JPH0150279B2 - - Google Patents

Info

Publication number
JPH0150279B2
JPH0150279B2 JP19500881A JP19500881A JPH0150279B2 JP H0150279 B2 JPH0150279 B2 JP H0150279B2 JP 19500881 A JP19500881 A JP 19500881A JP 19500881 A JP19500881 A JP 19500881A JP H0150279 B2 JPH0150279 B2 JP H0150279B2
Authority
JP
Japan
Prior art keywords
catalyst
liquid
hydrogen
liquid oil
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19500881A
Other languages
Japanese (ja)
Other versions
JPS5896685A (en
Inventor
Hiroshi Suzumura
Takafumi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19500881A priority Critical patent/JPS5896685A/en
Publication of JPS5896685A publication Critical patent/JPS5896685A/en
Publication of JPH0150279B2 publication Critical patent/JPH0150279B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は、触媒の存在下で炭化水素油類を水素
で処理することの改良法、更に詳しくは、本発明
は重質炭化水素油類を触媒の作用により、水素化
分解や水素化脱硫を行なう方法に関するものであ
る。重質油類の水素化処理法は経済的には好まし
い方法であるにも拘らず、触媒上にコークを生成
し、触媒層が閉塞するとか、生起する反応が著し
い発熱反応である場合に最適な反応温度を安定し
て維持することが困難である等の欠点を有してい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an improved method for treating hydrocarbon oils with hydrogen in the presence of a catalyst. It relates to methods of chemical decomposition and hydrodesulfurization. Although hydroprocessing of heavy oils is an economically preferable method, it is most suitable when coke is formed on the catalyst, clogging the catalyst layer, or when the reaction that occurs is extremely exothermic. However, it is difficult to maintain a stable reaction temperature.

エドウイン、エス、ジヨンソンは、米国特許
2987465において多量の固体粒子を充填した反応
器に上向きに液体とガスを並流に流して沸騰床を
形成させることにより、液体とガスを効果的に接
触させ、かつ、圧力損失および閉塞を低減させる
方法に関する発明を開示しているが、この方法で
は沸騰床を形成させるために、固体粒子を流動化
させるに必要な最低速度以上で液状油を流す必要
があり直径が1/16インチの触媒粒子を流動させ
るためには、層内の液空塔速度を2〜3cm/sec
以上にし、その液を常に循環しなければならな
い。また、炭化水素を水素添加する反応では水素
の空塔速度を液空塔速度以上少くとも1〜2倍以
上にする必要がある。このように沸騰床を用いる
この方法では、多量の液とガスを供給し循環する
ため、多大な動力を必要とする欠点があり、かつ
沸騰状態を安定に保つために、液体およびガスの
最適な流速範囲を選択し、維持しなければならな
い等運転操作も難しい欠点がある。
Edwin, S., Johnson, U.S. Patent
In 2987465, liquid and gas are flowed upward in parallel flow into a reactor filled with a large amount of solid particles to form an ebullated bed, thereby effectively bringing the liquid and gas into contact and reducing pressure loss and blockage. Discloses an invention relating to a method in which, in order to form an ebullated bed, liquid oil must be flowed at a velocity greater than the minimum velocity necessary to fluidize solid particles, and catalyst particles having a diameter of 1/16 inch are used. In order to flow, the liquid superficial velocity in the bed should be set to 2 to 3 cm/sec.
The liquid must be constantly circulated. Further, in the reaction of hydrogenating hydrocarbons, the superficial velocity of hydrogen needs to be at least 1 to 2 times higher than the liquid superficial velocity. This method using a boiling bed has the drawback of requiring a large amount of power to supply and circulate a large amount of liquid and gas. It also has the disadvantage of difficult operation, such as the need to select and maintain a flow rate range.

