JPH07128014A - Position detector - Google Patents

Position detector

Info

Publication number
JPH07128014A
JPH07128014A JP23016994A JP23016994A JPH07128014A JP H07128014 A JPH07128014 A JP H07128014A JP 23016994 A JP23016994 A JP 23016994A JP 23016994 A JP23016994 A JP 23016994A JP H07128014 A JPH07128014 A JP H07128014A
Authority
JP
Japan
Prior art keywords
spot
receiving element
light
light receiving
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23016994A
Other languages
Japanese (ja)
Other versions
JP3638639B2 (en
Inventor
Giichi Konishi
義一 小西
Shigeyuki Akimoto
茂行 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP23016994A priority Critical patent/JP3638639B2/en
Publication of JPH07128014A publication Critical patent/JPH07128014A/en
Application granted granted Critical
Publication of JP3638639B2 publication Critical patent/JP3638639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To rapidly and accurately obtain the amount of deviation and the deviation direction from a specific position of an object to be measured with a simple configuration. CONSTITUTION:The title detector is provided with a light source 1, a collimator lens 2, a pin hole 3, a half mirror 6, and an objective lens 7, thus projecting a flux of spot light within a specific range on an object to be measured. Further, a polarization prism 4 for performing displacement in circular and elliptical shape without relatively stopping the flux of spot light for the object and a first light reception element 21 and a second light reception element 22 for receiving the flux of reflection light from the object where the spot is projected for a focusing position at forward and backward position, respectively are provided. For example, it is determined that the object is located at a specific position, for example, when the output of the first light reception element 21 and that of the second light reception element 22 are virtually equal within a specific period where the spot scans.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オートフォーカス機構
などに使用する位置検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device used for an autofocus mechanism or the like.

【0002】[0002]

【従来の技術】オートフォーカス機構には正確で迅速な
位置検出が不可欠である。従来、合焦動作に利用するた
めの様々な位置検出装置が提案されているが、代表的な
ものに光スポットを利用する装置と画像コントラストを
利用する装置がある。
2. Description of the Related Art Accurate and quick position detection is essential for an autofocus mechanism. Conventionally, various position detecting devices for use in a focusing operation have been proposed, but a representative one is a device using a light spot and a device using an image contrast.

【0003】[0003]

【発明が解決しようとする課題】前者の光スポットを利
用する装置では、ワーク表面の凸凹や段差によって光が
散乱されるため、ワークの表面状態が悪い場合には高精
度の位置検出が困難であった。
In the former device utilizing a light spot, since light is scattered by unevenness or steps on the surface of the work, it is difficult to detect the position with high accuracy when the surface condition of the work is poor. there were.

【0004】後者の画像コントラストを利用する装置
は、縞パターンをワーク表面に投影してその像のコント
ラストをフォトダイオードアレイやCCDカメラで検出
する装置である。この装置は、例えば顕微鏡ユニットと
ワークの距離を変化させつつ投影された縞パターンに関
する信号を取り込みこれを処理することによって位置検
出並びに合焦動作を行う構成になっている。このため、
最終的に合焦が成されるまで多くの時間を用する欠点が
あった。
The latter device utilizing image contrast is a device in which a stripe pattern is projected on the surface of a work and the contrast of the image is detected by a photodiode array or a CCD camera. This device is configured to perform position detection and focusing by, for example, capturing a signal related to a projected fringe pattern while changing the distance between the microscope unit and the work and processing the signal. For this reason,
It has a drawback that it takes a lot of time until the final focusing is achieved.

【0005】本発明の目的は、被測定物の所定位置から
の偏差量及び偏差方向を迅速かつ正確に求めることがで
きる位置検出装置を提供することである。
An object of the present invention is to provide a position detecting device which can quickly and accurately determine the deviation amount and deviation direction of a measured object from a predetermined position.

【0006】[0006]

【課題を解決するための手段】本願の第1発明は、次の
とおりである。すなわち、次の構成を有する位置検出装
置。
The first invention of the present application is as follows. That is, a position detection device having the following configuration.

