JPH01501316A - Production method of alginate (polyuronide) with changed physical properties - Google Patents

Production method of alginate (polyuronide) with changed physical properties

Info

Publication number
JPH01501316A
JPH01501316A JP62505868A JP50586887A JPH01501316A JP H01501316 A JPH01501316 A JP H01501316A JP 62505868 A JP62505868 A JP 62505868A JP 50586887 A JP50586887 A JP 50586887A JP H01501316 A JPH01501316 A JP H01501316A
Authority
JP
Japan
Prior art keywords
alginate
physical properties
polyuronide
production method
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62505868A
Other languages
Japanese (ja)
Inventor
スクヤーク―ブラエク,グッドムンド
エクルンド,トリイグベ
フォン フスビィ,クルト オベ
クバム,ブヤルネ ヨハネス
スミドスロード,オラブ
Original Assignee
プロタン アクチーセルスカペット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プロタン アクチーセルスカペット filed Critical プロタン アクチーセルスカペット
Publication of JPH01501316A publication Critical patent/JPH01501316A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 物理的性質を変化させたアルギネート 本発明は機能性、特に無機および有機多価イオンによるゲル形成能力について変 化を得るためにアルギネートおよび他のウロン酸物質を修飾する方法に関する。[Detailed description of the invention] Alginate with changed physical properties The present invention has been modified in terms of functionality, particularly the ability to form gels with inorganic and organic multivalent ions. The present invention relates to a method for modifying alginate and other uronic acid materials to obtain oxidation.

アルギネートは褐藻海藻類から製造され、これらの多価電解性が例えばゲル化、 増粘および水−およびイオン−結合に対する基礎を形成するいくつかの適用に利 用される。Alginates are produced from brown seaweeds, and their polyelectrolytic properties result in e.g. gelation, Useful in some applications forming the basis for thickening and water- and ionic-bonding. used.

化学的には、アルギネートはβ−D−マンヌロン酸(M)およびそのC−5エピ マー、α−L−グルロン酸(G)から形成される1群の直鎖、二元共重合体を構 成する。MおよびGユニットは3種のタイプの配列で見出される。G−ブロック と呼ばれるGの豊富な配列、M−ブロックと呼ばれるMの豊富な配列、およびM G−ブロックに見出される交互の配列、MGMGとして記号化されるものである 。これらのモノマー ユニットおよびこれらの配列配分のフラクション含量は海 草起源により変化する。イオン結合およびゲル形成性はモノマーフラクションに 依るが、特に鎖に沿うG−ユニットの配分による。G−ブロックの高含量は技術 上ff要なゲル形成性に導く。Chemically, alginate is composed of β-D-mannuronic acid (M) and its C-5 epi A group of linear, binary copolymers formed from α-L-guluronic acid (G) to be accomplished. M and G units are found in three types of arrangements. G-block G-rich sequences called M-blocks, M-rich sequences called M-blocks, and M-rich sequences called M-blocks. The alternating sequence found in the G-block, symbolized as MGMG . The fractional content of these monomer units and their sequence distribution is Varies depending on grass origin. Ionic binding and gel-forming properties are determined by the monomer fraction. It depends, especially on the distribution of G-units along the chain. High content of G-block is technology Leads to the necessary gel-forming properties.

本発明の目的はこれらの物理性を変えるために、オリゴマー又はポリマーのM− ユニットをG−ユニットに転換することである。もとの完全なポリマーのこのタ イプのエンド−エピマー化はマンヌロナンC−5エピメラーゼ、アルギネートの 生体内住合成に関与する酵素(出願番号845059参照)によりアルギネート を処理することにより行なうことができる。The purpose of the present invention is to modify the M- It is to convert a unit into a G-unit. This type of original complete polymer The endo-epimerization of alginate is carried out by mannuronan C-5 epimerase. alginate by enzymes involved in biosynthesis (see application number 845059). This can be done by processing.

本発明によれば、いくつかのポリサッカライド生産微生物からの酵素方法として 周知のこのようなエピマー化は酵素がなくても行なうことができる。この種の方 法は、カルボアニオン(C−5における電荷)を生成する;]−5のアルカリ触 媒抽出は水の存在でポリマー鎖の加水分ネート)は非極性溶媒に不溶性であり、 従って非プロトン性溶媒中の反応は実施が困難である。According to the present invention, as an enzymatic method from some polysaccharide producing microorganisms Such epimerization, which is well known, can be carried out without enzymes. This kind of person The method produces a carbanion (charge at C-5); Solvent extraction is the presence of water in which the polymer chains (hydronate) are insoluble in non-polar solvents; Therefore, reactions in aprotic solvents are difficult to carry out.

