JPH01502595A - Coating method for long and narrow workpieces - Google Patents

Coating method for long and narrow workpieces

Info

Publication number
JPH01502595A
JPH01502595A JP50326987A JP50326987A JPH01502595A JP H01502595 A JPH01502595 A JP H01502595A JP 50326987 A JP50326987 A JP 50326987A JP 50326987 A JP50326987 A JP 50326987A JP H01502595 A JPH01502595 A JP H01502595A
Authority
JP
Japan
Prior art keywords
workpiece
coating
refractory powder
powder material
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50326987A
Other languages
Japanese (ja)
Inventor
ネチャエフ,ワレンチン ピョートロウィッチ
アハマトフ,ワレリー イワノウィッチ
ボブリヤコフ,ゲンナジー イワノウィッチ
ペペリン,ボリス アレクセーエウィッチ
Original Assignee
ナウチノ―イスレドワーチェルスキー、インスチツート、チェフノロギー、アフトモビルノイ、プロムイシュレンノスチ(ニイタフトプロム)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナウチノ―イスレドワーチェルスキー、インスチツート、チェフノロギー、アフトモビルノイ、プロムイシュレンノスチ(ニイタフトプロム) filed Critical ナウチノ―イスレドワーチェルスキー、インスチツート、チェフノロギー、アフトモビルノイ、プロムイシュレンノスチ(ニイタフトプロム)
Publication of JPH01502595A publication Critical patent/JPH01502595A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 細長い工作物の被覆法 発明の分野 本発明は材料の非a械的処理に関するものであり、特に細長い工作物の被覆法に 関するものである。[Detailed description of the invention] Coating method for long and narrow workpieces field of invention The present invention relates to the non-a-mechanical processing of materials, and in particular to the coating of elongated workpieces. It is related to

先行技術 被覆の施用法は公知である(A、V、アブラシン「自溶性硬質合金による耐摩性 強化法の研究」、ブリャンスキー輸送機研究所、1977、84〜93頁参照) 。prior art The methods of applying the coating are known (A, V, Abrasin ``Wear resistance with self-fusing hard alloys''). "Research on Strengthening Methods", Bryansky Transport Machine Research Institute, 1977, pp. 84-93) .

この公知の方法は、鋳鉄または錆から成る工作物に対してCr、B、w(クロム 、ホウ素、タングステン)などの炭化物を添加したN1−B−5i系にッケルー ホウ素−ケイ素)の自溶性合金粉末から成る被覆材料をフレーム溶射によって施 用する事によって実施される。This known method applies Cr, B, W (chromium) to workpieces made of cast iron or rust. , boron, tungsten) and other carbides. A coating material consisting of a self-fusing alloy powder of boron-silicon is applied by flame spraying. It is implemented by using

工作物に対する被覆材料の接着強度を増大するため。To increase the bond strength of the coating material to the workpiece.

工作物をバリウム@融成物などの@融lX、物の中に浸漬する事によって溶融温 度に加熱し、被覆材料の融点の少な゛ くとも500上の温度に加熱し、この温 度に1乃至3分間保持し、その後に工作物を塩浴から取り出して冷却する。The melting temperature can be lowered by immersing the workpiece in a substance such as barium melt. heating to a temperature of at least 500° above the melting point of the coating material; Hold for 1 to 3 minutes at a time, then remove the workpiece from the salt bath and allow to cool.

被覆を施用された工作物を溶融塩浴中に浸漬する工程は、被覆を溶融させ、噴霧 された状態と比較してその密度を増大させ、工作物に対するその接着度を増進す る。The process of immersing the coated workpiece in a molten salt bath melts the coating and increase its density compared to the state in which it was applied and improve its degree of adhesion to the workpiece. Ru.

常温まで工作物を冷却した後、その表面から塩のカワを除去する。被覆によりて 保護されていない工作物表面部分におけるカワの不完全な除去は、結晶量腐食を 生じる。After cooling the workpiece to room temperature, the salt residue is removed from its surface. By coating Incomplete removal of glue on unprotected workpiece surface areas can lead to crystalline corrosion. arise.

しかし前記の従来法を実施する際には、:〔作物の全長に沿って被覆を溶融させ るために工作物を固定する事が不可能である。特に、細長い工作物および複雑な 形状の工作物の固定が不可能である。However, when carrying out the conventional method described above: It is impossible to fix the workpiece due to the Especially for long, slender workpieces and complex It is impossible to fix the shape of the workpiece.