【0007】被測定物上に所定範囲でスポットを投影す
る投影光学手段と、スポットが投影された被測定物から
の反射光束を所定位置に対して所定距離だけ前方の位置
で受光する第1受光素子と、スポットが投影された被測
定物からの反射光束を所定位置に対して所定距離だけ前
方の位置で受光する第2受光素子と、被測定物とスポッ
トの相対位置を停止することなく変位させる走査手段。
Projecting optical means for projecting a spot in a predetermined range on the object to be measured, and first light receiving for receiving a reflected light beam from the object to be measured on which the spot is projected at a position ahead of a predetermined position by a predetermined distance. The element, the second light receiving element for receiving the reflected light flux from the object to be measured on which the spot is projected at a position ahead of the predetermined position by a predetermined distance, and the relative position between the object to be measured and the spot is displaced without stopping. Scanning means.

【0008】本願の第2発明は、次のとおりである。す
なわち、次の構成を有する位置検出装置。
The second invention of the present application is as follows. That is, a position detection device having the following configuration.

【0009】光源、コリメータレンズ、ピンホール、ハ
ーフミラー及び対物レンズを有し、それらにより光束を
形成して被測定物上に前記光束によりスポットを投影す
る投影光学手段と、スポットが投影された被測定物から
反射された光束を、集光位置に対して所定距離だけ前方
となる第1位置で受光する第1受光素子と、スポットが
投影された被測定物から反射された光束を、前記集光位
置に対して所定距離だけ後方となる第2位置で受光する
第2受光素子と、被測定物に対してその所定範囲でスポ
ットを相対的に停止させることなく変位させる走査手
段。
A projection optical means having a light source, a collimator lens, a pinhole, a half mirror and an objective lens, which forms a light beam and projects a spot on the object to be measured by the light beam, and an object on which the spot is projected. The first light receiving element that receives the light flux reflected from the measurement object at a first position that is a predetermined distance ahead of the condensing position, and the light flux reflected from the measurement object on which the spot is projected are A second light receiving element that receives light at a second position that is behind the light position by a predetermined distance, and a scanning unit that displaces the spot within the predetermined range relative to the object to be measured without stopping.

【0010】[0010]

【発明の効果】本発明の位置検出装置によれば、被測定
物の異なる部分からの反射光束の成分によって位置の検
出を行うことができ、測定精度を向上させることができ
る。
According to the position detecting apparatus of the present invention, the position can be detected by the components of the reflected light beams from different parts of the object to be measured, and the measurement accuracy can be improved.

【0011】[0011]

【実施例】この発明は、被測定物上に形成されるスポッ
トが実質的に停止することなく運動をする位置検出装置
である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a position detecting device in which a spot formed on an object to be measured moves without substantially stopping.

【0012】最善の例は、被測定物上でスポットが等角
速度で円や楕円などのように曲線のみからなる形状に沿
って運動する例である。
The best example is an example in which the spot moves on the object to be measured at a constant angular velocity along a shape consisting of only a curve such as a circle or an ellipse.

【0013】以下、図示例を説明する。The illustrated example will be described below.

【0014】図1に示す第1の図示例において、光源1
からの光は、一旦コリメータレンズ2を通って平行光束
となり、ピンホール3を照明する。
In the first illustrated example shown in FIG. 1, the light source 1
The light from the lens passes through the collimator lens 2 and becomes a parallel light flux, and illuminates the pinhole 3.

【0015】ピンホール3から射出された光束は偏向プ
リズム4で偏向され、さらにハーフミラー6で反射され
る。しかる後に、光束は対物レンズ7を通り、被測定物
M付近でスポットを形成する。
The light beam emitted from the pinhole 3 is deflected by the deflection prism 4 and further reflected by the half mirror 6. Then, the light flux passes through the objective lens 7 and forms a spot near the object M to be measured.

【0016】偏向プリズム4は、例えばモータ8によ
り、そこの連結されたギヤ9と、そのギヤ9に咬み合う
とともに偏光プリズム4の外周全体に配置された円環状
のギヤ10を介して光軸11の回りに回転可能に構成さ
れている。偏向プリズム4の回転によって、これを通過
する光束の偏向方向が変わるので、被測定物M上に形成
されるスポットSの軌跡は図3に示すように円形形状と
なる。すなわち、偏向プリズム4が、モータ8によって
一定速度で光軸11を中心として回転させられており、
被測定物M上に形成されるスポットSは、一定角速度で
円運動する。
The deflecting prism 4 is, for example, by a motor 8, a gear 9 connected thereto, and an optical axis 11 via an annular gear 10 meshed with the gear 9 and arranged on the entire outer periphery of the polarizing prism 4. It is configured to be rotatable around. As the deflection prism 4 rotates, the deflection direction of the light beam passing therethrough changes, so that the locus of the spot S formed on the object M to be measured has a circular shape as shown in FIG. That is, the deflection prism 4 is rotated around the optical axis 11 at a constant speed by the motor 8,
The spot S formed on the measured object M circularly moves at a constant angular velocity.

