JPS5896685A - Hydrogenation process - Google Patents

Hydrogenation process

Info

Publication number
JPS5896685A
JPS5896685A JP19500881A JP19500881A JPS5896685A JP S5896685 A JPS5896685 A JP S5896685A JP 19500881 A JP19500881 A JP 19500881A JP 19500881 A JP19500881 A JP 19500881A JP S5896685 A JPS5896685 A JP S5896685A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
liquid
liquid oil
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19500881A
Other languages
Japanese (ja)
Other versions
JPH0150279B2 (en
Inventor
Hiroshi Suzumura
洋 鈴村
Takafumi Shimada
嶋田 隆文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19500881A priority Critical patent/JPS5896685A/en
Publication of JPS5896685A publication Critical patent/JPS5896685A/en
Publication of JPH0150279B2 publication Critical patent/JPH0150279B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To enable the hydrogenation with a compact apparatus, and to facilitate the temperature control, by passing a liquid oil and hydrogen through the catalyst layer composed of honeycomb or plate catalyst wherein the surface of the catalyst is arranged parallel to the flow of the liquid oil and hydrogen. CONSTITUTION:A mixture of a liquid oil and hydrogen is supplied through the line 3 to the reactor 2 containing a plurality of vertically stacked catalyst layers wherein the catalyst surface (longitudinal direction) of a honeycomb or plate catalyst is arranged parallel to the flow of the liquid oil and hydrogen. The liquid oil is hydrocracked to light oil and hydrocarbon gas at the catalyst layers 1 by the action of hydrogen and catalyst. The produced light oil and hydrocarbon gas are discharged from the system through the line 4 at the bottom of the reactor 2.

Description

【発明の詳細な説明】 素で処理することの改良法,更に詳しくは.本発明は重
質炭化水素油類を触媒の作用により。
[Detailed Description of the Invention] Improved method of processing with elements, more details. In the present invention, heavy hydrocarbon oils are treated by the action of a catalyst.

水素化分解や水素化脱硫を行なう方法に関するものであ
る。重質油類の水素化処理法は経済的には好ましい方法
であるにも拘らず,触媒上にコークを生成し,触媒層が
閉塞するとか,生起する反応が著しい発熱反応である場
合に喰適な反応温度を安定して維持することが困難でら
る等の欠点を有している。
It relates to a method of hydrocracking or hydrodesulfurization. Although the hydroprocessing of heavy oils is an economically preferable method, it produces coke on the catalyst, clogging the catalyst bed, and causes problems when the reaction is extremely exothermic. It has drawbacks such as difficulty in stably maintaining an appropriate reaction temperature.

エドウイン,エス,ジョンソ/は,米国特許29B74
65において多量の固体粒子を充填した反応器に上向き
に液体とガスを並流に流して沸騰床を形成させることに
より,液体とガスを効果的に接触させ,かつ、圧力損失
および閉塞を低減させる方法に関する発明を開示してい
るが。
Edwin, S., Johnson/U.S. Patent No. 29B74
At step 65, liquid and gas are flowed upward in parallel flow into a reactor filled with a large amount of solid particles to form an ebullated bed, thereby effectively bringing the liquid and gas into contact and reducing pressure loss and blockage. Although an invention relating to a method is disclosed.

この方法では沸騰床を形成させるために,固体粒子を流
動化させるに必要な最低速度以上で液状油を流す必要が
あり直径がl/16インチの触媒粒子を流動化させるた
めには,層内の液空塔速度を2〜3crrL/see以
上にし,その液を常に循環しなければならない。また、
炭化水素を水素添加する反応では水素の空塔速度を液空
塔速度以上少くとも1〜2倍以上にする必要がある。こ
のように沸騰床全相いるこの方法では。
In this method, in order to form an ebullated bed, it is necessary to flow the liquid oil at a rate higher than the minimum velocity necessary to fluidize the solid particles. The superficial liquid velocity of the liquid must be 2 to 3 crrL/see or higher, and the liquid must be constantly circulated. Also,
In the reaction of hydrogenating hydrocarbons, the superficial velocity of hydrogen must be at least 1 to 2 times higher than the liquid superficial velocity. In this method, all phases are in the boiling bed.

