2除 去塔中間部高さに供給する ことからなる請求の範囲第2項記載の方法。4. moreover, (a) Steam at the middle height of the argon column and 1) Process 1. a) Oxygen-rich liquid ii) Stainless steel and iii) N2 removal tower/middle height liquid above the feed height by latent heat exchange between the liquid obtained from at least one of the The argon column is refluxed in the middle, and the N2 removal column is placed above the side stream recovery height. and then (b) remove N2 from the vapor obtained by the latent heat exchange. Supply to the middle height of the removal tower 3. A method according to claim 2, comprising: 5.さらに、上記少量空気部分を供給空気全量の25%以下に限定し、上記液体 空気流を、各々供給空気全量の15%以下に限定することからなる請求の範囲第 4項記載の方法。5. Furthermore, by limiting the small amount of air to 25% or less of the total amount of air supplied, Claim No. 1, each comprising limiting the air flow to no more than 15% of the total air supply. The method described in Section 4. 6.さらに、 a)供給空気全量の約10%以下からなる該供給空気の第2少量流れを暖かい間 に付加的に圧縮し、 b)付加的に圧縮した該流れを部分的に冷却し、c)付加的に圧縮した該流れを 仕事膨張させ、これをN2除去塔に供給し、ついで d)少なくとも一部の該圧縮工程に該膨張工程により動力を付与する ことからなる請求の範囲第3項記載の方法。6. moreover, a) while warming a second small stream of said supply air comprising no more than about 10% of the total supply air; additionally compressed, b) partially cooling the additionally compressed stream; c) partially cooling the additionally compressed stream; Work expansion is carried out, and this is supplied to the N2 removal tower, and then d) powering at least a portion of the compression process by the expansion process; 4. A method according to claim 3, comprising: 7.さらに、 a)かま液および分縮液体の少なくとも1つをアルゴン塔の間接的潜熱交換・頂 部還流に供給し、 b)かま液または分縮液体のいずれよりも高いO2含量を有する工程7.a)の 未蒸発液体を、工程3の該「由来の液体」として供給することからなる請求の範 囲第3項記載の方法。7. moreover, a) At least one of the flask liquid and the fractionated liquid is transferred to the top of the argon column through indirect latent heat exchange. supply to the reflux; b) Step 7. having a higher O2 content than either the sluice or the fractionated liquid. a) of A claim comprising supplying an unevaporated liquid as the "derived liquid" in step 3. The method described in box 3. 8.さらに、工程1.c)の該全縮少量空気部分を暖かい間に付加的に圧縮し、 冷却工程蒸発流の仕事膨張により少なくとも一部の該付加的圧縮に動力を付与し て必要な冷凍を得ることからなる請求の範囲第1項記載の方法。8. Furthermore, step 1. c) additionally compressing the fully contracted air portion while warm; powering at least some of the additional compression by work expansion of the cooling process evaporative stream; 2. A method according to claim 1, which comprises obtaining the necessary refrigeration. 9.さらに、HP精留塔供給空気流を少なくとも一部の該仕事膨張に選択するこ とからなる請求の範囲第8項記載の方法。9. Additionally, the HP rectifier feed air stream is selected for at least a portion of the work expansion. The method according to claim 8, comprising: 10.さらに、アルゴン塔・中間部高さ蒸気と潜熱交換させまた中間部圧N2を 該仕事膨張蒸気として用いることにより、中間部圧の液体窒素を蒸発させること からなる請求の範囲第8項記載の方法。10. Furthermore, the latent heat is exchanged with the argon column and intermediate height steam, and the intermediate pressure N2 is increased. Evaporating liquid nitrogen at intermediate pressure by using it as the work-expanding vapor. 9. The method according to claim 8, comprising: 11.圧縮し清浄化し冷却した供給空気から高純度酸素製造するための分留装置 であって、 a)高圧精留塔 b)アルゴン蒸発塔 c)該精留塔頂部蒸気とアルゴン塔底部液体の間で潜熱交換させるための、HP 精留塔用の還留凝縮器 d)該還留凝縮器からの液体窒素の一部により還留される窒素除去塔 e)該供給空気の少量部分を液体空気に全縮させるためのN2除去搭再沸騰器 f)該供給高さよりも低いN2除去塔の液体サイドストリームをアルゴン塔の該 供給位置に輸送するための管g)液体酸素蒸発器 h)アルゴン塔およびN2除去塔の該液体底部生成物を該蒸発器に供給するため の管 i)該供給空気の主要部分をLOX蒸発器に供給するための管j)LOX蒸発器 から放出される少なくとも未蒸発部分の空気をHP精留器に輸送するための管 および k)N2除去塔およびHP精留塔の各中間部還流高さへの供給される2つの流れ に該液体生気を分割するための手段を備えることを特徴とする装置。11. Fractionation equipment for producing high purity oxygen from compressed, purified and cooled supply air And, a) High pressure rectification column b) Argon evaporation tower c) HP for latent heat exchange between the vapor at the top of the rectification column and the liquid at the bottom of the argon column; Reflux condenser for rectification column d) a nitrogen removal column refluxed by a portion of the liquid nitrogen from the reflux condenser; e) a N2 removal reboiler for condensing a small portion of the supply air to liquid air; f) Transfer the liquid side stream of the N2 removal column below the feed height to the argon column. tubes for transport to the supply location g) liquid oxygen evaporator h) for feeding the liquid bottom products of the argon column and the N2 removal column to the evaporator; tube i) tubes for supplying the main part of the feed air to the LOX evaporator; j) the LOX evaporator; a pipe for transporting at least the unevaporated portion of air discharged from the HP rectifier; and k) Two streams fed to each intermediate reflux height of the N2 removal column and HP rectification column. Apparatus characterized in that it comprises means for dividing said liquid vitality into two.
JP63502794A 1987-02-26 1988-02-25 Increased low energy high purity oxygen release pressure Pending JPH01503082A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/019,042 US4781739A (en) 1984-08-20 1987-02-26 Low energy high purity oxygen increased delivery pressure
US019,042 1987-02-26