そのほかの方法として、球状の触媒を充填した
固定床型反応器を用いたプロセスも考えられてき
た。しかし、これらの球状触媒を充填した固定床
型反応器を本発明で取り扱う液状油の水素化処理
に適用すれば、固定床に付着堆積する沈積物によ
る固定床の目づまりが生じて圧力損失が増大し、
円滑な装置の運転に支障をきたし、実用上好まし
くない、また、固定床型反応器では、反応熱の除
去が困難で適正な反応温度を安定して維持するこ
とが難しい欠点がある。
As another method, a process using a fixed bed reactor packed with spherical catalysts has been considered. However, if a fixed bed reactor filled with these spherical catalysts is applied to the hydrogenation treatment of liquid oil treated in the present invention, the fixed bed will become clogged with deposits that adhere and accumulate on the fixed bed, resulting in increased pressure loss. death,
This impedes the smooth operation of the apparatus and is not preferred in practice.Furthermore, in a fixed bed reactor, it is difficult to remove the reaction heat and it is difficult to stably maintain an appropriate reaction temperature.

本発明者等は従来の水素化処理方法の前記のよ
うな欠点を、解決できる優れた水素化処理法を開
発するために鋭意研究を重ねた結果、蜂巣状又は
板状触媒の触媒面(触媒の長手方向)を液状油お
よび水素の流れに平行に配置してなる触媒層に液
状油と水素とを通すことにより、触媒上へのコー
クの生成による触媒層の閉塞や圧力損失の上昇が
なく、かつ温度制御が容易でコンパクトな装置で
水素化処理ができることを見出し、この知見に基
いて本発明をなすに致つたものである。すなわち
本発明は液状油を水素と触媒の作用により水素化
処理する方法において水素および液状油を、蜂巣
状又は板状触媒の触媒面が前記液状油および水素
の流れに平行に配置してなる触媒層に接触させる
ことを特徴とする水素化処理方法を提案するもの
である。
The present inventors have conducted extensive research in order to develop an excellent hydrotreating method that can solve the above-mentioned drawbacks of conventional hydrotreating methods. By passing liquid oil and hydrogen through the catalyst layer, which is arranged parallel to the flow of liquid oil and hydrogen (longitudinal direction), there is no clogging of the catalyst layer or increase in pressure loss due to coke formation on the catalyst. The inventors have discovered that the hydrogenation process can be carried out using a compact apparatus with easy temperature control, and based on this knowledge, the present invention has been completed. That is, the present invention provides a method for hydrotreating liquid oil by the action of hydrogen and a catalyst, in which hydrogen and liquid oil are treated using a catalyst in which the catalyst surface of a honeycomb-shaped or plate-shaped catalyst is arranged parallel to the flow of the liquid oil and hydrogen. This paper proposes a hydrogenation treatment method characterized by contacting the hydrogenation layer.

以下実施態様例にもとづいて本発明を説明す
る。第1図は本発明において用いられる反応器の
例示図である。第1図において、液状油と水素の
混合物は、蜂巣状又は板状の触媒をその触媒面
(長手方向)が液状油および水素の流れに平行に、
かつ鉛直多段に設置してなる触媒層1を内蔵した
反応器2に反応器2の上部の管路3より供給さ
れ、触媒層1において、液状油は水素と触媒の作
用により水素化分解され軽質油と炭化水素ガスが
生成する。水素および生成した軽質油および炭化
水素ガスは反応器2の下部の管路4より系外に排
出される。
The present invention will be explained below based on embodiment examples. FIG. 1 is an illustration of a reactor used in the present invention. In FIG. 1, a mixture of liquid oil and hydrogen is produced using a honeycomb-shaped or plate-shaped catalyst whose catalytic surface (longitudinal direction) is parallel to the flow of liquid oil and hydrogen.
The liquid oil is supplied from a pipe line 3 at the top of the reactor 2 to a reactor 2 containing catalyst layers 1 installed in vertically multi-stages. Oil and hydrocarbon gases are produced. Hydrogen and generated light oil and hydrocarbon gas are discharged from the system through a pipe 4 at the bottom of the reactor 2.