その結果、加熱工程中の工作物の曲げを生じる。逆に、空冷に際しての工作物の 不均一な熱損が工作物の曲げを生じ、これは特に複雑な形状の工作物について見 られる。This results in bending of the workpiece during the heating process. On the other hand, when cooling the workpiece with air, Uneven heat loss causes workpiece bending, which is especially true for workpieces with complex shapes. It will be done.

工作物の製造中および使用中の内部応力の発生もその変形と曲げを生じる。The development of internal stresses during the manufacture and use of the workpiece also results in its deformation and bending.

被覆材料の完全溶融のために被覆された工作物を溶融a!浴中に保持する時間を 決定する事が困難である。Melting the coated workpiece for complete melting of the coating material a! How long to keep in the bath It is difficult to decide.

溶融塩浴中の工作物の不十分な保持時間の結果、被覆材料の不完全な溶融を生じ 、すなわち被歯の厚さ金体を溶融する事ができず、これに対して過度の保持時間 は溶融被覆材料の一部を流れさせる傾向がある。Insufficient holding time of the workpiece in the molten salt bath results in incomplete melting of the coating material. , that is, it is impossible to melt the metal body due to the thickness of the toothed metal, and the holding time is too long. tends to cause some of the molten coating material to flow.

複雑な形状および可変断面を有する工作物の被覆工程は、溶融中およびその後の 空冷中の工作物の曲げを伴う。The coating process of workpieces with complex shapes and variable cross-sections requires Involves bending of the workpiece during air cooling.

小断面の工作物部分の加熱の故に、工作物の断面変動箇所が亀裂を生じ、被覆性 能に影響し、不均一な厚さの被覆を生じる。Due to the heating of the small cross-section part of the workpiece, cracks occur in the cross-sectional area of the workpiece, resulting in poor coverage. performance and result in uneven coating thickness.

溶融中に、被覆によって保護されていない工作物の箇所がS融塩浴に露呂される 事によりて腐食される。被覆によって保護されていない工作物面からの塩の除去 が不完全な場合、工作物の空冷後に、結晶量腐食が生じる。During melting, parts of the workpiece not protected by the coating are exposed to the S molten salt bath. It is corroded by certain things. Removal of salt from workpiece surfaces not protected by coatings If it is incomplete, crystal mass corrosion will occur after air cooling of the workpiece.

発明の概要 本発明は、!雑な形状の扇長い藩壁体工作物の変形を生じる事なく上質の@覆を 施用する事のできる箱長い工作物の被覆法を提供する。Summary of the invention This invention is! High-quality @covering without causing deformation of rough-shaped fan-long walls. Provides a method of coating long box workpieces that can be applied.

本発明の前記の目標は、工作物の表面に被覆材料を施用し、これを溶融するまで 加熱した後に冷却する粕長い工作物の被覆法において、′ItL覆の溶融の前に 工作物な耐火性粉末材料の中に配置し、この耐火性粉末材料をつき固めて工作物 を固定し、被覆を溶融した後に、被覆材料と工作物との間に介在拡散区域が形成 されるまで工作物はけ火性粉末材料中においてvLvtの材料が結晶するまで実 施される方法によって達成される。The aforementioned goal of the invention is to apply a coating material to the surface of a workpiece and to apply the coating material until melted. In the method of coating long workpieces by heating and then cooling, before melting the ItL coating, The workpiece is placed in a refractory powder material, and the refractory powder material is compacted to form the workpiece. After fixing and melting the coating, an intervening diffusion zone is formed between the coating material and the workpiece. The workpiece is kept in the ignitable powder material until the vLvt material crystallizes. This is achieved by the method used.

つき固められたけ火性粉末材料の中に工作物を収容する事により、工作物を最も 効果的に安価な手法で確実に固定する事ができる。工作物が中空部分、突起およ び凹部を有する場合でも、つき面められた′c!人性粉末材料と工作物の表面7 i:にcとの密接な係合の故に、任意材料で被覆された任意形状の部品において 耐火性粉末材料による工作物の確実な保持が保証される。By housing the workpiece in compacted scorch powder material, the workpiece can be It can be fixed reliably using an effective and inexpensive method. If the workpiece has hollow parts, protrusions or Even if the surface has a concave portion, it is faced facing 'c! Surface of artificial powder materials and workpieces 7 i: Due to the close engagement with c, in any shaped part coated with any material Reliable holding of the workpiece by the refractory powder material is ensured.

このように保持された工作物は、その被覆の融点まで加熱されても曲げられない 、また、工作物の製造中および使用中に発生する内部応力は工作物全体に均一に 分布されて、工作物の変形を生じない。A workpiece held in this way will not bend even when heated to the melting point of its coating. Also, the internal stress generated during the manufacture and use of the workpiece is uniform throughout the workpiece. distributed and does not cause deformation of the workpiece.

