JPH0148962B2 - - Google Patents

Info

Publication number
JPH0148962B2
JPH0148962B2 JP58055281A JP5528183A JPH0148962B2 JP H0148962 B2 JPH0148962 B2 JP H0148962B2 JP 58055281 A JP58055281 A JP 58055281A JP 5528183 A JP5528183 A JP 5528183A JP H0148962 B2 JPH0148962 B2 JP H0148962B2
Authority
JP
Japan
Prior art keywords
measured
optical system
light
signal
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58055281A
Other languages
Japanese (ja)
Other versions
JPS59183310A (en
Inventor
Tadanori Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5528183A priority Critical patent/JPS59183310A/en
Publication of JPS59183310A publication Critical patent/JPS59183310A/en
Publication of JPH0148962B2 publication Critical patent/JPH0148962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は主として円盤体の形状測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention mainly relates to a shape measuring device for a disc body.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

円盤体の表面に現われている微小な高さを非接
触で検出する場合、従来技術の一つに干渉法を用
いてITVのモニター画像上に干渉パターンを表
示してみる測定装置が考えられる。しかし、一度
に広い画面をITVに取り込むと分解能に制限さ
れ、微小な欠陥は検出できない。さらに自動検査
とするためには、超高速の画像処理機能が必要と
なり、実際的ではない。また、干渉法で画像処理
を使わないで行う場合は、可干渉光であるレーザ
光を二つに分け、一方の光を参照用ミラーに照射
し、また、円盤体を回転させながら、他方の光を
半径方向に移動させて照射し、円盤体からの反射
光を参照用ミラーからの反射光と干渉させる。し
かし、この場合、円盤体の表面の検出点と参照用
ミラーの位置が離れていると、外部からの振動や
円盤体を回転させる回転機構による振動、その他
で光路差が不安定に変化するため、S/Nの高い
計測ができない欠点があつた。また、回転に伴な
い円盤体が上下動すると、二つの光路がずれてし
まい、干渉縞が消滅するなどの欠点があつた。
In the case of non-contact detection of minute heights appearing on the surface of a disk, one possible conventional technique is a measuring device that uses interferometry to display an interference pattern on an ITV monitor image. However, if a wide screen is captured on ITV at once, the resolution is limited, making it impossible to detect minute defects. Furthermore, automatic inspection requires an ultra-high-speed image processing function, which is impractical. In addition, when performing interferometry without using image processing, the laser beam, which is coherent light, is divided into two, one beam is irradiated onto a reference mirror, and the other beam is irradiated while rotating the disc. The light is irradiated while moving in the radial direction, and the reflected light from the disc body is caused to interfere with the reflected light from the reference mirror. However, in this case, if the detection point on the surface of the disk body is far from the position of the reference mirror, the optical path difference will change unstablely due to external vibrations, vibrations from the rotation mechanism that rotates the disk body, and other factors. However, there was a drawback that measurements with high S/N ratio could not be performed. Furthermore, when the disc body moves up and down as it rotates, the two optical paths become misaligned, resulting in the loss of interference fringes.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みなされたもので、被測
定物およびこれを照射する測定用の光の相対的な
変動が生じても測定精度に影響なく測定する装置
を提供することを目的とする。
The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide an apparatus that performs measurement without affecting measurement accuracy even when relative fluctuations occur between the object to be measured and the measuring light that illuminates the object.