本発明は超臨界條件下で二酸化炭素により固体状態でアルギネートを処理するこ とにより上記問題を排除する完全に新しい原理に基づく。この條件は密度は液状 であるが、拡散速度はガス状態における場合と同じである。The present invention involves treating alginate in the solid state with carbon dioxide under supercritical conditions. and is based on a completely new principle that eliminates the above problems. This condition means that the density is liquid However, the diffusion rate is the same as in the gaseous state.

その場合CO2は非プロトン性溶媒として、および触媒としての双方でH−5の アルカリ除去に作用しC−5カルボアニオンを形成することができる。高圧はシ アキシアルに(diaxially )結合したG−ユニットが一層緊密な鎖構 造、従ってジイクアトリアルに(dtequatorially)結合したM− ユニットと対比して低級部分モル容積を与えるように、効果的にエピマー化に寄 与する。ざらに非プロトン性溶媒中で7ノマー効果はアルギネートのα−一層有 利にする。In that case CO2 is used both as an aprotic solvent and as a catalyst for H-5. It can act on alkali removal and form a C-5 carbanion. High pressure is The axially bonded G-units form a tighter chain structure. structure, thus diquatorially coupled M- effectively contribute to epimerization, giving a lower partial molar volume relative to the unit. give In roughly aprotic solvents, the 7-nomer effect is more pronounced than in alginate. Make profit.

出発材料として海草又は細菌起源のアルギネートを塩(アルカリ又はアルカリ出 金属形)、エステル又は他の酸誘導体のいずれかで選択することができる。Alginate of seaweed or bacterial origin is used as a starting material with salt (alkali or alkaline extract). (metallic form), esters or other acid derivatives.

超臨界二酸化炭素の適用は従来は不活性溶媒として超臨界流体を使用して例えば アロマ化合物の抽出内で主として見出されるエイチ・コーネンとイー・クリ−ゲ ル、食品工業における超臨界ガス抽出の利用(H,Coenenand E、  Kriegel、[Uses or 5upercritical Ga5Ex tracNon in the Food Industry J 、ムChe i+、 肋1Tech、 55 (1983) 890 ) 。本発明に対する 基礎を形成する発明はポリサッカライドの非酵素的、化学的エピマー化の最初の 既知例および化学反応における触媒および溶媒の双方として超臨界流体の最初の 適用である。本発明は固体状態の材料に適用できることでこの種の酵素的および 大部分の他の既知化学的修飾方法とも異る。記載の既知方法は稀薄溶液(〈1% )を必要とし、そして生成物は沈澱させ、精製し、費用のかかる方法で乾燥しな ければならない。Applications of supercritical carbon dioxide have traditionally been performed using supercritical fluids as inert solvents, e.g. H. Konen and E. Kriege found primarily within the extraction of aromatic compounds. Utilization of supercritical gas extraction in the food industry (H, Coenenand E, Kriegel, [Uses or 5supercritical Ga5Ex tracNon in the Food Industry J, Mu Che i+, Rib 1 Tech, 55 (1983) 890). for the present invention The underlying invention is the first non-enzymatic, chemical epimerization of polysaccharides. Known examples and first examples of supercritical fluids as both catalysts and solvents in chemical reactions It is application. The present invention can be applied to solid-state materials to enable this type of enzymatic and It is also different from most other known chemical modification methods. The known method described uses a dilute solution (<1% ), and the product must be precipitated, purified, and dried in an expensive manner. Must be.

本発明では超臨界條件下で圧力を変えて(150〜500バール)使用するCo 2によりアルギネートを処理し、試験條件は変化に反映させたが、有意なエピマ ー化、ゲル強度の相当する増加はエピマー化に随伴した。従って、結果は超臨界 二酸化炭素処理によりグリクロナンス又は相当するオリゴサツカライドのC−5 エピマー化は炭水化物の化学的修飾に対する完全に新しい方法を供することを示 唆する。In the present invention, Co The alginate was treated according to 2, and the test conditions were reflected in the changes, but no significant epima was observed. -ization, a corresponding increase in gel strength accompanied epimerization. Therefore, the result is supercritical C-5 of glycronanthin or corresponding oligosaccharide by carbon dioxide treatment We show that epimerization offers a completely new approach to the chemical modification of carbohydrates. suggest

本発明の目的である化学的方法は次のように大きな経済的可能性を有する: A) 固体状態材料に対し行なうことができる。The chemical method that is the object of the present invention has great economic potential as follows: A) It can be performed on solid state materials.