工作物をその被覆の融点に保持する事により、溶融した被覆が工作物表面と戻応 して、介在拡散区域を形成する。By holding the workpiece at the melting point of its coating, the molten coating reacts back with the workpiece surface. to form an intervening diffusion zone.

このような介在拡散区域の存在により、工作物表面に対する被覆の強力な接着が 保証され、また被覆材料と工作物との間の物理特性と機械特性の平滑な変動の故 に工作物の性能の向上が保証される。The presence of such intervening diffusion zones ensures strong adhesion of the coating to the workpiece surface. guaranteed and due to the smooth variation of physical and mechanical properties between the coating material and the workpiece. Improved performance of the workpiece is guaranteed.

本発明の方法を実施する際に、工作物をその被覆の融点に保持する時間が超過し ても被覆が流部る傾向はない。When carrying out the method of the invention, the time for holding the workpiece at the melting point of its coating is exceeded. There is no tendency for the coating to run off.

耐火性粉末材料が工作物の被覆と密接に係合して、被覆の流れを防止するからで ある。さらに他の利点は工作物そのものが曲げ作用を受けなり事である。This is because the refractory powder material closely engages the workpiece coating and prevents coating flow. be. A further advantage is that the workpiece itself is subject to bending effects.

被覆された工作物を耐火性粉末材料中で溶融した後に被覆材料が結晶するまで冷 却する事により、突起も孔もない均一厚さの被覆が得られる。The coated workpiece is melted in a refractory powder material and then cooled until the coating material crystallizes. A coating of uniform thickness with no protrusions or pores is obtained.

耐火性粉末材料から工作物を溶融した被覆と共に除去した後、被覆によって保護 されていない工作物部分の腐食は生じない。After removing the workpiece from the refractory powder material along with the molten coating, it is protected by the coating. Corrosion will not occur on parts of the workpiece that are not treated.

の混合物から成り、すなわち0.1〜0.70コ粒径の粉末60〜90重2%と 、O,O1〜0.05+++n粒径の粉末40−10を量%との混合物から成る 。consisting of a mixture of 60-90% by weight of powder of 0.1-0.70mm particle size and 2% by weight of , O, O, consisting of a mixture with 40-10% of powder of particle size from 1 to 0.05+++n .

前記の粒径範囲を有する耐火性粉末材料を使用すれば、この耐火性粉末材料を所 望の程度までつき固める事ができ、これにより被覆された工作物を加熱処理中に 確実に保持する事ができる。If a refractory powder material having the above particle size range is used, the refractory powder material can be It is possible to compact the coated workpiece to the desired degree, which makes it possible to harden the coated workpiece during heat treatment. It can be held securely.

耐火性粉末材料中に0.1〜0.7no粒径の粒子が60重量%以下存在すれば 、容器の容積中の耐火性粉末材料の均一なつき置めが困難になる。If particles with a particle size of 0.1 to 0.7no are present in the refractory powder material in an amount of 60% by weight or less, , it becomes difficult to uniformly deposit the refractory powder material in the volume of the container.

逆に、この粒径範囲の粒子が90重量%以上存在すれば。Conversely, if 90% by weight or more of particles in this particle size range are present.

溶融工程前に工作物の確実な保持が困難になる。It becomes difficult to securely hold the workpiece before the melting process.

0.1nm以下の粒径の粒子が60〜90重景%存在すれば、粒子が相互に固着 する傾向により容器中の耐火性粉末材料の均一なつき固めが困難になる。If 60 to 90 percent of particles with a particle size of 0.1 nm or less exist, the particles will stick to each other. This tendency makes uniform compaction of the refractory powder material in the container difficult.

反対に0.7mm以上の粒径の粒子が60乃至90重党%存在すれば、容器中の 工作物の保持が不確実となり、さらに被覆の厚さが不均一となり過度の表面粗さ を生じ、追加的機械加工を必要とする。On the other hand, if particles with a particle size of 0.7 mm or more are present at 60 to 90 percent, the concentration of particles in the container is Unreliable workpiece holding, uneven coating thickness and excessive surface roughness and requires additional machining.

0.01〜0.050nの粒径の粒子が10重量%以下存在すれば、容器容積中 の耐火性粉末材料のつき固めが不確実になる。If 10% by weight or less of particles with a particle size of 0.01 to 0.050n are present in the container volume, The compaction of refractory powder materials becomes uncertain.

大粒径粒子間の一2111!率は小粒径粒子間の空隙率よりも大だからである。12111 between large particles! This is because the porosity is larger than the porosity between small-sized particles.