本発明において用いられる触媒は蜂巣状(断面
の形状は六角とか四角とか円とか特に限定されず
長手方向に成形した)触媒又は板状触媒であり、
その例を第2図および第3図に示す。第2図は蜂
巣状触媒の数例の斜視図であり、aは断面が六角
形、bは断面が正方形、cは断面が菱形、dは断
面が三角形の触媒である。
The catalyst used in the present invention is a honeycomb-shaped catalyst (the cross-sectional shape is not particularly limited to hexagonal, square, circular, etc., and is shaped in the longitudinal direction) or a plate-shaped catalyst,
Examples are shown in FIGS. 2 and 3. FIG. 2 is a perspective view of several examples of honeycomb-shaped catalysts, in which a is a hexagonal cross-section, b is a square cross-section, c is a rhombic cross-section, and d is a triangular cross-section.

第3図は板状触媒の1例の斜視図である。板状
触媒5は互に平行に多数組合せて一体化し、触媒
面を液体油およびガスの流れに平行に配置して使
用する。
FIG. 3 is a perspective view of an example of a plate-shaped catalyst. A large number of plate-shaped catalysts 5 are combined and integrated in parallel to each other, and used with the catalyst surfaces arranged parallel to the flow of liquid oil and gas.

触媒層上部及び下部での流体(液状油および水
素)の流入部および流出部での沈積物付着は、液
状油および液状油に含まれる固形分の濃度や組成
によつても異なるが、蜂巣状触媒の相当直径又は
板状触媒の板間隔によつて大きな影響を受ける。
本発明者らの実験によれば、蜂巣状触媒の好まし
い相当直径は断面形状が多角形とか円とかにかか
わらず液状油中の固形分濃度が低い場合は2〜10
mm程度、固形分濃度が高い場合は10〜30mm程度で
あつた。なお相当直径は以下のように定義され
る。
The deposition of deposits at the inflow and outflow sections of the fluid (liquid oil and hydrogen) at the top and bottom of the catalyst bed varies depending on the liquid oil and the concentration and composition of the solids contained in the liquid oil, but it may be honeycomb-like. It is greatly influenced by the equivalent diameter of the catalyst or the plate spacing of the plate-shaped catalyst.
According to experiments conducted by the present inventors, the preferred equivalent diameter of the honeycomb catalyst is 2 to 10 mm when the solid content concentration in the liquid oil is low, regardless of whether the cross-sectional shape is polygonal or circular.
mm, and when the solid content concentration was high, it was about 10 to 30 mm. Note that the equivalent diameter is defined as follows.

相当直径=流体流れの断面積/流体流れの断面積の外
周長×4 また、板状触媒の板と板との間の好ましい間隔
は、液状油中の固形分濃度が低い場合は5〜10
mm、固形分濃度が高い場合は10〜20mm程度であつ
た。実際の応用においては、触媒の相当直径又は
板間隔はできるだけ小さい程容積当りの触媒面積
が大きくとれるので有利であるがコークなど沈積
物による閉塞の可能性、触媒の製造の難しさ、さ
らには液状油およびガスの触媒との接触効率を考
慮して蜂巣状触媒では相当直径が2〜30mm好まし
くは2〜15mm、板状触媒では板間隔が5〜50mm好
ましくは5〜20mm程度が適当である。
Equivalent diameter = cross-sectional area of fluid flow / outer circumferential length of cross-sectional area of fluid flow × 4 In addition, the preferred spacing between the plates of the plate-shaped catalyst is 5 to 10 mm when the solid content concentration in the liquid oil is low.
mm, and when the solid content concentration was high, it was about 10 to 20 mm. In actual applications, the smaller the equivalent diameter of the catalyst or the plate spacing, the larger the catalyst area per volume, which is advantageous. Considering the contact efficiency of oil and gas with the catalyst, it is appropriate that the equivalent diameter of the honeycomb-shaped catalyst is 2 to 30 mm, preferably 2 to 15 mm, and for the plate-shaped catalyst, the plate spacing is 5 to 50 mm, preferably 5 to 20 mm.