B)無毒性又は無害性化学薬品が必要で、従って生成物の精製を要しない。B) Requires non-toxic or non-hazardous chemicals and therefore does not require purification of the product.

C)超臨界流体による抽出に対する工業技術は既に他の目的に対し開発されてい るので方法は有利に大規模で行なうことができる。C) Industrial technology for extraction with supercritical fluids has not already been developed for other purposes. The method can advantageously be carried out on a large scale.

D) 方法はアルギネートのβ−D−マンヌロネート残基の工とマー化に限定さ れない。しかし、例えばC−6酸化セルロースのように他のポリサッカライドの エピマー化に対しても利用できる。その場合D−グルクロン酸はそのC−5エピ マー L−イドウ【Iン酸に転換する。相当する反応はムコポリサッカライド、 例えばフントリチン硫酸塩およびヒアルウロン酸の処理に利用できる。D) The method is limited to the engineering and merization of β-D-mannuronate residues in alginate. Not possible. However, other polysaccharides, such as C-6 oxidized cellulose, It can also be used for epimerization. In that case, D-glucuronic acid is Convert to mer L-idou [I phosphoric acid. The corresponding reaction is mucopolysaccharide, For example, it can be used to treat funtritin sulfate and hyaluronic acid.

例1: Lam1naria 江肚叩匹對から単離したアルギン酸ソーダ(509)を鉄 製カラムに充填し、超臨界條件下でCo2により処理した。圧は150〜500 バールに変動させた。ガス流は0.5〜10d/分で、温度は45℃、処理は1 2時間継続した。材料の損失はすべての試験でく1%であった。ポリマー組成物 は広分野(400MHz)’HNMR分光器(第1図参照)により測定し、エイ チ・グラスダレン[アルギネートの高磁場1日NMR分光分析法: 配列構造と 結合配座」(HlGrasdalen rHigh−field 1H−NMR 5pectroscopy of^1g1nate: 5equential  5tructure and LinkageConformationJ 、 (11■■DΔJ二 Res、118 (1983) 255〜260)それぞ れ2つのモノマー ユニット、MおよびGのモルフラクションとして、F およ びF6(この場合F + FG −1)として、および配列パラメータ又は4つ の「もつとも近い隣接」配列、MM、GG、MGおよびGM(この場合F +F  +2FHG= 1 )として第I88 GG 表に示す。Example 1: Sodium alginate (509) isolated from Lam1naria The sample was packed into a manufactured column and treated with Co2 under supercritical conditions. Pressure is 150-500 It was changed to crowbar. The gas flow was 0.5-10 d/min, the temperature was 45 °C, and the treatment was 1 It lasted for 2 hours. Material loss was 1% in all tests. polymer composition is measured using a wide-field (400 MHz) HNMR spectrometer (see Figure 1). High-field 1-day NMR spectroscopy of glasdalene [alginate: array structure and "Bound conformation" (HlGrasdalen rHigh-field 1H-NMR 5pectroscopy of^1g1nate: 5equential 5structure and LinkageConformationJ, (11■■DΔJ2 Res, 118 (1983) 255-260) As a morphological fraction of two monomer units, M and G, F and and F6 (in this case F + FG -1), and array parameters or four 'nearest neighbor' sequences, MM, GG, MG and GM (in this case F + F +2FHG=1) as No. I88 GG Shown in the table.

第工表の結果はCO□処理が3つの異る圧力條件下でグルロネート含量に有意の 増加を生じたことを示す。The results in Table 1 show that CO□ treatment has a significant effect on guluronate content under three different pressure conditions. Indicates that an increase has occurred.

FGで表わした含量は未処理材料の0.52(すなわち、52%)から処理後0 .60.0.64および0.66に変化した。最高圧(500バール)は組成に 最大の変化を生じた。The content in FG ranges from 0.52 (i.e. 52%) in the untreated material to 0 after treatment. .. 60. Changed to 0.64 and 0.66. Maximum pressure (500 bar) depends on the composition produced the greatest change.