0、O1〜0.0515mの粒径の粒子が40重量%以上存在すれば。If 40% by weight or more of particles having a particle size of 0.0, O1 to 0.0515 m are present.

これらの粒子が自発的に相互接着する傾向の故にこの材料の均一なつき固めが困 難になる。Uniform compaction of this material is difficult due to the tendency of these particles to spontaneously adhere to each other. It becomes difficult.

0、O5nm以上の粒子を40〜10重量%使用すれば、大粒子の間隙の一部が 小粒子によって充填されないので、過度の多孔度の故に適度のつき固めが困難に なる。If 40 to 10% by weight of particles with a diameter of 0.0 and 5 nm or more is used, some of the gaps between the large particles will be Excessive porosity makes proper compaction difficult as it is not filled with small particles. Become.

0.01am以下の粒子を40〜10重量%使用すれば、耐火性粉末材料は均一 にフき圓められる能力を失い1粒子が自発的に相互に固着し、また所望の粒径間 係を有する混合物配合を保持する事が困難になる。°これは、このような小粒径 の粒子がダストとして懸濁状態をとる傾向がある事によりて説明される。If 40 to 10% by weight of particles of 0.01 am or less are used, the refractory powder material will be uniform. One particle loses its ability to be rounded by the other particles, and particles spontaneously stick to each other, and the desired particle size It becomes difficult to maintain a mixture formulation with ° This is because such small particle size This is explained by the tendency of the particles to become suspended as dust.

望ましくは、耐火性粉末材料としてシリカ砂、粉末シャモットおよびジルコニウ ムコンセントレートな含むグループの材料を使用する。Preferably, silica sand, powdered chamotte and zirconium are used as refractory powder materials. Use materials from concentrated groups.

前記の材料は天然の産物であり、工業において多量に使用され、安価であり、高 い耐熱性を有する。The above materials are natural products, used in large quantities in industry, cheap and expensive. It has good heat resistance.

さらにこれらの材料は反復使用に適している。またこれらの粉末の自由流れ特性 は閉鎖スペース中での高い初密度を生じ、これは被覆を溶融させる際に工作物を これらの材料の中に確実に保持する事を可能にする。Furthermore, these materials are suitable for repeated use. Also the free flow properties of these powders results in a high initial density in the enclosed space, which causes the workpiece to melt when melting the coating. This allows for secure retention within these materials.

好ましくは、3火性粉末材料は1.65〜2−8 g / c m ’の密度ま でつき固められる。Preferably, the 3 pyrophoric powder material has a density of 1.65 to 2-8 g/cm'. It can be hardened.

この密度II囲回内材料つ4!:圓めは、シリカ砂、粉末シャモットおよびジル コニウムコンセントレートなどの材料グループが工作物を確実に保持するために i&週なii!囲である。This density II intraperitoneal material 4! : Enme is silica sand, powdered chamotte and gil To ensure that material groups such as Conium Concentrate hold the workpiece i & week ii! It is surrounded.

1.65〜2.8g / c m 3の密度以下のつき固φの結果として、工作 物の保持が不確実になる。さらに被覆を溶融するまで工作物が曲がる傾向が増大 し、また耐火性粉末材料は被覆材料の流れを確実に防止する能力を失う。As a result of the hardness φ below the density of 1.65 to 2.8 g/c m3, the machining Holding things becomes uncertain. Furthermore, the tendency of the workpiece to bend increases until the coating is melted. However, the refractory powder material also loses its ability to reliably prevent the flow of coating material.

逆に2.8g/cm3以上の密度までのつき固めは実施が困難であり、過度のエ ネルギー消費を伴う。On the other hand, compaction to a density of 2.8 g/cm3 or higher is difficult to implement, and excessive Involves energy consumption.

前記以外の耐火性粉末材料を使用する場合には、好ましい密度範囲が相違する事 があり得る。When using refractory powder materials other than those listed above, the preferred density range may differ. is possible.

菫宜しくは、耐火性粉末材料材料は6〜8Hzの周波数の振動作用によフてつき 固められる。For your information, the refractory powder material is resistant to fusing due to the action of vibration at a frequency of 6 to 8 Hz. It can be solidified.

耐火性粉末材料をn記のグループから選ぶなら、この周波数範囲内の振動作用に よるつき固めによって被覆された工作物を確実に保持する事が可能である。If a refractory powder material is selected from the group n, it is suitable for vibrational action within this frequency range. It is possible to securely hold the coated workpiece by twisting and compacting.