【0017】この第1実施例では、回転する偏向プリズ
ム4が『走査手段』に相当する。また、光源1、コリメ
ータレンズ2、ピンホール3、ハーフミラー6及び対物
レンズ7が『投影光学手段』に相当する。また、第1受
光素子21と第2受光素子22が『受光手段』に相当す
る。
In the first embodiment, the rotating deflection prism 4 corresponds to "scanning means". Further, the light source 1, the collimator lens 2, the pinhole 3, the half mirror 6, and the objective lens 7 correspond to “projection optical means”. The first light receiving element 21 and the second light receiving element 22 correspond to "light receiving means".

【0018】被測定物表面からの反射光は、それぞれ第
1受光素子21と第2受光素子22によって受光され
る。これらの第1受光素子21と第2受光素子22の位
置関係は次のように設定する。すなわち、被測定物Mが
所定位置に配置された時に、被測定物Mの表面からの反
射光束の集光位置Fを基準にして、そこから所定距離だ
け前方で反射光束を受光するように第1受光素子21を
配置し、同距離だけ後方で反射光束を受光するように第
2受光素子22を配置するのである。
The reflected light from the surface of the object to be measured is received by the first light receiving element 21 and the second light receiving element 22, respectively. The positional relationship between the first light receiving element 21 and the second light receiving element 22 is set as follows. That is, when the object to be measured M is arranged at a predetermined position, the first position is set so as to receive the reflected light beam forward by a predetermined distance from the condensing position F of the reflected light beam from the surface of the object M to be measured. One light receiving element 21 is arranged, and the second light receiving element 22 is arranged so as to receive the reflected light flux at the same distance behind.

【0019】なお、第1受光素子21は、被測定物Mか
らの反射光束をハーフミラー23を介して受光する構成
になっている。
The first light receiving element 21 is configured to receive the reflected light beam from the object to be measured M via the half mirror 23.

【0020】被測定対象物Mは、ステージ30に載置さ
れている。ステージ30は、モータ32により基台31
と相対的に光軸方向(Z方向)に移動可能になってい
る。
The object M to be measured is placed on the stage 30. The stage 30 has a base 31 driven by a motor 32.
Is relatively movable in the optical axis direction (Z direction).

【0021】ステージ30を光軸方向に移動するかわり
に、対物レンズ等の光学手段全体が被測定物に対して移
動する構成にしても良い。
Instead of moving the stage 30 in the optical axis direction, the entire optical means such as an objective lens may move with respect to the object to be measured.

【0022】次に、位置決定手段の一例を説明する。Next, an example of the position determining means will be described.

【0023】まず、図2に示すブロック図を参照して、
第1・2受光素子21,22で得た受光量の処理方法を
説明する。
First, referring to the block diagram shown in FIG.
A method of processing the received light amount obtained by the first and second light receiving elements 21 and 22 will be described.

【0024】積分回路40a,40bは、抵抗R,R
1、コンデンサC、アンプAPにより構成され、第1受
光素子21、第2受光素子22の出力を積分処理する。
積分回路40a,40bは減算回路50に接続されてい
る。
The integrator circuits 40a and 40b have resistors R and R, respectively.
1, a capacitor C and an amplifier AP, and integrates the outputs of the first light receiving element 21 and the second light receiving element 22.
The integration circuits 40a and 40b are connected to the subtraction circuit 50.

【0025】第1受光素子21の出力と第2受光素子2
2の出力は、光軸方向(Z方向)位置を横軸とし、出力
レベルを縦軸にとると、例えば図4に示すような波形と
なる。図4中の矢印は、所定位置を示している。
Output of first light receiving element 21 and second light receiving element 2
The output of No. 2 has a waveform as shown in FIG. 4, for example, where the horizontal axis represents the position in the optical axis direction (Z direction) and the vertical axis represents the output level. The arrow in FIG. 4 indicates a predetermined position.