G含量のこの増加は多価イオンによるゲル形成能力の増加したアルギネートを形 成した。第■表はCO2処理ポリマーのいくつかの物理的性質を示す。粘度はプ ルツクツイールド粘度計で測定し、固有粘度〔η〕はカンノン−ウベローデ毛細 管粘度計で測定した。1%アルギン酸カルシウムゲルのゲル強度はFTRAゲル 強度装置で測定し、2%均質カルシウムゲルの硬さ係数はスチープンス テクス チャー アナライザーで測定した(ジー・スキアク・ブラック、ピー・ジーセン およびオー・スミズロド[試験管内酵素修飾によるアルギネートのテーラリング J ) (G、 5kjak−Braek、 B、 Larsen and O 。This increase in G content forms alginate with increased gel-forming ability due to multivalent ions. accomplished. Table 1 shows some physical properties of CO2 treated polymers. The viscosity is The intrinsic viscosity [η] was measured using a Lutsk Twield viscometer, and the intrinsic viscosity [η] was a Cannon-Ubbelohde capillary. Measured with a tube viscometer. Gel strength of 1% calcium alginate gel is FTRA gel The hardness coefficient of the 2% homogeneous calcium gel was determined using a strength device by Steepens Tex. Measured with a char analyzer (G. Schiak Black, P. Giesen) and O. Sumizrod [Tailoring of alginate by in vitro enzymatic modification] J) (G, 5kjak-Braek, B, Larsen and O .

Sm1dsrod r Ta1lorir+gof Alainate By  EnzymaticModification in vitro J 、 I nt、去Bio1. HaCrollol。Sm1dsrod r Ta1lorir+gof Alainate By  Enzymatic Modification in vitro J, I nt, left Bio1. HaCrollol.

8 (1986) 330〜336)。8 (1986) 330-336).

CO2処理は固有粘度の減少を生じた。グリコシド結合の加水分解開裂により生 ずると推定する。しかし、限定的分解はアルギネートのゲル形成性に全く影響を 有しない。FTRA値および硬さ係数の双方によるゲル強度は明白な増加を示し 、ラミナリア・ハイパーボリア(Lam1naria hyperborea) の茎から得たもつとも強いゲル形成性アルギネートに対し見出されるものに匹敵 できる値を得た。CO2 treatment resulted in a decrease in intrinsic viscosity. Produced by hydrolytic cleavage of glycosidic bonds Presumably cheat. However, limited degradation has no effect on the gel-forming properties of alginate. I don't have it. Gel strength by both FTRA value and hardness coefficient showed a clear increase. , Laminaria hyperborea (Lam1naria hyperborea) Comparable to that found for the very strong gel-forming alginate obtained from the stems of I got the value I could.

第工表 FGFHFGGFGHF団 未処理試料 0.52 0.48 0.34 0.18 0.30150バール  0.60 0.40 0.50 0.10 0.30250バール0.64  0.36 0.55 0.09 0.275001<−ル0.66 0.34  0,53 0.13 0.21CO2処理アルギネートの物理的性質 未処理試料 205 8.8 40 6.2150バール 80.6 6.9  63 −250バール 86.2 6.8 63.5 −500バール 80. 7 6.9 63.5 9.0例2 アスコフイラム・ノドスム(■9刃1匹unodosum )から単離したポリ −マンヌロン酸のソーダ塩を200バールおよび45℃で超臨界CO2により1 2時間処理した。損失はく0.5%であった。ポリマー中のグルロネート含量は く5%から16%に増加した(第2図、参照)。結果はもとの完全なポリマーの Ω−マンヌ1コネートは所定條件下でC−5エピマー化することを明らかに示唆 する。No. 1 schedule FGFHFGGFGHF group Untreated sample 0.52 0.48 0.34 0.18 0.30150 bar 0.60 0.40 0.50 0.10 0.30250 bar 0.64 0.36 0.55 0.09 0.275001<-ru 0.66 0.34 0.53 0.13 0.21 Physical properties of CO2 treated alginate Untreated sample 205 8.8 40 6.2150 bar 80.6 6.9 63 -250 bar 86.2 6.8 63.5 -500 bar 80. 7 6.9 63.5 9.0 Example 2 Poly isolated from Ascophyllum nodosum (■9 blades 1 unodosum) - sodium salt of mannuronic acid at 200 bar and 45°C with supercritical CO2 It was treated for 2 hours. The loss was 0.5%. The guluronate content in the polymer is It increased from 5% to 16% (see Figure 2). The result is that of the original complete polymer. Clearly suggests that Ω-mannu1conate undergoes C-5 epimerization under certain conditions. do.