多量の液とガスを供給し循環するため,多大な動力を必
要とする欠点があり,かつ沸騰状態を安定に保つために
,液体およびガスの最適な流速範囲を選択し、維持しな
ければならない等運転操作も難しい欠点がある。
Since it supplies and circulates large amounts of liquid and gas, it has the disadvantage of requiring a large amount of power, and in order to maintain a stable boiling state, the optimum flow rate range of liquid and gas must be selected and maintained. The disadvantage is that it is difficult to operate.

そのほかの方法として1球状の触媒を充填した固定床型
反応器を用いたプロセスも考えられてきた。しかし、こ
れらの球状触媒を充填した固定床型反応器を本発明で取
り扱う液状油の水素化処理に適用すれば、固定床に付着
堆積する沈積物による固定床の目づまりが生じて圧力損
失が増大し2円滑な装置の運転に支障をきたし。
As another method, a process using a fixed bed reactor packed with a single spherical catalyst has been considered. However, if a fixed bed reactor filled with these spherical catalysts is applied to the hydrogenation treatment of liquid oil treated in the present invention, the fixed bed will become clogged with deposits that adhere and accumulate on the fixed bed, resulting in increased pressure loss. 2. It may interfere with the smooth operation of the equipment.

実用上好ましくない、また、固定床型反応装置では2反
応熱の除去が困難で適正な反応温度を安定して維持する
ことが難しい欠点がある。
This method is not preferred in practice, and also has the disadvantage that it is difficult to remove the heat of two reactions in a fixed bed reactor, making it difficult to stably maintain an appropriate reaction temperature.

本発明者等は従来の水素化処理方法の前記のような欠点
を、解決できる優れた水素化処理法を開発するために鋭
意研究を重ねた結果、峰巣状又は板状触媒の触媒面(触
媒の長手方向)を液状油および水素の流れに平行に配置
してなる触媒層に液状油と水素とを通すことにより、触
媒1−へのコークの生成による触媒層の閉塞や圧力損失
の上昇がなく、かつ温度制御が容易でコンパクトな装置
で水素化処理ができることを見出し、この知見に基いて
本発明をなすに致ったものである。すなわち本発明は液
状油を水素と触媒の作用により、水素化処理する方法に
おいて水素および液状油を、蜂巣状又は板状触媒の触媒
面が的記液状油および水素の流れに平行に配置してなる
触媒層に接触させることを特徴とする水素化処理方法を
提案するものである。
The present inventors have conducted extensive research in order to develop an excellent hydrotreating method that can solve the above-mentioned drawbacks of conventional hydrotreating methods. As a result, the catalytic surface ( By passing liquid oil and hydrogen through a catalyst layer in which the longitudinal direction of the catalyst is arranged parallel to the flow of liquid oil and hydrogen, it is possible to prevent blockage of the catalyst layer and increase in pressure loss due to the formation of coke on the catalyst 1-. The present inventors have discovered that the hydrogenation process can be carried out using a compact apparatus that is free from heat and temperature control and that the present invention is based on this knowledge. That is, the present invention provides a method for hydrotreating liquid oil by the action of hydrogen and a catalyst, in which the catalytic surface of a honeycomb-shaped or plate-shaped catalyst is arranged parallel to the flow of the liquid oil and hydrogen. This paper proposes a hydrogenation treatment method characterized by contacting with a catalyst layer.

以下実施態様例にもとづいて本発明を説明する。第1図
は本発明において用いられる反応器の例示図である。第
1図において、液状油と水素の混合物は、蜂巣状又は板
状の触媒をその触媒面(長手方向)が液状油および水素
の流れに平行に、かつ鉛直多段に設置してなる触媒層(
皿)を内蔵した反応器(2)に反応器(2)の上部の管
路(3)より供給され、触媒層(1)において、液状油
は水素と触媒の作用により水素化分解され軽質油と炭化
水素ガスが生成する。水素および生成した軽質油および
炭化水素ガスは反応器(2)の下部の管路(41より系
外に排出される。
The present invention will be explained below based on embodiment examples. FIG. 1 is an illustration of a reactor used in the present invention. In FIG. 1, a mixture of liquid oil and hydrogen is produced in a catalyst layer (a catalyst layer) formed by installing honeycomb-shaped or plate-shaped catalysts in multiple vertical stages with their catalytic surfaces (longitudinal direction) parallel to the flow of liquid oil and hydrogen.
The liquid oil is supplied from the pipe (3) at the top of the reactor (2) to the reactor (2), which has a built-in tray), and in the catalyst layer (1), the liquid oil is hydrocracked by the action of hydrogen and the catalyst to produce light oil. and hydrocarbon gases are produced. Hydrogen and generated light oil and hydrocarbon gas are discharged to the outside of the system through a pipe (41) at the bottom of the reactor (2).

