NO845059L - PROCEDURE FOR PREPARING ALGINATES WITH CHANGED PHYSICAL PROPERTIES AND USING THESE ALGINATES. - Google Patents

PROCEDURE FOR PREPARING ALGINATES WITH CHANGED PHYSICAL PROPERTIES AND USING THESE ALGINATES.

Info

Publication number
NO845059L
NO845059L NO845059A NO845059A NO845059L NO 845059 L NO845059 L NO 845059L NO 845059 A NO845059 A NO 845059A NO 845059 A NO845059 A NO 845059A NO 845059 L NO845059 L NO 845059L
Authority
NO
Norway
Prior art keywords
alginates
alginate
physical properties
epimerase
gels
Prior art date
Application number
NO845059A
Other languages
Norwegian (no)
Inventor
Bjoern Larsen
Gudmund Skjaak Braek
Original Assignee
Sintef Inst For Marin Biokjemi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintef Inst For Marin Biokjemi filed Critical Sintef Inst For Marin Biokjemi
Priority to NO845059A priority Critical patent/NO845059L/en
Priority to EP19860900291 priority patent/EP0204805A1/en
Priority to PCT/NO1985/000080 priority patent/WO1986003781A1/en
Publication of NO845059L publication Critical patent/NO845059L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

Den foreliggende oppfinnelse er knyttet til fremstilling av alginater med forbedrede fysikalske egenskaper, særlig med hensyn til å danne gel med uorganiske eller polyvalente, organiske ioner. Disse modifiserte alginatene skal anvendes for immobilisering/innkapsling av enzymer og/eller celler til bruk i bioteknologiske prosesser. The present invention relates to the production of alginates with improved physical properties, particularly with regard to forming gels with inorganic or polyvalent organic ions. These modified alginates are to be used for immobilisation/encapsulation of enzymes and/or cells for use in biotechnological processes.

Alginatgeler som immobiliseringsmateriale har flere svakheter, hvorav to vesentlige skal nevnes: Alginate gels as an immobilization material have several weaknesses, of which two significant ones should be mentioned:

1) Kalsium-alginatgeler destabiliseres av forbindelser1) Calcium-alginate gels are destabilized by compounds

med affinitetet for kalsium, f.eks. EDTA, citrat, laktat og fosfat, samt av høye konsentrasjoner av kationer som Na<+>, K<+>with affinity for calcium, e.g. EDTA, citrate, lactate and phosphate, as well as high concentrations of cations such as Na<+>, K<+>

og Mgand Mg

2) Alginater som anvendes idag har en høy grad av kjemisk heterogenitet og gir geler med så store porer at proteiner - enzymer og andre makromolekyler - kan lekke ut, samtidig som størrelsefordelingen av porene er vanskelig å kontrollere. 2) Alginates used today have a high degree of chemical heterogeneity and produce gels with such large pores that proteins - enzymes and other macromolecules - can leak out, while the size distribution of the pores is difficult to control.

Alginat er det viktigste strukturpolysakkarid i marine brunalger og benyttes til en rekke industrielle formål, hvor man utnytter polymerens egenskaper som polyelektrolytt, f.eks. til geldannelse og fortykning, samt dens evne til vann- og ionebinding. Alginate is the most important structural polysaccharide in marine brown algae and is used for a number of industrial purposes, where the polymer's properties as a polyelectrolyte are exploited, e.g. for gelation and thickening, as well as its ability to bind water and ions.

Oppfinnelsens formål er derfor å fremstille alginater med fysikalske egenskaper som tilfredsstiller kravene til øket gelstyrke og stabilitet og bedre kontrollerbar porestørrelse. The purpose of the invention is therefore to produce alginates with physical properties that satisfy the requirements for increased gel strength and stability and better controllable pore size.

Kjemisk sett er alginat et polyuronid bygget opp av to uronsyrer D-mannuronsyre (M) og C-5-epimeren L-guluronsyre (G). Disse er ordnet på en slik måte at polymeren videre er bygget opp av tre typer sekvenser: (G)-rike sekvenser betegnet G-blokker, (M)-rike sekvenser betegnet M-blokker og alter-nerende struktur symbolisert som (MGMGMG). Chemically speaking, alginate is a polyuronide made up of two uronic acids D-mannuronic acid (M) and the C-5 epimer L-guluronic acid (G). These are arranged in such a way that the polymer is further built up of three types of sequences: (G)-rich sequences denoted G-blocks, (M)-rich sequences denoted M-blocks and alternating structure symbolized as (MGMGMG).