第1図 1、7の葉からのアルギネートの400MHz’Hn、m、r、スペクトル。A : し肚肚座と朋の葉からのアルギン酸ソーダ、500バール、45℃で12時 間超超臨界性で002により処理。B: 未処理アルギネート。修飾ポリマーの G含最の変化はrMJシグナル(If)に比較してrGJシグナル(工および■ )の相対的強さの増加により実証される。Figure 1 400 MHz'Hn, m, r spectrum of alginate from leaves 1 and 7. A : Sodium alginate from Shibuzuza and Tomoha, 500 bar, 12 o'clock at 45°C Processed with 002 at super-supercriticality. B: Untreated alginate. modified polymer The most significant change in G content is in the rGJ signal (E and ■) compared to the rMJ signal (If). ) is demonstrated by an increase in the relative strength of

第2図 A、 nodosu■から単離したポリマンヌロン酸ソーダの400MHz ’ Hn、m、r、スペクトル。A) 200バールで12時間超臨界CO2により 処理。(F6−0、’16) B) 未処理ポリ−M (Fe 、<0.05) 。Figure 2 A. 400MHz of sodium polymannuronic acid isolated from nodosu■ Hn, m, r, spectrum. A) By supercritical CO2 at 200 bar for 12 hours process. (F6-0, '16) B) Untreated poly-M (Fe, <0.05) .

スペクトルのシグナルエはL−グルロネート含鑓に相当する。The signal of the spectrum corresponds to L-guluronate inclusion.

PPM。PPM.

POLY N。POLY N.

国際調査報告international search report

Claims (2)

【特許請求の範囲】[Claims] 1.改良した物理的性質を得るアルギネート又は他のウロン酸含有化合物の修飾 方法において、塩、酸、エステル又は他のアルギン酸誘導体の固体形のアルギネ ートをバッチ式又は連続フラッシングにより超臨界に近い、又は超臨界條件でC O2により処理することを特徴とする、上記修飾方法。1. Modification of alginates or other uronic acid-containing compounds to obtain improved physical properties In the method, alginate in solid form as a salt, acid, ester or other alginate derivative. C. near supercritical or under supercritical conditions by batch or continuous flushing. The above-mentioned modification method, which is characterized in that it is treated with O2. 2.他のモノ、オリゴ又はポリウロニド(例えば、ヘパリンおよびコンドロイチ ン硫酸塩、又は他のウロネート含有ポリマー)の修飾に対する請求の範囲第1項 記載の方法の適用。2. Other mono-, oligo- or polyuronides (e.g. heparin and chondroitin) Claim 1 for modification of uronate-containing polymers) Application of the described method.
JP62505868A 1986-10-17 1987-10-06 Production method of alginate (polyuronide) with changed physical properties Pending JPH01501316A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO864147 1986-10-17
NO864147A NO160374C (en) 1986-10-17 1986-10-17 PROCEDURE FOR MODIFICATION OF ALGINATES (POLYURONIDES) TO GET CHANGED PHYSICAL PROPERTIES.

Publications (1)

Publication Number Publication Date
JPH01501316A true JPH01501316A (en) 1989-05-11

Family

ID=19889302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62505868A Pending JPH01501316A (en) 1986-10-17 1987-10-06 Production method of alginate (polyuronide) with changed physical properties

Country Status (21)

Country Link
US (1) US4990601A (en)
EP (1) EP0288494B1 (en)
JP (1) JPH01501316A (en)
KR (1) KR880701738A (en)
AT (1) ATE89008T1 (en)
AU (1) AU604070B2 (en)
BR (1) BR8707509A (en)
DE (1) DE3785754T2 (en)
DK (1) DK330688A (en)
ES (1) ES2007422A6 (en)
FI (1) FI882884A (en)
HU (1) HU202251B (en)
IL (1) IL84177A (en)
MC (1) MC1937A1 (en)
MW (1) MW2488A1 (en)
NO (1) NO160374C (en)
NZ (1) NZ222182A (en)
PH (1) PH23281A (en)
RO (1) RO104348B1 (en)
SU (1) SU1804464A3 (en)
WO (1) WO1988002758A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121963A (en) * 2010-12-07 2012-06-28 Meiji Univ Method for producing polyguluronic acid, method for producing polymannuronic acid, polyguluronic acid, and polymannuronic acid
US9357231B2 (en) 2008-07-31 2016-05-31 Mitsubishi Electric Corporation Video encoding device, video encoding method, video reproducing device, video reproducing method, video recording medium, and video data stream