本発明において用いられる触媒は蜂巣状(断面の形状は
六角とか四角とか円とか特に限定されず長手方向に成形
した)触媒又は板状触媒であり、その例を第2図および
第3図に示す。第2図は蜂巣状触媒の数例の斜視図であ
り、(a)は断面が六角形、(b)は断面が正方形、(
C)は断面が菱形、(d)は断面が三角形の触媒である
The catalyst used in the present invention is a honeycomb-shaped catalyst (the cross-sectional shape is not particularly limited to hexagonal, square, circular, etc., and is formed in the longitudinal direction) or a plate-shaped catalyst, examples of which are shown in FIGS. 2 and 3. . FIG. 2 is a perspective view of several examples of honeycomb-shaped catalysts, (a) has a hexagonal cross section, (b) has a square cross section, (
C) is a catalyst with a diamond-shaped cross section, and (d) is a catalyst with a triangular cross-section.

第3図は板状触媒の1例の斜視図である。板状触媒(5
)は互に平行に多数組合せて一体化し。
FIG. 3 is a perspective view of an example of a plate-shaped catalyst. Plate catalyst (5
) are combined in large numbers parallel to each other and integrated.

触媒面を液体油およびガスの流れに平行に配置して使用
する。
It is used with the catalyst surface parallel to the flow of liquid oil and gas.

触媒層上部及び下部での流体(液状油および水素)の流
入部および流出部での沈積物付着は。
Deposits are deposited at the inlet and outlet of fluids (liquid oil and hydrogen) at the top and bottom of the catalyst bed.

液状油および液状油に含まれる固形分の濃度や組成によ
っても異なるが、蜂果状触媒の相当直径又は板状触媒の
板間隔によって大きな影響を受・ける。本発明者らの実
験によれば、蜂巣状触媒の好ましい相当直径は断面形状
が多角形とか円とかにかかわらず液状油中の固形分濃度
が低い場合は2〜1(111111程度、固形分濃度が
高い場合はlO〜30龍程度であった。なお相当直径は
以下のように定義される。
Although it varies depending on the concentration and composition of the liquid oil and the solid content contained in the liquid oil, it is greatly influenced by the equivalent diameter of the bee-shaped catalyst or the spacing between the plates of the plate-shaped catalyst. According to experiments conducted by the present inventors, the preferred equivalent diameter of the honeycomb catalyst is 2 to 1 (approximately 111111 mm) when the solid content concentration in the liquid oil is low, regardless of whether the cross-sectional shape is polygonal or circular. When the diameter was high, it was about 10 to 30 dragons.The equivalent diameter is defined as follows.

流体流れの断面積の外周長 また、板状触媒の板と板との間の好ましい間隔は、液状
油中の固形分濃度が低い場合は5〜10朋、固形分濃度
が高い場合はlO〜2011程度であった。実際の応用
においては、触媒の相当直径又は板間隔はできるだけ小
さい程容積当りの触媒面積が大きくとれるので有利であ
るがコークなど沈積物による閉塞の可能性、触媒の製造
の難しさ、さらには液状油およびガスの触媒との接触効
率を考慮して蜂、巣状触媒では相当直径が2〜30闘好
ましくは2〜151m、板状触媒では板間隔が5〜50
關好ましくは5〜201m程度が適当である。
The outer circumference of the cross-sectional area of the fluid flow and the preferred spacing between the plates of the plate-shaped catalyst are 5 to 10 mm when the solids concentration in the liquid oil is low, and 10 to 10 mm when the solids concentration is high. It was around 2011. In actual applications, the smaller the equivalent diameter of the catalyst or the plate spacing, the larger the catalyst area per volume, which is advantageous. Considering the contact efficiency of oil and gas with the catalyst, the equivalent diameter for honeycomb catalysts is 2 to 30 m, preferably 2 to 151 m, and the plate spacing for plate catalysts is 5 to 50 m.
The appropriate length is preferably about 5 to 201 m.