Alginatets evne til å danne gel ved ionebinding og denne gelens egenskaper avhenger både av det relative innhold av de to uronsyrene og av fordelingen av guluronsyre-enhetene langs kjeden. Et høyt innhold av (G)-blokker gir f.eks. et alginat med stor evne til geldannelse, noe som teknisk sett er en verdifull egenskap ved polymeren. The alginate's ability to form a gel by ion binding and the properties of this gel depend both on the relative content of the two uronic acids and on the distribution of the guluronic acid units along the chain. A high content of (G)-blocks gives e.g. an alginate with great ability to gel, which technically is a valuable property of the polymer.

Foreliggende oppfinnelse er basert på følgende:The present invention is based on the following:

Alginatet syntetiseres i algen som polymannuronsyre og modifiseres deretter av et enzym, mannuronan~C-5-epimerase som endrer D-mannuronsyre-rester til L-guluronsyre-rester inne i kjeden. Når dette enzymet virker på alginat, vil både det relative innhold og uronsyresekvensen bli forandret, og dermed de fysikalske egenskapene. The alginate is synthesized in the algae as polymannuronic acid and is then modified by an enzyme, mannuronan~C-5-epimerase, which changes D-mannuronic acid residues to L-guluronic acid residues inside the chain. When this enzyme acts on alginate, both the relative content and the uronic acid sequence will be changed, and thus the physical properties.

Oppfinnelsen vedrører således en fremgangsmåte for fremstilling av alginater med forbedrede fysikalske genskaper ved bruk av enzymatisk modifikasjon på polymert nivå. Fremgangsmåten erkarakterisert vedat alginater utvunnet fra brunalger eller bakterier inokuleres med et enzympreparat. The invention thus relates to a method for producing alginates with improved physical characteristics using enzymatic modification at the polymeric level. The method is characterized by the fact that alginates extracted from brown algae or bacteria are inoculated with an enzyme preparation.

Som enzympreparat anvendes fortrinnsvis et C-5-epimerase-preparat, særlig en alginat-lyase-fri mannuronan-C-5-epimerase fremstilt fra jordbakterien Azotobacter vinelandii. A C-5 epimerase preparation is preferably used as an enzyme preparation, in particular an alginate lyase-free mannuronan C-5 epimerase produced from the soil bacterium Azotobacter vinelandii.

Oppfinnelsen omfatter også anvendelse av de modifiserte alginater til immobilisering av enzymer, celleorganeller og celler ved innfangning i geler av alginat eller av alginat med egnede kationer, samt immobilisering av biokatalysatorer ved innkapsling i alginat-polykation-mikrokapsler. The invention also includes the use of the modified alginates for immobilization of enzymes, cell organelles and cells by entrapment in gels of alginate or of alginate with suitable cations, as well as immobilization of biocatalysts by encapsulation in alginate-polycation microcapsules.

Mannuronan-C-5-epimerasen kan isoleres fra kulturer av jordbakterien Azotobacter vinelandii som produserer både-alginat og epimerasen ekstracellulært. Det at enzymet er ekstracellulært er en stor fordel ved isolering, og det indi-kerer også at enzymet kan fungere fritt i løsning uavhengig av intracellulære faktorer, noe som er gunstig med tanke på teknisk utnyttelse. The mannuronan-C-5 epimerase can be isolated from cultures of the soil bacterium Azotobacter vinelandii which produces both alginate and the epimerase extracellularly. The fact that the enzyme is extracellular is a major advantage for isolation, and it also indicates that the enzyme can function freely in solution independent of intracellular factors, which is favorable in terms of technical utilization.

Anvendelse av immobiliserte enzymer som katalysatorer har fått en stadig større industriell betydning og vil i de kommende år være et av de viktigste ekspansjonsområder for bioteknologien. Immobiliserte enzymer er ofte mer stabile, The use of immobilized enzymes as catalysts has become increasingly important industrially and will in the coming years be one of the most important areas of expansion for biotechnology. Immobilized enzymes are often more stable,

men først og fremst er de lettere å håndtere enn frie, løselige enzymer og kan anvendes i kontinuerlige prosesser. but primarily they are easier to handle than free, soluble enzymes and can be used in continuous processes.