前記のように本発明においては、蜂巣状触媒又
は板状触媒を用い、その触媒面を液状油およびガ
スの流れに平行に配置して用いるので、流体流れ
の衝突、拡大、縮小および曲がりなど圧力損失の
要因が少なく、従つて圧力損失が小さい利点があ
る。
As mentioned above, in the present invention, a honeycomb-shaped catalyst or a plate-shaped catalyst is used, and the catalyst surface is arranged parallel to the flow of liquid oil and gas. There are few loss factors, so there is an advantage that pressure loss is small.

次に圧力損失が小さいことから、装置に許容さ
れる圧力損失での流体線速度を、球状触媒充填方
式に比較し、かなり大きくとることができる。こ
れによつてガス(水素)流れは乱流を呈し、気相
中のガス拡散が活発になるため反応は促進され高
い水素化分解率が得られる。
Secondly, since the pressure loss is small, the fluid linear velocity at the pressure loss allowed by the device can be made considerably larger than in the spherical catalyst filling method. As a result, the gas (hydrogen) flow becomes turbulent, and gas diffusion in the gas phase becomes active, so that the reaction is promoted and a high hydrogenolysis rate is obtained.

水素化分解反応の大きな発熱に対処するための
一つの手段として反応器の種々の位置に段階的に
冷い水素気流を導入し、水素化分解反応を抑える
ことが考えられるが、本発明の場合、圧力損失が
小さいので液状油と水素の流体線速度を大きく変
えることができ、多量の水素を導入したり又、液
状油の供給量を抑えて、従来よりもより一層容易
に温度制御ができる。
One way to deal with the large heat generated by the hydrocracking reaction is to introduce a cold hydrogen stream stepwise into various positions in the reactor to suppress the hydrocracking reaction, but in the case of the present invention, Since the pressure loss is small, the fluid linear velocity of liquid oil and hydrogen can be greatly changed, and a large amount of hydrogen can be introduced, and the supply amount of liquid oil can be suppressed, making temperature control easier than before. .

また、液状油と水素の流れは触媒面に対して平
行であり、触媒面に対して沈積物(コーキング
物)を押しつける流体(液状油及び水素)流れが
ないため、たとえ沈積物が表面に付着した場合で
も流体流れの剪断力のため再飛散し、沈積物付着
の経時的増加は見られない。
In addition, the flow of liquid oil and hydrogen is parallel to the catalyst surface, and since there is no flow of fluid (liquid oil and hydrogen) that forces deposits (caulking) against the catalyst surface, even if deposits adhere to the surface, Even in such cases, the shearing force of the fluid flow causes re-scattering, and no increase in deposit adhesion is observed over time.

次に本発明で用いられる蜂巣状触媒(断面形状
が対辺長4mmの六角形触媒)を使用した実験例に
より本発明の効果をさらに詳しく説明する。第4
図は本実験例と比較例として7mmφ球状触媒を使
用した場合の触媒層の圧力損失と液空塔速度の関
係を示すグラフである。これら明らかなように本
実験例では球状触媒充填層と比較して圧力損失が
1/10以下にすぎず、層高1m当りの触媒層の許容
される圧力損失が100mm水柱の場合、本実験例で
は液空塔速度20cm/secが許容されるが、球状触
媒充填の場合は許容される液空塔速度は0.7cm/
secにすぎない。第5図は触媒層の圧力損失の経
時変化を示すグラフである。これから明らかなよ
うに比較例1の3mmφ球状触媒充填層と比較例2
の7mmφ球状触媒充填層は、運転時間とともに経
時的に圧力損失が増加するが、本実施例では増加
傾向は見られなかつた。第6図はLHSV(=供給
液状油量/反応器容積)=0.75(1/Hr)の一定
の下での液状油の液空塔速度と水素化分解率との
関係を示すグラフである。これから明らかなよう
に水素化分解率は液状油の液空塔速度によつてほ
とんど変化しない。
Next, the effects of the present invention will be explained in more detail using an experimental example using a honeycomb catalyst (a hexagonal catalyst having a cross-sectional shape of 4 mm across opposite sides) used in the present invention. Fourth
The figure is a graph showing the relationship between the pressure drop in the catalyst layer and the superficial liquid velocity when a 7 mmφ spherical catalyst was used as the present experimental example and as a comparative example. As is clear from the above, in this experimental example, the pressure loss is only 1/10 or less compared to the spherical catalyst packed bed, and when the allowable pressure loss of the catalyst layer per 1 m bed height is 100 mm water column, this experimental example In this case, a liquid superficial velocity of 20 cm/sec is allowed, but in the case of spherical catalyst packing, the allowable liquid superficial velocity is 0.7 cm/sec.
It is only sec. FIG. 5 is a graph showing the change in pressure loss of the catalyst layer over time. As is clear from this, the 3 mmφ spherical catalyst packed bed of Comparative Example 1 and the Comparative Example 2
Although the pressure loss of the 7 mmφ spherical catalyst packed bed increases over time with the operating time, no increasing trend was observed in this example. FIG. 6 is a graph showing the relationship between the superficial liquid velocity of liquid oil and the hydrocracking rate under a constant LHSV (=supplied liquid oil amount/reactor volume)=0.75 (1/Hr). As is clear from this, the hydrocracking rate hardly changes depending on the superficial liquid velocity of the liquid oil.