前記のように本発明においては、蜂巣状触媒又は板状触
媒を用い、その触媒面を液状油およびガスの流れに平行
に配置して用いるので、流体流れの衝突、拡大、縮小お
よび曲がりなど圧力損失の要因が少なく、従って圧力損
失が小さい利点がある。
As mentioned above, in the present invention, a honeycomb-shaped catalyst or a plate-shaped catalyst is used, and the catalyst surface is arranged parallel to the flow of liquid oil and gas. There are few loss factors, so there is an advantage that pressure loss is small.

次に圧力損失が小さいこ、とから、装置に許容される圧
力損失での流体線速度を2球状触媒充填l置方式に比較
し、かな抄大きくとると左ができる。これによってガス
(水素)流れは乱流を呈し、気相中のガス拡散が活発と
なるため反応は促進され高い水素化分解率が得られる。
Next, since the pressure loss is small, the fluid linear velocity at the pressure loss allowed for the device is compared with that of the 2-spherical catalyst packing method, and the figure on the left is obtained by taking a larger value. As a result, the gas (hydrogen) flow becomes turbulent, and gas diffusion in the gas phase becomes active, so that the reaction is promoted and a high hydrogenolysis rate is obtained.

また水素化分解反応の大きな発熱に対処するための一つ
の手段として反応器の種々の位置に段階的に冷い水素気
流を導入し、水素化分解反応を抑えることが考えられる
が2本発明の場合。
In addition, one possible means to deal with the large heat generated by the hydrocracking reaction is to introduce a cold hydrogen stream stepwise into various positions of the reactor to suppress the hydrocracking reaction. case.

圧力損失が小さいので液状油と水素の流体線速度を大き
く変えることができ、多量の水素を導入した9又、液状
油の供給量を抑えて、従来よりもより一層容易に温度制
御ができる。
Since the pressure loss is small, the fluid linear velocity of the liquid oil and hydrogen can be greatly changed, and by introducing a large amount of hydrogen, the amount of liquid oil supplied can be suppressed, and the temperature can be controlled more easily than before.

また、液状油と水素の流れは触媒面に対して平行であり
、触媒面に対して沈積物(コーキング物)を押しつける
流体(液状油及び水素)流れがないため、たとえ沈積物
が表面に付着した場合でも流体流れの剪断I力のため再
飛散し、沈積物付着の経時的増加は見られない。
In addition, the flow of liquid oil and hydrogen is parallel to the catalyst surface, and since there is no flow of fluid (liquid oil and hydrogen) that forces deposits (caulking) against the catalyst surface, even if deposits adhere to the surface, Even in this case, the shear I force of the fluid flow causes re-scattering, and no increase in deposit adhesion is observed over time.

次に本発明で用いられる蜂巣状触媒(断面形状が対辺長
4 IIIの六角形触媒)を使用した実験例により本発
明の効果をさらに詳しく説明する。
Next, the effects of the present invention will be explained in more detail using an experimental example using a honeycomb catalyst (a hexagonal catalyst having a cross-sectional shape of 4Ⅲ length across opposite sides) used in the present invention.