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166137A (en) * 1991-03-27 1992-11-24 Nobipols Forskningsstiftelse Guluronic acid polymers and use of same for inhibition of cytokine production
US5783627A (en) * 1996-09-09 1998-07-21 University Of Massachusetts Dense gas-compatible enzymes
US5977348A (en) * 1997-07-25 1999-11-02 National Starch And Chemical Investment Holding Corporation Polysaccharide modification in densified fluid
US20080108110A1 (en) * 1998-04-02 2008-05-08 Deangelis Paul L Targeted glycosaminoglycan polymers by polymer grafting and methods of making and using same
US7223571B2 (en) * 1998-04-02 2007-05-29 The Board Of Regents Of The Universtiy Of Oklahoma Targeted glycosaminoglycan polymers by polymer grafting and methods of making and using same
US20030104601A1 (en) * 1999-04-01 2003-06-05 Deangelis Paul L. Chondroitin synthase gene and methods of making and using same
US20060188966A1 (en) * 1998-04-02 2006-08-24 Deangelis Paul L Natural, chimeric and hybrid glycosaminoglycan polymers and methods of making and using same
US7642071B2 (en) 1999-04-01 2010-01-05 The Board Of Regents Of The University Of Oklahoma Methods of expressing gram-negative glycosaminoglycan synthase genes in gram-positive hosts
FR2873700B1 (en) * 2004-07-29 2006-11-24 Centre Nat Rech Scient Cnrse PROCESS FOR THE CONTROLLED OXIDATION OF POLYSACCHARIDES
MX2009000255A (en) 2006-07-04 2009-04-07 Spermvital As Preservation and controlled delivery/release of spermatozoa.
WO2009134368A2 (en) * 2008-04-29 2009-11-05 Marshall University Research Corporation Methods of producing bacterial alginates
GB201120368D0 (en) 2011-11-24 2012-01-04 Sperm Vital As Methods for the preparation of hydrogels
FR2994387B1 (en) * 2012-08-13 2016-07-29 Basf Beauty Care Solutions France Sas COSMETIC OR PHARMACEUTICAL MOISTURIZING INGREDIENT
CN104341535B (en) * 2013-08-07 2018-09-14 青岛博研达工业技术研究所(普通合伙) A kind of high-valued extracting method of Enteromorpha
CN104341233A (en) * 2013-08-08 2015-02-11 青岛博研达工业技术研究所(普通合伙) Method for high-efficiency extraction of nutrient substances in undaria pinnatifida sporophyll
CN104341536A (en) * 2013-08-08 2015-02-11 青岛博研达工业技术研究所(普通合伙) Method for high-efficiency extraction of nutrient substances in seaweed
CN104341537A (en) * 2013-08-08 2015-02-11 青岛博研达工业技术研究所(普通合伙) Method for arsenic removal and extraction of nutrient substances in sargassum fusiforme
RU2691990C2 (en) * 2015-03-19 2019-06-19 Дмитрий Викторович Незговоров Alginic acid derivative
DK3547834T3 (en) 2016-12-05 2021-11-08 Spermvital As COMPOSITION WITH LONG-TERM RELEASE
BR112020024774A2 (en) 2018-06-04 2021-03-23 Spermvital As functionalized kit for preparing hydrogels

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US341072A (en) * 1886-05-04 Barton
BE636336A (en) * 1962-08-21
NO845059L (en) * 1984-12-17 1986-06-18 Sintef Inst For Marin Biokjemi PROCEDURE FOR PREPARING ALGINATES WITH CHANGED PHYSICAL PROPERTIES AND USING THESE ALGINATES.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9357231B2 (en) 2008-07-31 2016-05-31 Mitsubishi Electric Corporation Video encoding device, video encoding method, video reproducing device, video reproducing method, video recording medium, and video data stream
JP2012121963A (en) * 2010-12-07 2012-06-28 Meiji Univ Method for producing polyguluronic acid, method for producing polymannuronic acid, polyguluronic acid, and polymannuronic acid