Ved siden av immobilisering av enkle enzymer er det også utviklet teknikker for immobilisering av hele celler. Cellene kan tjene som bærer for et enkelt enzym, slik at isolering av enzymet er unødvendig før immobilisering, eller også kan man benytte flere enzymer i cellen til å katalysere prosesser i flere trinn (f.eks. syntese av hormoner, proteiner etc). Alongside the immobilization of simple enzymes, techniques have also been developed for the immobilization of whole cells. The cells can serve as a carrier for a single enzyme, so that isolation of the enzyme is unnecessary before immobilization, or several enzymes can be used in the cell to catalyze processes in several steps (e.g. synthesis of hormones, proteins, etc.).

Vi har undersøkt epimerisering av en rekke høypolymere alge- og bakteriealginater med varierende blokkstruktur og sammensetning, og konklusjonene er at samtlige alginater lar seg epimerisere i betydelig grad. Epimeriseringsgraden varierer We have investigated the epimerization of a number of highly polymeric algal and bacterial alginates with varying block structure and composition, and the conclusions are that all alginates can be epimerized to a significant extent. The degree of epimerization varies

fra 60 til 90% avhengig av alginatenes opprinnelige blokkstruktur og for enkelte alginater gir dette mer enn en for-dobling av gelstyrken målt i 2% homogene Ca-alginatgeler. from 60 to 90% depending on the original block structure of the alginates and for some alginates this gives more than a doubling of the gel strength measured in 2% homogeneous Ca-alginate gels.

EksemplerExamples

Eksempel 1Example 1

Natrium-alginat fra Laminaria digitata, i en mengde av 0,07 vekt%, ble oppløst i kationisk buffer, 0,05M kollidin pH 7,0 og Ca 6,8mM. Dette ble inkubert med lyase-fritt C-5-epimerase-preparat fra A. vinelandii ved 30°C i 8 timer. Epimeriseringsgraden, målt ved hjelp av høyoppløselig n.m.r.-spektroskopi, viser en økning i guluronsyreinnhold fra 41% til 69% (se tabell) . Sodium alginate from Laminaria digitata, in an amount of 0.07% by weight, was dissolved in cationic buffer, 0.05M collidine pH 7.0 and Ca 6.8mM. This was incubated with lyase-free C-5-epimerase preparation from A. vinelandii at 30°C for 8 hours. The degree of epimerization, measured using high-resolution n.m.r. spectroscopy, shows an increase in guluronic acid content from 41% to 69% (see table).

Eksempel 2Example 2

Natrium-alginat fra Macrocystis pyrifera, i en mengde av 0,07 vekt%, ble oppløst i kationisk buffer, 0,05M kollidin pH 7,0 og Ca 6,8mM. Dette ble inkubert med lyase-fritt C-5-epimerase-preparat fra A. vinelandii ved 30°C i 8 timer. Epimeriseringsgraden, målt ved hjelp av høyoppløselig n.m.r.-spektroskopi, viser en økning i guluronsyreinnhold fra 37% til 62%. (Se tabell). Sodium alginate from Macrocystis pyrifera, in an amount of 0.07% by weight, was dissolved in cationic buffer, 0.05M collidine pH 7.0 and Ca 6.8mM. This was incubated with lyase-free C-5-epimerase preparation from A. vinelandii at 30°C for 8 hours. The degree of epimerization, measured by high-resolution n.m.r. spectroscopy, shows an increase in guluronic acid content from 37% to 62%. (See table).

Eksempel 3Example 3

Natrium-alginat fra Laminaria hyperborea, i en mengde av 0,07 vekt%, ble oppløst i kationisk buffer, 0,05M kollidin pH Sodium alginate from Laminaria hyperborea, in an amount of 0.07% by weight, was dissolved in cationic buffer, 0.05M collidine pH

2+ 2+

7,0 og Ca 6,8mM. Dette ble inkubert med lyase-fritt C-5-epi-merase-preparat fra A. vinelandii ved 30°C i 8 timer. Epimeriseringsgraden, målt ved hjelp av høyoppløselig n.m.r.-spektroskopi, viser en økning i guluronsyreinnhold fra 68% til 79%. (Se tabell). 7.0 and about 6.8mM. This was incubated with lyase-free C-5 epimerase preparation from A. vinelandii at 30°C for 8 hours. The degree of epimerization, measured by high-resolution n.m.r. spectroscopy, shows an increase in guluronic acid content from 68% to 79%. (See table).