第4図は本実験例と比較例として7 w yj球状触媒
を使用した場合の触媒層の圧力損失と液空塔速度の関係
を示すグラフである。これから明らかなように本実験例
は球状触媒充填層と比較して圧力損失が物取下にすぎず
1層高1m当りの0 触媒層の許容される圧力損失が100龍水柱の場合1本
実験例では液空塔速度20 crn/ seeが許容さ
れるが2球状触媒充填の場合は許容される液空塔速度は
1.7 cm / secにすぎない。第5図は触媒層
の圧力損失の経時変化を示すグラフである。これから明
らかなように比較例1の3朋ダ球状触媒充填層と比較例
2の7iIl$球状触媒充填層は、運転時間とともに経
時的に圧力損失が増加するが1本実施例では増加傾向は
見られなかった。第6図はLH8V(=供給液状油酸/
反応器容積)=o7s  (1/Hr)の一定の下での
液状油の液空塔速度と水素化分解率との関係を示すグラ
フである。これから明らかなように水素化分解率は液状
油の液空塔速度によってほとんど変化しない。
FIG. 4 is a graph showing the relationship between the pressure loss of the catalyst layer and the superficial liquid velocity when a 7 w yj spherical catalyst is used as the present experimental example and a comparative example. As is clear from this, in this experimental example, the pressure loss is only lower than that of the spherical catalyst packed bed, and one experiment is performed when the allowable pressure loss of the catalyst layer is 100 meters of water per 1 meter of height of one layer. In the example, a superficial liquid velocity of 20 crn/see is allowed, but in the case of two spherical catalyst packings, the superficial liquid velocity is only 1.7 cm/sec. FIG. 5 is a graph showing the change in pressure loss of the catalyst layer over time. As is clear from this, the pressure loss increases over time with the operating time in the 3-diameter spherical catalyst packed bed of Comparative Example 1 and the 7I1-diameter spherical catalyst packed bed in Comparative Example 2, but no increasing trend was observed in this example. I couldn't. Figure 6 shows LH8V (=supplied liquid oil acid/
It is a graph showing the relationship between the superficial liquid velocity of liquid oil and the hydrocracking rate under a constant condition of reactor volume)=o7s (1/Hr). As is clear from this, the hydrocracking rate hardly changes depending on the superficial liquid velocity of the liquid oil.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 第7図は本発明の水素化処理方法において外部液体循環
流のない場合のプロセスフローシートである。第7図に
おいて供給液状油(8)と供給水素(ゲ)を蜂果状触媒
又は板状触媒を充填した反応器(6)に注入し2反応器
(6)内で圧力約150〜200気圧、温度350°C
〜450 ’C!で水素化分解を行なわせ、しかる後気
液混合物Iを気液分離装置(9)へ送入し、ガス生成物
01.液状生成物αlおよび水素循環流0に分離し、水
素循環流Q2は供給水素(7)と合流し循環利用した。
Example 1 FIG. 7 is a process flow sheet in the case of no external liquid circulation flow in the hydrotreating method of the present invention. In Fig. 7, the supplied liquid oil (8) and the supplied hydrogen (GE) are injected into a reactor (6) filled with a bee-shaped catalyst or a plate-shaped catalyst, and the pressure in the two reactors (6) is approximately 150 to 200 atmospheres. , temperature 350°C
~450'C! After that, the gas-liquid mixture I is sent to the gas-liquid separator (9) to produce gas products 01. It was separated into a liquid product αl and a hydrogen circulation stream 0, and the hydrogen circulation stream Q2 was combined with the supplied hydrogen (7) and recycled.

なお。In addition.

触媒の活性成分としては、 CQMO−シリカアルミナ
、Ni、Mo−7リカアルミナ、N r、Mo  P 
20 s−アルミナを用いた。その結果コンパクトな装
置で高い水素化分解率が得られ、かつ低動力で安定した
水素化分解を行うことができた。
The active components of the catalyst include CQMO-silica alumina, Ni, Mo-7 lyca alumina, Nr, MoP
20s-alumina was used. As a result, a high hydrocracking rate was obtained with a compact device, and stable hydrocracking could be performed with low power.