6Hz以下の周波数の振動作用による耐火性粉末材料のつき固めは効率が低い。Compaction of refractory powder materials by vibration action with frequencies below 6 Hz has low efficiency.

8Hz以上の周波数によるつき固めは、耐火性粉末材料の内部において機械的振 動が減衰する傾向の故につき固め効率を低下させる。その結果、つき固め工程を 減速させ、耐火性粉末材料が′#LaF工作物を確実に保持する能力を低下させ る。Compacting with frequencies above 8 Hz involves mechanical shaking inside the refractory powder material. This reduces consolidation efficiency because of the tendency for the motion to dampen. As a result, the tamping process deceleration and reduce the ability of the refractory powder material to securely hold the LaF workpiece. Ru.

前記の説明から明かなように1本発明による細長い工作物上の被覆形成法は、複 雑な形状の工作物、特に粕長い工作物の上に上質の被覆を形成させる事ができる 。As is clear from the above description, the method of forming a coating on an elongated workpiece according to the present invention can be applied in multiple ways. A high-quality coating can be formed on rough-shaped workpieces, especially workpieces with long grains. .

本発明の方法を実施する際に、工作物は曲げ変形を受けない、この事は特に粕長 い工作物および壁体工作物に関して特に重要である。所要厚さの被覆が得られ、 これは@械的後処理をわずかしか必要としない、被覆材料と工作物材料との接着 強さは、実質的にアルミニウム工作物の破断強さに等しい。When carrying out the method of the invention, the workpiece is not subjected to bending deformations, which is particularly important for the grain length. This is particularly important with respect to small workpieces and wall workpieces. A coating of the required thickness is obtained, This allows for the bonding of coating material and workpiece material with only a small amount of mechanical post-treatment required. The strength is substantially equal to the breaking strength of an aluminum workpiece.

本発明の方法は複雑な装置を使用する事なく、わずかの材料を用いて容易に実施 する事ができる。The method of the present invention can be easily carried out without the use of complex equipment and using only a few materials. I can do that.

図面の簡単な説明 以下2本発明を図面に示す実施例について詳細に説明する1図面は被覆された工 作物を収容し耐火性粉末材料を充填さ九た容器をしめす。Brief description of the drawing The following two drawings will explain in detail the embodiments of the present invention shown in the drawings. A container containing a crop and filled with a refractory powder material is shown.

本発“明の最良の実施態様 粕長い工作物上に被覆を得る方法を下記においてV!単にr本発明の方法」と呼 ぶ。BEST MODE FOR CARRYING OUT THE INVENTION A method for obtaining a coating on a long workpiece is described below. Simply referred to as ``method of the invention''. Bu.

本発明の方法は下記のように実施される。The method of the invention is carried out as follows.

細長い工作物、nにその修正される表面から酸化物を除去しまた所望の表面粗さ を得て被覆と表面との接合状態を改良するように5表面を彼覆施月に対して@械 的に準備する。Removal of oxides from the surface of the elongated workpiece, which is to be modified, and the desired surface roughness The 5th surface is coated with the machine to improve the bonding state between the coating and the surface. Prepare accordingly.

その後、工作物を任意公知の適当構造の回転手段(図示されず)に取り付け、所 望の厚さと形状の被覆2の材料を工作物に対して業界公知のフレーム溶射などの 方法で施用する。Thereafter, the workpiece is mounted on any known rotating means (not shown) of suitable construction, and Coating 2 material of desired thickness and shape is applied to the workpiece using flame spraying method known in the industry. Apply by method.

つぎに、この被覆2を施用された工作物1をカップ状容器3の中に、その長手方 軸線3 aと整列してその底部が容器3の底部の内側面から一定距離にあり工作 物1の外側面も容63の内側面から離間されるように酉装置する。Next, the workpiece 1 coated with this coating 2 is placed in a cup-shaped container 3 along its longitudinal direction. The machine is aligned with the axis 3a and its bottom is a certain distance from the inner surface of the bottom of the container 3. The outer surface of the object 1 is also spaced apart from the inner surface of the container 63.

工作物1の外側面と容器3の壁体の内側面との間のスペースまたは間隙は耐火性 粉末材料4によって充填され。The space or gap between the outer surface of the workpiece 1 and the inner surface of the wall of the container 3 is fireproof. Filled with powder material 4.

この耐火性粉末材料の一部は予め工作物1を保持するために容器3の底部に注入 されている。A portion of this refractory powder material is previously poured into the bottom of the container 3 to hold the workpiece 1. has been done.

この材料4は工作物1を保持するようにつき固められる。This material 4 is compacted to hold the workpiece 1.