〔発明の概要〕 本発明は一つの光源から発せられる可干渉光を
入射させて二つの平行な光束に分けるとともに、
両方の光束を異なる位置に集束して回転させた被
測定物に相対的に半径方向に移動させながら照射
し、この照射による二つの反射光を干渉光として
入射方向と異なる方向に偏向させる光学系を配置
し、この干渉光を演算処理することにより欠陥と
なる微小高さあるいは深さの形状およびその位置
を検出するように構成したものである。
[Summary of the Invention] The present invention allows coherent light emitted from one light source to enter and split into two parallel beams, and
An optical system that focuses both light beams at different positions and irradiates the rotated object while moving it in the radial direction, and deflects the two reflected beams from this irradiation as interference light in a direction different from the direction of incidence. The configuration is such that the shape and position of minute heights or depths that become defects are detected by arranging them and calculating the interference light.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1乃至第4図にて説明す
る。すなわち、この一実施例における構成は投光
部とこの投光部からの可干渉光を二つの平行な光
束にする光学系と、二つの光束を被測定物に照射
する照射光学系と、被照射物を回転する機構と、
照射光学系を被測定物の半径方向へ移動する駆動
機構および被測定物からの反射光による干渉光の
検出部および検出部からの信号と被測定物に対す
る位置信号とを演算表示する処理部とからなつて
いる。すなわち、たとえばHe−Heレーザ光を放
出するレーザ発振器1を有し、このレーザ発振器
1から放出されたレーザ光Lの光路上にケスター
プリズム2が設けられている。ケスタープリズム
2によつて偏向された二つの平行な光束L1,L2
を入射する位置に上記光速L1,L2の光軸方向
(X方向)に図示せぬ移動機構により移動自在な
光学系3が設けられている。この光学系3は鏡筒
3aを有し、この鏡筒内に上記光束L1,L2を下
部方向に反射させる反射鏡4とその直角に反射さ
れた光束L1,L2とを集束する集光レンズ5とを
設けた構成になつている。集光レンズ5は反射鏡
4に対して遠近自在になつている。上記集光レン
ズ5に被測定物であるビデイオデイスク6(以下
デイスクと略す)を対面させ、このデイスク6を
保持して回転させる駆動機構7が設けられてい
る。この駆動機構7には回転角θを検出するエン
コーダ8が備えられている。一方、上記デイスク
6に照射される光束L1,L2のデイスク6よりの
反射光L3,L4は集光レンズ5、反射鏡4を経、
さらにケスタープリズム2に戻つた後出光するよ
うになつており、この出光した反射光L3,L4
検出して電気信号に変換するために、ピンボール
9を介し受光素子10が設けられている。受光素
子10の出力信号は増幅器11に入りさらに増幅
された信号は演算処理部12で処理され、その結
果は表示部13に表示されるようになつている。
なお、演算処理部12はエンコーダ8の回転中に
おける信号△θと上記光学系3の移動機構におけ
る移動距離信号△xとが常時入力されるようにな
つている。
An embodiment of the present invention will be described with reference to FIGS. 1 to 4. That is, the configuration of this embodiment includes a light projecting section, an optical system that converts the coherent light from the light projecting section into two parallel light beams, an irradiation optical system that irradiates the two light beams onto the object to be measured, and the object to be measured. A mechanism for rotating the irradiation object,
A drive mechanism that moves the irradiation optical system in the radial direction of the object to be measured, a detection section for interference light due to reflected light from the object to be measured, and a processing section that calculates and displays the signal from the detection section and the position signal with respect to the object to be measured. It is made up of That is, it has a laser oscillator 1 that emits, for example, a He-He laser beam, and a Kester prism 2 is provided on the optical path of the laser beam L emitted from the laser oscillator 1. Two parallel light beams L 1 , L 2 deflected by Kester prism 2
An optical system 3 is provided at a position where the light is incident, which is movable in the optical axis direction (X direction) at the light speeds L 1 and L 2 by a moving mechanism (not shown). This optical system 3 has a lens barrel 3a, in which a reflecting mirror 4 that reflects the light beams L 1 and L 2 downward and focuses the light beams L 1 and L 2 reflected at right angles thereto. It has a configuration in which a condensing lens 5 is provided. The condensing lens 5 can freely move toward and away from the reflecting mirror 4. A video disc 6 (hereinafter abbreviated as "disk"), which is an object to be measured, faces the condensing lens 5, and a drive mechanism 7 for holding and rotating the disc 6 is provided. This drive mechanism 7 is equipped with an encoder 8 that detects the rotation angle θ. On the other hand, the reflected beams L 3 and L 4 from the disk 6 of the light beams L 1 and L 2 irradiated onto the disk 6 pass through the condensing lens 5 and the reflecting mirror 4.
Furthermore, the light is emitted after returning to the Kester prism 2, and a light receiving element 10 is provided via a pinball 9 in order to detect the emitted reflected light L 3 and L 4 and convert it into an electric signal. There is. The output signal of the light receiving element 10 enters an amplifier 11, and the amplified signal is processed by an arithmetic processing section 12, and the result is displayed on a display section 13.
Note that the arithmetic processing unit 12 is always inputted with a signal Δθ during rotation of the encoder 8 and a moving distance signal Δx in the moving mechanism of the optical system 3.

次に上記装置の作用について説明する。 Next, the operation of the above device will be explained.