Also Published As

Publication number Publication date
BR8707509A (en) 1989-02-21
DK330688D0 (en) 1988-06-16
WO1988002758A1 (en) 1988-04-21
HU202251B (en) 1991-02-28
NO864147L (en) 1988-04-18
MC1937A1 (en) 1989-05-19
AU604070B2 (en) 1990-12-06
NZ222182A (en) 1990-06-26
RO104348B1 (en) 1993-04-25
FI882884A0 (en) 1988-06-16
EP0288494A1 (en) 1988-11-02
KR880701738A (en) 1988-11-04
ES2007422A6 (en) 1989-06-16
US4990601A (en) 1991-02-05
NO864147D0 (en) 1986-10-17
EP0288494B1 (en) 1993-05-05
DE3785754T2 (en) 1994-01-05
IL84177A (en) 1992-11-15
FI882884A (en) 1988-06-16
NO160374B (en) 1989-01-02
HUT52118A (en) 1990-06-28
DK330688A (en) 1988-06-16
PH23281A (en) 1989-06-23
DE3785754D1 (en) 1993-06-09
ATE89008T1 (en) 1993-05-15
AU8074987A (en) 1988-05-06
MW2488A1 (en) 1989-02-08
SU1804464A3 (en) 1993-03-23
NO160374C (en) 1989-04-12
IL84177A0 (en) 1988-03-31

Similar Documents

Publication Publication Date Title
JPH01501316A (en) Production method of alginate (polyuronide) with changed physical properties
Rinaudo et al. 13C NMR structural investigation of scleroglucan
Rinaudo et al. Proton and carbon-13 NMR investigation of xanthan gum
Marais et al. A fucoidan fraction from Ascophyllum nodosum
Yanaki et al. Triple helix of scleroglucan in dilute aqueous sodium hydroxide
Sun et al. Structural characterization of hemicelluloses from bamboo culms (Neosinocalamus affinis)
Catoire et al. An efficient procedure for studying pectin structure which combines limited depolymerization and 13 C NMR
FR2584728A1 (en) PROCESS FOR THE SULFATION OF GLYCOSAMINOGLYCANS AND THEIR FRAGMENTS
Liu et al. Structure characterization and hypoglycemic activity of an arabinogalactan from Phyllostachys heterocycla bamboo shoot shell
Lechat et al. Structure and distribution of glucomannan and sulfated glucan in the cell walls of the red alga Kappaphycus alvarezii (Gigartinales, Rhodophyta)
Wang et al. Enzymatic desulfation of the red seaweeds agar by Marinomonas arylsulfatase
Faidi et al. Physico‐chemical characterization of alginates isolated from a Tunisian Padina pavonica algae as a sustainable biomaterial
Lahaye et al. Chemical characterisation and gelling properties of cell wall polysaccharides from species of Ulva (Ulvales, Chlorophyta)
CN109265695B (en) Preparation method and application of thickening modified xanthan gum
Kristiansen et al. Novel alginates prepared by independent control of chain stiffness and distribution of G-residues: Structure and gelling properties
Zhu et al. Valorization of industrial xylan-rich hemicelluloses into water-soluble derivatives by in-situ acetylation in EmimAc ionic liquid
Belattmania et al. Spectroscopic characterization and gel properties of agar from two Gelidium species from the Atlantic coast of Morocco
WO1989012648A1 (en) Process of improving the gelling properties of high-esterified pectin
Schlufter et al. Carboxymethylation of bacterial cellulose
Cheetham et al. Proton and carbon-13 NMR studies on xanthan derivatives
Colquhoun et al. NMR studies of acetan and the related bacterial polysaccharide, CR1/4, produced by a mutant strain of Acetobacter xylinum
Hentati et al. Production, extraction and characterization of alginates from seaweeds
Delattre et al. Production of oligocellouronates by biodegradation of oxidized cellulose
Churms, Shirley C.*, Merrifield, Edwin H.**, Miller, Charles L.*** & Stephen Some new aspects of the molecular structure of the polysaccharide gum from Acacia saligna (syn. cyanophylla)
Lopes et al. Influence of the method of purification on some solution properties of welan gum