材料4によって内部に工作物1を保持された容器3は、適当な任意公知構造の加 熱炉(図示されず)の中にIE置される。容器3は誘導型ヒータなと他の手段で 加熱する事ができる。The container 3, with the workpiece 1 held therein by the material 4, can be constructed using any suitable known construction. The IE is placed in a thermal furnace (not shown). Container 3 may be heated by an induction heater or other means. It can be heated.

容483.被覆2を備えた工作物1および材料4が、加熱炉の中で被覆2の材料 が溶融するまで加熱される。483. The workpiece 1 with the coating 2 and the material 4 are heated in a heating furnace with the material of the coating 2. is heated until it melts.

工作物1は、被覆2の材料と工作物51との間に公布拡散区域が形成されるまで 被覆溶融温度に保持される。保持時間は実験的に決定される。The workpiece 1 is heated until a promulgated diffusion area is formed between the material of the coating 2 and the workpiece 51. The coating is held at melting temperature. Retention times are determined experimentally.

拡散区域は、被覆2の材料と工作物1の材料との向流拡散または相互拡散によっ てP/成され、これらの材料の特性の中間的物理特性または機械特性を有する介 在層を成す、この介在区域は被覆2と工作物1との高接着強度を保証し、工作物 の長寿命を生じる。The diffusion zone is formed by countercurrent diffusion or interdiffusion between the material of coating 2 and the material of workpiece 1. Intermediates made of P/P and having physical or mechanical properties intermediate to those of these materials. This intervening area, which forms a layer, ensures a high bond strength between the coating 2 and the workpiece 1, and the workpiece Produces a long service life.

容器3と工作物および材料4を前記溶融温度に保持した後、被覆2の素材が結晶 するまで冷却する。After holding the container 3, workpiece and material 4 at the melting temperature, the material of the coating 2 crystallizes. Cool until cool.

このようにして工作物1に施用された被覆の形状が保持される。In this way the shape of the coating applied to the workpiece 1 is maintained.

′:4;温まで冷却した後、工作物1を容器3から取り出し、同時に容器3をひ っくり返す事によって材料4を容器内部から除去する。': 4; After cooling to room temperature, take out the workpiece 1 from the container 3, and at the same time heat the container 3. Material 4 is removed from the inside of the container by turning it over.

つぎに工作物1を所望の寸法まで機械加工する。The workpiece 1 is then machined to the desired dimensions.

前記の工程を下記の実施例について説明する。The above steps will be explained with reference to the following examples.

実施例1 工作物、この場合には高強度鋳鉄から成るカム軸を前記のように被覆施用に対し て準備し、 「コル上241合金の被FIt2をフレーム溶射によって施用する 。Example 1 The workpiece, in this case a camshaft made of high-strength cast iron, is coated as described above. Prepare the material by flame spraying and apply FIt2 of 241 alloy on the top of the column by flame spraying. .

つぎにカム軸1を容器3の中に配置し、この容器に対して、相異なる粒径の2部 分から成る混合物、すなわち粒径0.2nmの粉末60重量%と、粒径0−01 mmの粉末40!立%とから成る混合物としてのシリカ砂4を採入する。Next, the camshaft 1 is placed in the container 3, and two portions of different particle sizes are added to the container. a mixture consisting of 60% by weight of powder with particle size 0.2 nm and particle size 0-01 40 mm of powder! Silica sand 4 is introduced as a mixture consisting of

このシリカ砂を6Hz の周波数の゛振動作用によって1.65g / CI! ’の密度までつき固める。This silica sand is reduced to 1.65g/CI! by the vibration action at a frequency of 6Hz. Firm it to a density of '.

つき固められたシリカ砂4によフて保持されたカム軸1を取容した容器3を炉の 中に酉装置し、被覆2が溶融するまで加熱する。The container 3 containing the camshaft 1 held by the compacted silica sand 4 is placed in the furnace. Place in a pot and heat until coating 2 melts.

つぎにカム軸1を1100℃の溶融温度に保持した後、前記のように被覆材料が 結晶するまで冷却する。Next, after holding the camshaft 1 at a melting temperature of 1100°C, the coating material is applied as described above. Cool until crystallized.

常温まで冷却した後にカム軸1を容?r=3から取り呂し。After cooling to room temperature, insert camshaft 1? Start from r=3.

最終的a!械加工を加える。Final a! Add machining.

実施例2 高強度鋳鉄から成るカム軸1に対して前記のように被つぎにこの容器の中に耐火 性粉末材料4を装入する。Example 2 The camshaft 1 made of high-strength cast iron is then encased in a fireproof container as described above. The powdered material 4 is charged.