Eksempel 4Example 4

Natrium-alginat fra Laminaria digitata som inneholder 40% guluronsyre, behandles med C-5-epimerase fra A. vinelandii pH 7,0 og Ca<2+>0,68mM i 6 timer ved 30°C. Det modifiserte alginatet inneholder 63% guluronsyre. Gelstyrke-målinger av homogene 2% kalsiumgeler viser en gelstyrke på 3,8 N/cm 2 og 9,6 N/cm 2 i henholdsvis nativt og enzym-modifisert alginat. Sodium alginate from Laminaria digitata containing 40% guluronic acid is treated with C-5-epimerase from A. vinelandii pH 7.0 and Ca<2+>0.68mM for 6 hours at 30°C. The modified alginate contains 63% guluronic acid. Gel strength measurements of homogeneous 2% calcium gels show a gel strength of 3.8 N/cm 2 and 9.6 N/cm 2 in native and enzyme-modified alginate, respectively.

(Se figur 1).(See Figure 1).

Claims (5)

1. Fremgangsmåte for fremstilling av alginater med forbedrede fysikalske egenskaper, karakterisert ved at alginater utvunnet fra brunalger eller bakterier inokuleres med et enzympreparat.1. Process for producing alginates with improved physical properties, characterized in that alginates extracted from brown algae or bacteria are inoculated with an enzyme preparation. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at det som enzympreparat anvendes et C-5-epimerase-preparat.2. Method as stated in claim 1, characterized in that a C-5 epimerase preparation is used as enzyme preparation. 3. Fremgangsmåte som angitt i krav 1 eller 2, karakterisert ved at det anvendes mannuronan-C-5-epimerase-preparat fra Azotobacter vinelandii.3. Method as stated in claim 1 or 2, characterized in that a mannuronan-C-5-epimerase preparation from Azotobacter vinelandii is used. 4. Anvendelse av alginater modifisert ved fremgangsmåten i henhold til et av de foregående krav, til immobilisering av enzymer, celleorganeller og celler ved gel-innfangning i alginatgeler eller geler av alginat og et egnet kation.4. Use of alginates modified by the method according to one of the preceding claims, for the immobilization of enzymes, cell organelles and cells by gel capture in alginate gels or gels of alginate and a suitable cation. 5. Anvendelse av alginater modifisert ved fremgangsmåten i henhold til krav 1-3, til mikro-innkapsling av biokatalysatorer i alginat-polykation-mikrokapsler.5. Use of alginates modified by the method according to claims 1-3, for microencapsulation of biocatalysts in alginate polycation microcapsules.
NO845059A 1984-12-17 1984-12-17 PROCEDURE FOR PREPARING ALGINATES WITH CHANGED PHYSICAL PROPERTIES AND USING THESE ALGINATES. NO845059L (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO845059A NO845059L (en) 1984-12-17 1984-12-17 PROCEDURE FOR PREPARING ALGINATES WITH CHANGED PHYSICAL PROPERTIES AND USING THESE ALGINATES.
EP19860900291 EP0204805A1 (en) 1984-12-17 1985-12-16 Process for producing alginates having improved physical properties, and the use of said alginates
PCT/NO1985/000080 WO1986003781A1 (en) 1984-12-17 1985-12-16 Process for producing alginates having improved physical properties, and the use of said alginates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO845059A NO845059L (en) 1984-12-17 1984-12-17 PROCEDURE FOR PREPARING ALGINATES WITH CHANGED PHYSICAL PROPERTIES AND USING THESE ALGINATES.

Publications (1)

Publication Number Publication Date
NO845059L true NO845059L (en) 1986-06-18

Family

ID=19887997

Family Applications (1)

Application Number Title Priority Date Filing Date
NO845059A NO845059L (en) 1984-12-17 1984-12-17 PROCEDURE FOR PREPARING ALGINATES WITH CHANGED PHYSICAL PROPERTIES AND USING THESE ALGINATES.