次に実施例によつて本発明をさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 第7図は本発明の水素化処理方法において外部
液体循環流のない場合のプロセスフローシートで
ある。第7図において供給液状油8と供給水素7
を蜂巣状触媒又は板状触媒を充填した反応器6に
注入し、反応器6内で圧力約150〜200気圧、温度
350℃〜450℃で水素化分解を行わせ、しかる後気
液混合物14を気液分離装置9へ送入し、ガス生
成物10、液状生成物11および水素循環流12
に分離し、水素循環流12は供給水素7と合流し
循環利用した。なお、触媒の活性成分としては。
CoMo−シリカアルミナ、NiMo−シリカアルミ
ナ、NiMo−P2O5−アルミナを用いた。その結果
コンパクトな装置で高い水素化分解率が得られ、
かつ低動力で安定した水素化分解を行うことがで
きた。
Example 1 FIG. 7 is a process flow sheet in the case of no external liquid circulation flow in the hydrotreating method of the present invention. In FIG. 7, supply liquid oil 8 and supply hydrogen 7
is injected into a reactor 6 filled with a honeycomb catalyst or a plate catalyst, and the pressure and temperature within the reactor 6 are increased to about 150 to 200 atmospheres.
Hydrocracking is carried out at 350° C. to 450° C., after which the gas-liquid mixture 14 is fed to a gas-liquid separator 9 to produce a gaseous product 10, a liquid product 11 and a hydrogen recycle stream 12.
The hydrogen circulation stream 12 was combined with the supplied hydrogen 7 and recycled. In addition, as an active component of the catalyst.
CoMo-silica alumina, NiMo-silica alumina, and NiMo-P 2 O 5 -alumina were used. As a result, a high hydrocracking rate can be obtained with a compact device,
Moreover, stable hydrogenolysis could be performed with low power.