デイスク6を回転しさらにレーザ光Lを放出せ
しめて光束L1,L2をデイスク6上に照射して測
定は開始される。すなわち、光束L1,L2はデイ
スク6の上面に間隔Dになる二つのスポツトAお
よびBを投影し、これらのスポツトは一方が参照
点、他方が観測点としての役割がなされる。した
がつて、例えば第4図に示すように、デイスク6
に凸状の欠陥14があつた場合、平担部における
スポツトAを参照点とし、その反射光L3と、欠
陥13におけるスポツトBを観測点とし、その反
射光L4とは欠陥14の高さに応じた干渉光とな
つてケスタープリズム2より出光し受光される。
このときの受光信号は欠陥と認められない程度の
平担部における受光信号とは異なるため、演算処
理部12により処理され、また同時にエンコーダ
8と光学系3の移動機構との各信号が処理され、
デイスク6の座標位置とともに欠陥14の形状の
程度(高さでの表示)が表示される。
The measurement is started by rotating the disk 6 and emitting the laser beam L to irradiate the disk 6 with light beams L 1 and L 2 . That is, the light beams L 1 and L 2 project two spots A and B at a distance D on the upper surface of the disk 6, and one of these spots serves as a reference point and the other serves as an observation point. Therefore, for example, as shown in FIG.
When there is a convex defect 14 on the surface, the spot A on the flat part is used as a reference point, and the reflected light L 3 and spot B on the defect 13 are used as observation points, and the reflected light L 4 is the height of the defect 14. The interference light is emitted from the Kester prism 2 and received as interference light according to the intensity of the interference light.
Since the light reception signal at this time is different from the light reception signal at a flat portion that cannot be recognized as a defect, it is processed by the arithmetic processing unit 12, and at the same time, each signal from the encoder 8 and the moving mechanism of the optical system 3 is processed. ,
The extent of the shape of the defect 14 (displayed in height) is displayed together with the coordinate position of the disk 6.

なお、集光レンズ5の上下動の調整によりスポ
ツトA,Bの間隔Dを任意に変化でき、測定の自
由度を増すことができる。また、ケスタープリズ
ム2にかえて、二つの平行光束に偏向して干渉さ
せる他の光学系を設けることは自由である。
Note that by adjusting the vertical movement of the condenser lens 5, the distance D between the spots A and B can be arbitrarily changed, increasing the degree of freedom in measurement. Furthermore, instead of the Kester prism 2, it is free to provide another optical system that deflects the two parallel light beams and causes them to interfere.

〔発明の効果〕〔Effect of the invention〕

参照点と観測点の両方を被測定物上にとつてい
るため、振動や外部ノイズに強く、かつ被測定物
の上下動にも影響されずにs/n比の高い干渉信
号が得られ、高精度の測定が実施できる。
Since both the reference point and the observation point are placed on the object to be measured, it is resistant to vibration and external noise, and it is possible to obtain an interference signal with a high S/N ratio without being affected by the vertical movement of the object to be measured. Highly accurate measurements can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す平面図、第2
図は上記実施例の要部を示す斜視図、第3図はケ
プラープリズムにおける光の透過を示す図、第4
図は測定の一例を示す断面図である。 1……レーザ発振器、2……ケスタープリズ
ム、3……光学系、7……駆動機構、8……エン
コーダ、9……コリメータ、10……受光素子、
12……演算処理部、13……表示部。
FIG. 1 is a plan view showing one embodiment of the present invention, and FIG.
The figure is a perspective view showing the main part of the above embodiment, FIG. 3 is a diagram showing the transmission of light in a Keplerian prism, and FIG.
The figure is a cross-sectional view showing an example of measurement. DESCRIPTION OF SYMBOLS 1... Laser oscillator, 2... Kester prism, 3... Optical system, 7... Drive mechanism, 8... Encoder, 9... Collimator, 10... Light receiving element,
12... Arithmetic processing unit, 13... Display unit.