実施例2 第8図は本発明の水素化処理方法において外部液循環流
のある場合のプロセス70−シートである。第8図にお
いて供給液状油(8)と供給水素(7)を蜂巣状触媒又
は板状触媒を充填した反応器(6)に注入し1反応器(
6)内で圧力約150〜200気圧、温度350℃〜4
50℃で水素化分解を行なわせ、しかる抜気液混合物α
勾を気液分離装置+i+へ送入し、ガス生成物01.液
状生成物0υおよび水素循環流O3および外部液体循環
流0に分離し、水素循環流O3は供給水素(7)と合流
し循環利用するとともに、外部液体循環流αjは供給水
素(7)および供給液状油(8)と合流し反応器(6)
に導き、循環処理した。なお、触媒の活性成分としては
Co、Mo−シリカアルミナ、Ni、Mo−シリカアル
ミナ、Ni、Mo−P2O5−アルミナを用いた。その
結果コンパクトな装置で高い水素化分解率が得られ、か
つ低動力で安定した水素化分解を行うことができた。こ
の場合は、外部液体循環流01mがあるために1反応器
容積がコンパクトになるという利点があり、大量の液状
油を循環させることが可能であるが、圧力損失及び外部
液体循環流αJの動力から考えて、液状油の反応器内の
空塔速度は5o cm / see以下が妥当であり、
水素の空塔速度も1 m / see以下で用いるのが
経済的である。
Example 2 FIG. 8 is a process 70-sheet in the case of external liquid circulation flow in the hydrotreating method of the present invention. In Fig. 8, supplied liquid oil (8) and supplied hydrogen (7) are injected into a reactor (6) filled with a honeycomb catalyst or a plate catalyst.
6) Pressure approximately 150 to 200 atm, temperature 350℃ to 4
Hydrogenolysis was carried out at 50°C, and the degassed liquid mixture α
The gaseous product 01. The liquid product 0υ is separated into a hydrogen circulating stream O3 and an external liquid circulating stream 0, and the hydrogen circulating stream O3 joins the supplied hydrogen (7) and is used for circulation, and the external liquid circulating flow αj is used as the supplied hydrogen (7) and the external liquid circulating stream 0. Combines with liquid oil (8) and reactor (6)
and circulated. Note that Co, Mo-silica alumina, Ni, Mo-silica alumina, Ni, Mo-P2O5-alumina were used as active components of the catalyst. As a result, a high hydrocracking rate was obtained with a compact device, and stable hydrocracking could be performed with low power. In this case, there is an advantage that the volume of one reactor is compact due to the external liquid circulation flow 01m, and it is possible to circulate a large amount of liquid oil, but the pressure loss and the power of the external liquid circulation flow αJ are Considering this, it is appropriate that the superficial velocity of liquid oil in the reactor is 5o cm/see or less,
It is economical to use hydrogen at a superficial velocity of 1 m/see or less.

以上詳細に説明したように本発明は、圧力損失が少く、
経時的圧力損失の増加がなく、シたかって動力消費も少
なくコンパクトな反応装置で高い水素化分解率が得られ
、又水素化反応の大きな発熱を容易に制抑しうる水素化
処理方法を提案するものであり、実用上非常に有用であ
る。
As explained in detail above, the present invention has low pressure loss and
We propose a hydroprocessing method that does not increase pressure loss over time, consumes little power, and can achieve a high hydrocracking rate with a compact reactor, and that can easily suppress the large heat generated by the hydrogenation reaction. This is very useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いられる反応器の例示図、第
2図は蜂巣状触媒の斜視図、第3図は板状触媒の斜視図
、第4図は触媒層の圧力損失と液空塔速度の関係を示す
グラフ、第5図は触媒層の圧力損失の経時変化を示すグ
ラフ、第6図は液状油の液空塔速度と水素化分解率との
関係を示すグラフ、第7図は外部液体循環流のナイ場合
の水素化処理方法のグロセスフローンート、第8図は外
部液体循環流のある場合の水応器、7・・・供給水素、
8・・・供給液状油、9・・・気液分離装置、10・・
・ガス状生成物、 II・・・液状生成物、 +2・・
水素循環流、13・・・外部液体循環流、14・・気液
混合物 第1図 第2図 (C)              (t)第3図 第4 図 杯(う己対i速崖 (愕/蔵ン 第5図 ら 拭駿nM  (H) 第す図 (夜Σ月r4戻(“/〕a)
Figure 1 is an illustrative diagram of the reactor used in the present invention, Figure 2 is a perspective view of a honeycomb catalyst, Figure 3 is a perspective view of a plate catalyst, and Figure 4 is a diagram showing the pressure loss of the catalyst layer and the liquid empty column. Graph showing the relationship between speed, Figure 5 is a graph showing the change in pressure loss of the catalyst bed over time, Figure 6 is a graph showing the relationship between the superficial liquid velocity of liquid oil and the hydrocracking rate, and Figure 7 is a graph showing the relationship between the surface velocity of liquid oil and the hydrocracking rate. The gross flow route of the hydrotreating method when there is no external liquid circulation flow, Figure 8 shows the water reactor when there is an external liquid circulation flow, 7...Supplied hydrogen,
8... Supply liquid oil, 9... Gas-liquid separation device, 10...
- Gaseous product, II...Liquid product, +2...
Hydrogen circulation flow, 13... External liquid circulation flow, 14... Gas-liquid mixture Figure 1 Figure 2 (C) (t) Figure 3 Figure 4 Figure 5 erase nM (H) Figure 5 (night Σ month r4 return (“/]a)