この場合、シリカ砂は粉末シャモット状の添剤を含み、また相異なる粒径の2部 分の混合物、すなわち0.11粒径の粉末80重?:%と、0 、03mm粒径 の粉末20重量%の混合物から成る。この討入性粉末材料4に対して周波数7H zの振動作用を加えて密度1−8g/cm’までつき固める。In this case, the silica sand contains an additive in the form of powdered chamotte and also contains two parts of different particle sizes. A mixture of minutes, i.e. 80 weight powder of 0.11 particle size? :%, 0, 03mm particle size It consists of a mixture of 20% by weight of powder. Frequency 7H for this intrusive powder material 4 Apply z vibration action and compact to a density of 1-8 g/cm'.

被′F!i2を施用されたカム軸1を炉の中で被覆2が溶融するまで訃熱し、1 100℃の温度に保持した後、被覆2が結晶するまで冷却する。Covered 'F! The camshaft 1 to which i2 has been applied is heated in a furnace until the coating 2 melts. After maintaining the temperature at 100° C., it is cooled until the coating 2 crystallizes.

常温まで冷却した後、このカムr!1を容器3から取り出してt!A械加工する 。After cooling to room temperature, this cam r! Take out 1 from container 3 and t! A Machining .

実施例3 Wt Fi2を施用された高強度鋳鉄から成るカムtillを前記のように容器 3の中に配置する。Example 3 A cam still made of high-strength cast iron coated with Wt Fi2 is placed in a container as described above. Place it in 3.

この容器3の中に耐火性粉末材料4を装入し、カム軸1を容器3の内部において 固定する。この材料4はジルコニウムコンセントレートであって、相異なる粒径 の2部分の混合物、すなわち0.7!ln粒径の粉末90重量%と0.05+m の粉末10重量%との混合物から成る。A refractory powder material 4 is charged into the container 3, and the camshaft 1 is placed inside the container 3. Fix it. This material 4 is a zirconium concentrate with different particle sizes. A mixture of two parts, i.e. 0.7! 90% by weight of powder with ln particle size and 0.05+m 10% by weight of powder.

8Hzの振動周波数の振動作用を加えてこのジル−ニウムコンセントレートを2 .8g/cm’の密度までつき固めた後、被覆2の材料を炉の中で溶融し、炉の 中で1100℃国@調査報告This zir-nium concentrate was heated to 2 .. After compacting to a density of 8 g/cm', the material of Coating 2 is melted in a furnace. 1100℃ country @survey report

Claims (5)

【特許請求の範囲】[Claims] 1.工作物(1)の表面に被覆材料(2)を施用し、これを溶融するまで加熱し た後に冷却する細長い工作物の被覆法において、被覆(2)の溶融の前に工作物 (1)を耐火性粉末材料(4)の中に配置し、この耐火性粉末材料(4)をつき 固めて工作物(1)を固定し、被覆(2)を溶融した後に、被覆(2)の材料と 工作物(1)との間に介在拡散区域が形成されるまで工作物(1)を被覆(2) の溶融温度に保持し、また耐火性粉末材料(4)の冷却は被覆(2)の材料が結 晶するまで実施される事を特徴とする細長い工作物の被覆法。1. The coating material (2) is applied to the surface of the workpiece (1) and heated until it melts. In the method of coating elongated workpieces in which the workpiece is cooled after coating (2), the workpiece is (1) is placed in the refractory powder material (4), and the refractory powder material (4) is placed in the refractory powder material (4). After hardening and fixing the workpiece (1) and melting the coating (2), the material of the coating (2) and Covering the workpiece (1) (2) until an intervening diffusion zone is formed between the workpiece (1) The refractory powder material (4) is cooled until the material of the coating (2) condenses. A coating method for long and narrow workpieces that is characterized by being carried out until crystallization occurs. 2.耐火性粉末材料は相異なる粒径の2部分の混合物、すなわち0.1乃至0. 7mmの粒径の粉末60乃至90重量2%と、0.01乃至0.05mmの粒径 の粉末40乃至10重量%との混合物として使用される事を特徴とする請求項1 に記載の方法。2. The refractory powder material is a mixture of two parts with different particle sizes, ie from 0.1 to 0. 2% by weight of powder of 7mm particle size and 0.01-0.05mm particle size Claim 1, characterized in that it is used as a mixture with 40 to 10% by weight of a powder of The method described in. 3.耐火性粉末材料はシリカ砂、粉末シャモット、およびジルコニウムコンセン トレートから成るグループから選定された材料である事を特徴とする請求項1に 記載の方法。3. Refractory powder materials include silica sand, powdered chamotte, and zirconium condensate Claim 1 characterized in that the material is selected from the group consisting of Method described. 4.耐火性粉末材料は1.65乃至2.8g/cm3の密度までつき固められる 事を特徴とする請求項1に記載の方法。4. The refractory powder material is compacted to a density of 1.65 to 2.8 g/cm3. The method according to claim 1, characterized in that: 5.耐火性粉末材料は6乃至8Hzの周波数の振動作用でつき固められる事を特 徴とする請求項3に記載の方法。5. The refractory powder material is specially compacted by vibration action at a frequency of 6 to 8 Hz. 4. The method according to claim 3, wherein the method comprises:
JP50326987A 1987-03-11 1987-03-11 Coating method for long and narrow workpieces Pending JPH01502595A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1987/000028 WO1988007094A1 (en) 1987-03-11 1987-03-11 Method for obtaining coatings on parts