Claims (1)

【特許請求の範囲】 1 可干渉光を投光する投光器と、上記可干渉光
を二つの光束に分割する分割光学系と、上記二つ
の光束を被測定物表面上の異なる位置に集束照射
する集光光学系と、上記被測定物からの反射光を
上記分割光学系内で干渉した光を受光する光電変
換素子と、上記被測定物を回転する回転機構と、
上記被測定物の回転中の回転角の信号を出力する
回転角検出器と、上記被測定物とこれを照射する
レーザ光とを上記被測定物の半径方向に相対移動
させるその移動距離信号を出力する移動機構と、
上記光電変換素子からの出力信号と上記回転角信
号および移動機構における移動距離信号とをそれ
ぞれ入力して上記被測定物の面上の微小高さおよ
びその位置を演算処理する演算部と、この演算部
よりの処理信号を数値もしくは図形表示する表示
部とを備えることを特徴とする形状測定装置。 2 分割光学系はケスタープリズムからなること
を特徴とする特許請求の範囲第1項記載の形状測
定装置。 3 移動機構は反射鏡とこの反射鏡で反射したレ
ーザ光を集光する集光光学系とで対になり被測定
物の半径方向に移動自在になる移動光学系からな
ることを特徴とする特許請求の範囲第1項記載の
形状測定装置。
[Claims] 1. A projector that projects coherent light, a splitting optical system that splits the coherent light into two beams, and focuses and irradiates the two beams onto different positions on the surface of the object to be measured. a condensing optical system, a photoelectric conversion element that receives reflected light from the object to be measured and interfered within the splitting optical system, and a rotation mechanism that rotates the object to be measured;
A rotation angle detector outputs a rotation angle signal during rotation of the object to be measured, and a movement distance signal for relatively moving the object to be measured and the laser beam that irradiates it in the radial direction of the object to be measured. a moving mechanism for outputting;
a calculation unit that inputs the output signal from the photoelectric conversion element, the rotation angle signal, and the movement distance signal in the movement mechanism to calculate and process a minute height on the surface of the object to be measured and its position; 1. A shape measuring device comprising: a display section that displays a processed signal from the section numerically or graphically. 2. The shape measuring device according to claim 1, wherein the dividing optical system comprises a Kester prism. 3. A patent characterized in that the moving mechanism consists of a moving optical system that is made up of a reflecting mirror and a condensing optical system that focuses the laser beam reflected by the reflecting mirror, and is movable in the radial direction of the object to be measured. A shape measuring device according to claim 1.
JP5528183A 1983-04-01 1983-04-01 Shape measuring apparatus Granted JPS59183310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5528183A JPS59183310A (en) 1983-04-01 1983-04-01 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5528183A JPS59183310A (en) 1983-04-01 1983-04-01 Shape measuring apparatus

Publications (2)

Publication Number Publication Date
JPS59183310A JPS59183310A (en) 1984-10-18
JPH0148962B2 true JPH0148962B2 (en) 1989-10-23

Family

ID=12994201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5528183A Granted JPS59183310A (en) 1983-04-01 1983-04-01 Shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59183310A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4110230A1 (en) * 1991-03-28 1992-10-01 Zeiss Carl Fa DEVICE FOR INTERFEROMETRIC MEASUREMENT OF THE THICKNESS OF A TRANSPARENT LAYER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567006A (en) * 1979-06-22 1981-01-24 Ibm Method of extending measurement range of interference

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567006A (en) * 1979-06-22 1981-01-24 Ibm Method of extending measurement range of interference

Also Published As

Publication number Publication date
JPS59183310A (en) 1984-10-18

Similar Documents

Publication Publication Date Title
US4900940A (en) Optical system for measuring a surface profile of an object using a converged, inclined light beam and movable converging lens
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
JPH0574764B2 (en)
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
JP3934051B2 (en) Measurement of surface defects
JPS6249562B2 (en)
JP3377820B2 (en) Surface curvature measurement device
JP4532556B2 (en) Interferometer with mirror device for measuring objects
JPH0148962B2 (en)
JPS6055212A (en) Contactless three-dimensional measuring device
JPS5933855B2 (en) Surface inspection method
JP2001255115A (en) Apparatus for measuring low coherence interference
JPH02140608A (en) Measuring instrument for surface shape
JP2006189390A (en) Optical displacement measuring method and device
JPH07318499A (en) Surface defect detecting device
JPH0469508A (en) Method and instrument for optical contactless shape measurement
JP4031124B2 (en) Optical hole shape measuring method and measuring apparatus
KR960015053B1 (en) Device for monitoring plane degree
JP3139862B2 (en) Surface defect inspection equipment
JPH0285704A (en) Gap measuring instrument
JPH01244303A (en) Three-dimensional shape measuring device of non-contact method
JPS6118962B2 (en)
JPH07128014A (en) Position detector
JPS6248163B2 (en)
JPS63223508A (en) Tile angle measuring method