Claims (1)

【特許請求の範囲】[Claims] 液状油を水素と触媒の作用により、水素化処理する方法
において、水素および液状油を、蜂巣状又は板状触媒の
触媒面が前記水素および液状油の流れに平行に配置して
なる触媒層に接触させることを特徴とする水素化処理方
In a method of hydrotreating liquid oil by the action of hydrogen and a catalyst, hydrogen and liquid oil are applied to a catalyst layer in which the catalytic surface of a honeycomb-shaped or plate-shaped catalyst is arranged parallel to the flow of the hydrogen and liquid oil. A hydrogenation treatment method characterized by contacting
JP19500881A 1981-12-03 1981-12-03 Hydrogenation process Granted JPS5896685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19500881A JPS5896685A (en) 1981-12-03 1981-12-03 Hydrogenation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19500881A JPS5896685A (en) 1981-12-03 1981-12-03 Hydrogenation process

Publications (2)

Publication Number Publication Date
JPS5896685A true JPS5896685A (en) 1983-06-08
JPH0150279B2 JPH0150279B2 (en) 1989-10-27

Family

ID=16333993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19500881A Granted JPS5896685A (en) 1981-12-03 1981-12-03 Hydrogenation process

Country Status (1)

Country Link
JP (1) JPS5896685A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958090A (en) * 1982-08-26 1984-04-03 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Heavy oil hydrogenation
JPS60150825A (en) * 1984-01-18 1985-08-08 Mitsubishi Heavy Ind Ltd Hydrocracking reaction apparatus
JP2012130849A (en) * 2010-12-21 2012-07-12 Kao Corp Honeycomb packing column shaped gas-liquid contact apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958090A (en) * 1982-08-26 1984-04-03 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Heavy oil hydrogenation
JPS60150825A (en) * 1984-01-18 1985-08-08 Mitsubishi Heavy Ind Ltd Hydrocracking reaction apparatus
JP2012130849A (en) * 2010-12-21 2012-07-12 Kao Corp Honeycomb packing column shaped gas-liquid contact apparatus

Also Published As

Publication number Publication date
JPH0150279B2 (en) 1989-10-27

Similar Documents

Publication Publication Date Title
US20110083997A1 (en) Process for treating heavy oil
Stankiewicz Process intensification in in-line monolithic reactor
US8747656B2 (en) Process and apparatus employing microchannel process technology
US4478707A (en) Process for the hydrotreatment of hydrocarbons in an expanded or ebullated catalyst bed
EP0767000B1 (en) Catalytic process and apparatus for controlling reaction temperatures
US4937051A (en) Catalytic reactor with liquid recycle
Nigam et al. Process intensification in trickle-bed reactors
JPS62114643A (en) Reactor equipped with recycle liquid distributor and its use
US4755281A (en) Countercurrent process with froth control for treating heavy hydrocarbons
US20110070149A1 (en) Thin layer fixed bed reactor for the chemical treatment of a finely divided catalytic solid
CA2634025C (en) Dynamic settler
US3309305A (en) Fluidized hydrocracking of residual hydrocarbons
US20230390723A1 (en) Resaturation of gas into a liquid feedstream
US3785963A (en) Uniform solids withdrawal system
JPS60220124A (en) Gas treatment using moving bed
US2539263A (en) Contacting finely divided solids with gases
JPS5896685A (en) Hydrogenation process
US3556989A (en) Hydrocarbon oil treatment process and apparatus therefor
KR910006861B1 (en) Fluidized bed
JPH0547255B2 (en)
US3147207A (en) Liquid-solids contacting process and apparatus for the conversion of hydrocarbons
JPS58149988A (en) Hydrogenation method
US3674682A (en) Heavy oil conversion using fine particles
US3565589A (en) Upflow catalytic hydrotreating reactor
US6118038A (en) Arrangement and process for indirect heat exchange with high heat capacity fluid and simultaneous reaction