Publications (1)

Publication Number Publication Date
JPH01502595A true JPH01502595A (en) 1989-09-07

Family

ID=21617084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50326987A Pending JPH01502595A (en) 1987-03-11 1987-03-11 Coating method for long and narrow workpieces

Country Status (4)

Country Link
EP (1) EP0304488A4 (en)
JP (1) JPH01502595A (en)
BR (1) BR8707695A (en)
WO (1) WO1988007094A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520149B4 (en) * 1995-06-01 2010-03-04 Hilti Aktiengesellschaft Apparatus for manufacturing, method for producing and using a coating on a component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991195A (en) * 1960-02-11 1961-07-04 Lockheed Aircraft Corp Method of metallizing holes and cavities with a refractory metal
NL7216832A (en) * 1972-12-12 1974-06-14
CA1067354A (en) * 1975-04-11 1979-12-04 Frederick T. Jaeger Boiler tube coating and method for applying the same
JPS589151B2 (en) * 1980-02-13 1983-02-19 ペルメレック電極株式会社 Method of forming a corrosion-resistant coating on a metal substrate
US4500364A (en) * 1982-04-23 1985-02-19 Exxon Research & Engineering Co. Method of forming a protective aluminum-silicon coating composition for metal substrates
GB8428410D0 (en) * 1984-11-09 1984-12-19 Ray A I A Surgical cutting instruments
CH664378A5 (en) * 1984-12-18 1988-02-29 Castolin Sa METHOD FOR MELTING A METALLIC SURFACE LAYER ON A WORKPIECE.

Also Published As

Publication number Publication date
BR8707695A (en) 1989-10-31
EP0304488A1 (en) 1989-03-01
WO1988007094A1 (en) 1988-09-22
EP0304488A4 (en) 1989-09-26

Similar Documents

Publication Publication Date Title
US4169637A (en) Drill bushings, pump seals and similar articles
JPH0395288A (en) Abrasive coated with refractory metal oxide and grinding wheel made therefrom
US5261477A (en) Process for producing parts with an abrasion-proof surface
JPS59159982A (en) High melting point metal cutting tool with abrasion resistant coating of heat resistant compound
JPH01502595A (en) Coating method for long and narrow workpieces
JPS5893805A (en) Manufacture of steel body with antiabrasive pore
JPS6040649A (en) Method and device for preventing sinking of longitudinal band in product of continuous casting machine
JP3231199B2 (en) Surface treatment method for cast-filled members
JPS6191372A (en) Production of light metal product
JPS5852462B2 (en) Kanagata Enshinchiyuuzou Niokeru Chirukabousyo Band
US2645558A (en) Lining for centrifugal iron casting molds
US4700768A (en) Metal casting process using a lost pattern, moulds for performing this process and process for the production of said moulds
JPS61293653A (en) Casting of aluminum alloy
JPH01222032A (en) Metal foil strip and its production
JPS5970757A (en) Melt-sprayed construction having columnar structure
JPS5861269A (en) Locally preventing method for nitriding in salt bath
RU2215043C2 (en) Method of preparation of blast furnace tuyere for operation
JPH04500949A (en) Container for molten metal, material for the container, and method for manufacturing the material
USRE22282E (en) Method of bonding powdered
US1570802A (en) Means for preventing adherence of cast metal to the mold
JPH0367470B2 (en)
RU2005108440A (en) METHOD FOR APPLYING ALUMINUM OR ZINC COATING ON PRODUCTS FROM IRON OR STEEL, DEVICE FOR ITS IMPLEMENTATION, USED ALLOYS, FLUXES AND PRODUCTS PRODUCED
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JPS61169153A (en) Composite metal-ceramic material and its production
JPS6328880A (en) Method for lining cast iron pipe