実施例 2 第8図は本発明の水素化処理方法において外部
液循環流のある場合のプロセスフローシートであ
る。第8図において供給液状油8と供給水素7を
蜂巣状又は板状触媒を充填した反応器6に注入
し、反応器6内で圧力約150〜200気圧、温度350
℃〜450℃で水素化分解を行なわせ、しかる後気
液混合物14を気液分離層9へ送入し、ガス生成
物10、液状生成物11および水素循環流12お
よび外部液体循環流13に分離し、水素循環流1
2は供給水素7と合流し循環利用するとともに、
外部液体循環流13は供給水素7および供給液状
油8と合流し反応器6に導き、循環処理した。な
お、触媒の活性成分としてはCo、Mo−シリカア
ルミナ、Ni、Mo−シリカアルミナ、Ni、Mo−
P2O5−アルミナを用いた。その結果コンパクト
な装置で高い水素化分解率が得られ、かつ低動力
で安定した水素化分解を行うことができた。この
場合は、外部液体循環流13があるために、反応
器容積がコンパクトになるという利点があり、大
量の液状油を循環させることが可能であるが、圧
力損失及び外部液体循環流13の動力から考え
て、液状油の反応器内の空塔速度は50cm/sec以
下が妥当であり、水素の空塔速度も1m/sec以下
で用いるのが経済的である。
Example 2 FIG. 8 is a process flow sheet when there is an external liquid circulation flow in the hydrotreating method of the present invention. In FIG. 8, the supplied liquid oil 8 and the supplied hydrogen 7 are injected into a reactor 6 filled with a honeycomb-shaped or plate-shaped catalyst.
℃ to 450℃, after which the gas-liquid mixture 14 is passed to the gas-liquid separation layer 9, and the gas product 10, the liquid product 11 and the hydrogen recycle stream 12 and the external liquid recycle stream 13 are produced. Separate and hydrogen circulating stream 1
2 is combined with the supplied hydrogen 7 and used for circulation,
External liquid circulation stream 13 is combined with feed hydrogen 7 and feed liquid oil 8 and led to reactor 6 for circulation treatment. The active components of the catalyst include Co, Mo-silica alumina, Ni, Mo-silica alumina, Ni, Mo-
P 2 O 5 -alumina was used. As a result, a high hydrocracking rate was obtained with a compact device, and stable hydrocracking could be performed with low power. In this case, since there is the external liquid circulation flow 13, there is an advantage that the reactor volume becomes compact, and it is possible to circulate a large amount of liquid oil, but the pressure loss and the power of the external liquid circulation flow 13 are reduced. Considering this, it is appropriate that the superficial velocity of liquid oil in the reactor is 50 cm/sec or less, and it is economical to use hydrogen with a superficial velocity of 1 m/sec or less.

以上詳細に説明したように本発明は、圧力損失
が少く、経時的圧力損失の増加がなく、したがつ
て動力消費も少なくコンパクトな反応装置で高い
水素化分解率が得られ、又水素化反応の大きな発
熱を容易に制抑しうる水素化処理方法を提案する
ものであり、実用上非常に有用である。
As explained in detail above, the present invention has low pressure loss, no increase in pressure loss over time, low power consumption, high hydrogenolysis rate with a compact reactor, and hydrogenation reaction. The present invention proposes a hydrogenation treatment method that can easily suppress the large heat generated by the process, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において用いられる反応器の例
示図、第2図は蜂巣状触媒の斜視図、第3図は板
状触媒の斜視図、第4図は触媒層の圧力損失と液
空塔速度の関係を示すグラフ、第5図は触媒層の
圧力損失の経時変化を示すグラフ、第6図は液状
油の液空塔速度と水素化分解率との関係を示すグ
ラフ、第7図は外部液体循環流のない場合の水素
化処理方法のプロセスフローシート、第8図は外
部液体循環流のある場合の水素化処理方法のプロ
セスフローシート、である。 6…蜂巣状触媒又は板状触媒を充填した反応
器、7…供給水素、8…供給液状油、9…気液分
離装置、10…ガス状生成物、11…液状生成
物、12…水素循環流、13…外部液体循環流、
14…気液混合物。
Figure 1 is an illustrative diagram of the reactor used in the present invention, Figure 2 is a perspective view of a honeycomb catalyst, Figure 3 is a perspective view of a plate catalyst, and Figure 4 is a diagram showing the pressure loss of the catalyst layer and the liquid empty column. Graph showing the relationship between speed, Figure 5 is a graph showing the change in pressure loss of the catalyst bed over time, Figure 6 is a graph showing the relationship between the superficial liquid velocity of liquid oil and the hydrocracking rate, and Figure 7 is a graph showing the relationship between the surface velocity of liquid oil and the hydrocracking rate. FIG. 8 is a process flow sheet of a hydrotreating method without an external liquid circulating flow. FIG. 8 is a process flow sheet of a hydrotreating method with an external liquid circulating flow. 6... Reactor filled with honeycomb catalyst or plate-shaped catalyst, 7... Supply hydrogen, 8... Supply liquid oil, 9... Gas-liquid separation device, 10... Gaseous product, 11... Liquid product, 12... Hydrogen circulation Flow, 13...external liquid circulation flow,
14... Gas-liquid mixture.