Publications (1)

Publication Number Publication Date
JPH01503082A true JPH01503082A (en) 1989-10-19

Family

ID=21791128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63502794A Pending JPH01503082A (en) 1987-02-26 1988-02-25 Increased low energy high purity oxygen release pressure

Country Status (6)

Country Link
US (1) US4781739A (en)
EP (1) EP0306518B1 (en)
JP (1) JPH01503082A (en)
AT (1) ATE75841T1 (en)
DE (1) DE3870770D1 (en)
WO (1) WO1988006705A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936099A (en) * 1989-05-19 1990-06-26 Air Products And Chemicals, Inc. Air separation process for the production of oxygen-rich and nitrogen-rich products
FR2650378A1 (en) * 1989-07-28 1991-02-01 Air Liquide AIR DISTILLATION SYSTEM PRODUCING ARGON
US5049173A (en) * 1990-03-06 1991-09-17 Air Products And Chemicals, Inc. Production of ultra-high purity oxygen from cryogenic air separation plants
US5069699A (en) * 1990-09-20 1991-12-03 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers
US5231837A (en) * 1991-10-15 1993-08-03 Liquid Air Engineering Corporation Cryogenic distillation process for the production of oxygen and nitrogen
US5245832A (en) * 1992-04-20 1993-09-21 Praxair Technology, Inc. Triple column cryogenic rectification system
US5341646A (en) * 1993-07-15 1994-08-30 Air Products And Chemicals, Inc. Triple column distillation system for oxygen and pressurized nitrogen production
FR2739438B1 (en) * 1995-09-29 1997-10-24 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF ARGON BY CRYOGENIC DISTILLATION
FR2782544B1 (en) * 1998-08-19 2005-07-08 Air Liquide PUMP FOR A CRYOGENIC LIQUID AND PUMP GROUP AND DISTILLATION COLUMN EQUIPPED WITH SUCH A PUMP
DE10161584A1 (en) * 2001-12-14 2003-06-26 Linde Ag Device and method for generating gaseous oxygen under increased pressure
FR2946735B1 (en) * 2009-06-12 2012-07-13 Air Liquide APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION.
CN105865148B (en) * 2016-04-01 2019-06-04 上海启元空分技术发展股份有限公司 A method of efficiently producing high pure oxygen and High Purity Nitrogen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1922956B1 (en) * 1969-05-06 1970-11-26 Hoechst Ag Process for the production of argon-free oxygen by the rectification of air
DE2135235A1 (en) * 1971-07-14 1973-08-16 Balabaew PROCESS FOR AIR SEPARATION WITH EXTRACTION OF OXYGEN AND ARGON
SU756150A1 (en) * 1977-04-21 1980-08-15 Viktor P Belyakov Air separating method
DE2854508C2 (en) * 1978-12-16 1981-12-03 Linde Ag, 6200 Wiesbaden Method and device for the low-temperature decomposition of a gas mixture
US4433989A (en) * 1982-09-13 1984-02-28 Erickson Donald C Air separation with medium pressure enrichment
US4464191A (en) * 1982-09-29 1984-08-07 Erickson Donald C Cryogenic gas separation with liquid exchanging columns
US4578095A (en) * 1984-08-20 1986-03-25 Erickson Donald C Low energy high purity oxygen plus argon

Also Published As

Publication number Publication date
ATE75841T1 (en) 1992-05-15
WO1988006705A1 (en) 1988-09-07
DE3870770D1 (en) 1992-06-11
US4781739A (en) 1988-11-01
EP0306518B1 (en) 1992-05-06
EP0306518A4 (en) 1989-06-14
EP0306518A1 (en) 1989-03-15

Similar Documents

Publication Publication Date Title
JP3084682B2 (en) Efficient method for producing oxygen
US4796431A (en) Nitrogen partial expansion refrigeration for cryogenic air separation
JPH03505119A (en) Rectification column product liquid intermediate reflux for sub-ambient cascades
JP2836781B2 (en) Air separation method
US4769055A (en) Companded total condensation reboil cryogenic air separation
JP3556914B2 (en) Air separation method and air separation device using the same
JPS63279085A (en) Separation of air
JPH03505911A (en) Mid-height reflux ideal for multi-pressure air distillation
KR910004123B1 (en) Air seperation process with modified single distillation column
JPH0875349A (en) Air separation method for obtaining gaseous oxygen product at supply pressure
JPS62502701A (en) Increased argon recovery by air distillation
JPH11257845A (en) Production of oxygen using expander and low temperature compressor
JPH08233458A (en) Method and equipment for separating low-temperature air
JPH01503082A (en) Increased low energy high purity oxygen release pressure
JPH102664A (en) Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
JPH02501850A (en) Refrigeration by partial expansion of air for cryogenic air separation
US4704147A (en) Dual air pressure cycle to produce low purity oxygen
JPH01502446A (en) Compander Kinji LOXBOIL air distillation
JPH10185425A (en) Method for producing impure oxygen and pure nitrogen
JPH06257939A (en) Distilling method at low temperature of air
JPH11257843A (en) Pressure air separation method using waste expansion for compressing process flow
US4775399A (en) Air fractionation improvements for nitrogen production
JPH04227458A (en) Cryogenic air separating system for forming boosted product gas
JP3084683B2 (en) Cold distillation method of air using high temperature expander and low temperature expander
JP2000329456A (en) Method and device for separating air