Country Status (3)

Country Link
EP (1) EP0204805A1 (en)
NO (1) NO845059L (en)
WO (1) WO1986003781A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO160374C (en) * 1986-10-17 1989-04-12 Protan As PROCEDURE FOR MODIFICATION OF ALGINATES (POLYURONIDES) TO GET CHANGED PHYSICAL PROPERTIES.
GB9221163D0 (en) * 1992-10-08 1992-11-25 Nobipol And Protan Biopolymer Dna compounds
FR2849056B1 (en) * 2002-12-19 2007-07-13 Centre Nat Rech Scient MANNURONANE C5-EPIMERASES OF BROWN ALGAE, METHODS OF OBTAINING AND USES
NO320691B1 (en) * 2004-06-14 2006-01-16 Ntnu Technology Transfer As New contrast release system.
JP2008519595A (en) * 2004-11-12 2008-06-12 エフエムシー バイオポリマー エイエス Modified alginate and production method and use thereof
EP2048943B1 (en) 2006-07-04 2014-09-03 Spermvital AS Preservation and controlled delivery/ release of spermatozoa
US9540630B2 (en) 2008-09-17 2017-01-10 Beta O2 Technologies Ltd. Optimization of alginate encapsulation of islets for transplantation
US9446168B2 (en) 2010-06-07 2016-09-20 Beta-O2 Technologies Ltd. Multiple-layer immune barrier for donor cells
EP4083074A1 (en) 2011-06-02 2022-11-02 Massachusetts Institute Of Technology Modified alginates for cell encapsulation and cell therapy
GB201120368D0 (en) 2011-11-24 2012-01-04 Sperm Vital As Methods for the preparation of hydrogels
DK3547834T3 (en) 2016-12-05 2021-11-08 Spermvital As COMPOSITION WITH LONG-TERM RELEASE
JP7510355B2 (en) 2018-06-04 2024-07-03 スパームヴァイタル アクティーゼルスカブ Functionalization kit for preparing hydrogels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU742434A1 (en) * 1978-10-11 1980-06-25 Ленинградский ордена Трудового Красного Знамени институт текстильной и легкой промышленности им.С.М.Кирова Method of preparing immobilized peroxydase
JPS5974984A (en) * 1982-10-21 1984-04-27 Sumitomo Chem Co Ltd Preparation of immobilized enzyme or microorganism

Also Published As

Publication number Publication date
WO1986003781A1 (en) 1986-07-03
EP0204805A1 (en) 1986-12-17

Similar Documents

Publication Publication Date Title
Guiseley Chemical and physical properties of algal polysaccharides used for cell immobilization
Skják-Bræk et al. Tailoring of alginates by enzymatic modification in vitro
Donati et al. Material properties of alginates
Crescenzi Microbial polysaccharides of applied interest: ongoing research activities in Europe
Moradali et al. Alginate biosynthesis and biotechnological production
NO845059L (en) PROCEDURE FOR PREPARING ALGINATES WITH CHANGED PHYSICAL PROPERTIES AND USING THESE ALGINATES.
EP3154912B1 (en) Biopolymer extraction
Thu et al. Alginate gels-Some structure-function correlations relevant to their use as immobilization matrix for cells
CN106987574B (en) Preparation method of K-carrageenan oligosaccharide with antioxidant activity
JP5765859B2 (en) Yellow pigmentation defects Use in the production of sphingolipidoid aeromonas and gellan gum
Castellane et al. Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate
NO160374B (en) PROCEDURE FOR MODIFYING ALGINATES (POLYURONIDES) TO GET CHANGED PHYSICAL PROPERTIES.
JP3605414B2 (en) Sugar compounds
Stanisci et al. Overall size of mannuronan C5-Epimerases influences their ability to epimerize modified alginates and alginate gels
DK150549B (en) CATALYST FOR BIOCHEMICAL REVERSION REACTIONS WITH SIMILAR IMMOBILIZED ENZYMES AND MICRO-ORGANISMS, AND PROCEDURES FOR THE PRODUCTION OF THEM
Clementi et al. Production and characterisation of alginate from Azotobacter vinelandii
KR20230124918A (en) Bacterial strains for biocellulose production
Zevenhuizen Gel-forming capsular polysaccharide of fast-growing rhizobia: occurrence and rheological properties
West Exopolysaccharide production by entrapped cells of the fungus Aureobasidium pullulans ATCC 201253
Hartmann et al. Enzymatic modification of alginates with the mannuronan C-5epimerase AlgE4 enhances their solubility at low pH
US20240102062A1 (en) Method for producing tagatose by immobilized multi-enzyme system
Yashaswini et al. Hydrocolloids from Marine Macroalgae: Isolation and Applications
Moen et al. Aerobic digestion of Ca-alginate gels studied as a model system of seaweed tissue degradation
Ramírez-Tapias et al. Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix
NO771842L (en) PROCEDURES FOR PREPARING POLYSACARIDE