Claims (1)

【特許請求の範囲】[Claims] 1 液状油を水素と触媒の作用により、水素化処
理する方法において、水素および液状油を、蜂巣
状又は板状触媒の触媒面が前記水素および液状油
の流れに平行に配置してなる触媒層に接触させる
ことを特徴とする水素化処理方法。
1. In a method of hydrotreating liquid oil by the action of hydrogen and a catalyst, hydrogen and liquid oil are treated in a catalyst layer in which the catalytic surface of a honeycomb-shaped or plate-shaped catalyst is arranged parallel to the flow of the hydrogen and liquid oil. A hydrogenation treatment method characterized by contacting with.
JP19500881A 1981-12-03 1981-12-03 Hydrogenation process Granted JPS5896685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19500881A JPS5896685A (en) 1981-12-03 1981-12-03 Hydrogenation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19500881A JPS5896685A (en) 1981-12-03 1981-12-03 Hydrogenation process

Publications (2)

Publication Number Publication Date
JPS5896685A JPS5896685A (en) 1983-06-08
JPH0150279B2 true JPH0150279B2 (en) 1989-10-27

Family

ID=16333993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19500881A Granted JPS5896685A (en) 1981-12-03 1981-12-03 Hydrogenation process

Country Status (1)

Country Link
JP (1) JPS5896685A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0102112B1 (en) * 1982-08-26 1988-12-14 Shell Internationale Researchmaatschappij B.V. Process for the hydrotreating of a heavy oil
JPS60150825A (en) * 1984-01-18 1985-08-08 Mitsubishi Heavy Ind Ltd Hydrocracking reaction apparatus
JP2012130849A (en) * 2010-12-21 2012-07-12 Kao Corp Honeycomb packing column shaped gas-liquid contact apparatus

Also Published As

Publication number Publication date
JPS5896685A (en) 1983-06-08

Similar Documents

Publication Publication Date Title
Dautzenberg et al. Process intensification using multifunctional reactors
US3809644A (en) Multiple stage hydrodesulfurization of residuum
EP0996499B1 (en) Countercurrent reactor
US3112256A (en) Distribution of vapor-liquid feeds in fixed-bed reactors
US2468508A (en) Conversion processes in the presence of a dense turbulent body of finely divided solid material
US3910834A (en) Moving bed reactor conversion process for particulate containing hydrocarbons such as shale oil and tar-sands oil
Nigam et al. Process intensification in trickle-bed reactors
US3197288A (en) Catalytic reactor
US3882015A (en) Countercurrent catalytic contact of a reactant stream in a multi-stage process and the apparatus therefor
JP2004537406A (en) Molded trilobal particles
US2358039A (en) Fluid catalyst process
WO2010017618A1 (en) Gas-phase hydrotreating of middle-distillates hydrocarbon feedstocks
US4705621A (en) Catalytic reactor system with crosscurrent liquid and gasflow
US3652451A (en) Fluid distribution for fluid-solids contacting chambers
JP4150426B2 (en) Counterflow reactor
US20230390723A1 (en) Resaturation of gas into a liquid feedstream
JP2005509083A5 (en)
RU2134286C1 (en) Crude hydrocarbon material hydrofining method (versions) and catalyst
US3249405A (en) Catalytic reforming apparatus
US3441498A (en) Hydrogenation method and apparatus
JP4628097B2 (en) Catalyst for conversion method
US3556989A (en) Hydrocarbon oil treatment process and apparatus therefor
Silveston et al. Periodic operation of three—Phase catalytic reactors
US2436340A (en) Conversion of hydrocarbons using moving catalysts
KR20200029501A (en) Apparatus for gas-solid fluidization systems with improved stripping