【0026】積分回路40a,40bの時定数τ(=C
*R)は、好ましくは、偏向プリズムが一回転する周期
Tよりも大きな値にする。時定数τをこのように定める
ことにより、検出精度を高めることができる。なぜな
ら、被測定物の比較的広い領域からの反射光束を位置の
検出に利用できるからである。
The time constant τ (= C of the integrating circuits 40a and 40b
* R) is preferably set to a value larger than the period T in which the deflection prism makes one rotation. By setting the time constant τ in this way, the detection accuracy can be improved. This is because the reflected light flux from a relatively wide area of the object to be measured can be used for position detection.

【0027】なお、積分回路40a,40bの時定数τ
は、偏向プリズムの回転周期Tより小さな値に設定する
ことも可能であるが、その際には、被測定物のある程度
異なる部分からの信号成分の加え合わせによって十分な
精度が得られる範囲内で時定数τを選定する必要があ
る。
The time constant τ of the integrating circuits 40a and 40b
Can be set to a value smaller than the rotation period T of the deflecting prism, but in that case, within a range in which sufficient accuracy can be obtained by adding signal components from parts to be measured to some extent different from each other. It is necessary to select the time constant τ.

【0028】積分回路40a,40bからの信号は減算
回路50に送られる。減算回路50は、積分処理された
第1受光素子21の信号(1)から第2受光素子22の
信号(2)を減算し、その結果を制御演算部100に送
る。図5は、第1受光素子21の信号(1)から第2受
光素子22の信号(2)を減算した信号を示している。
なお、図5中の矢印は所定位置の一例を示しており、被
測定対象物Mが所定位置にあるときに減算回路の出力は
ゼロとなる。
The signals from the integrating circuits 40a and 40b are sent to the subtracting circuit 50. The subtraction circuit 50 subtracts the signal (2) of the second light receiving element 22 from the signal (1) of the first light receiving element 21 that has been subjected to integration processing, and sends the result to the control calculation unit 100. FIG. 5 shows a signal obtained by subtracting the signal (2) of the second light receiving element 22 from the signal (1) of the first light receiving element 21.
The arrow in FIG. 5 shows an example of the predetermined position, and the output of the subtraction circuit becomes zero when the measured object M is at the predetermined position.

【0029】減算回路50には制御演算部100が接続
されている。制御演算部100は、減算回路50の出力
に基づいて次のような判定を行う。すなわち、減算回路
の出力が正値の場合には被測定物Mが所定位置の前方に
位置し、出力が負値の場合には被測定物Mが所定位置の
後方に位置し、出力がゼロの場合には被測定物が所定位
置にあると判定する。また、制御演算部100は、減算
回路の出力の絶対値が大きいほど所定位置からずれてい
るものと判定する。絶対値の大きさと被測定物のズレ幅
の関係については予め較正を行って、対応関係を求めて
おくと良い。
A control calculation unit 100 is connected to the subtraction circuit 50. The control calculation unit 100 makes the following determination based on the output of the subtraction circuit 50. That is, when the output of the subtraction circuit is a positive value, the DUT M is located in front of the predetermined position, and when the output is a negative value, the DUT M is located behind the predetermined position and the output is zero. In the case of, it is determined that the measured object is at the predetermined position. Further, the control calculation unit 100 determines that the larger the absolute value of the output of the subtraction circuit is, the more it is displaced from the predetermined position. Regarding the relationship between the magnitude of the absolute value and the deviation width of the object to be measured, it is preferable to calibrate in advance and obtain the corresponding relationship.

【0030】制御演算部100は、所定位置からの変位
量及び変位方向を表示部60に表示させる。制御演算部
100は、上述した判定の結果に基づき操作部70に指
示を与え、必要に応じて又は自動的に、ステージ移動部
80を駆動して被測定物Mを所定位置まで移動させる。
また制御演算部100は、偏向プリズム回転駆動部90
を制御して、偏向プリズム4を光軸回りに所定の周期T
で回転させる。
The control calculation section 100 causes the display section 60 to display the displacement amount and the displacement direction from the predetermined position. The control calculation unit 100 gives an instruction to the operation unit 70 based on the result of the above-described determination, and drives the stage moving unit 80 to move the measured object M to a predetermined position as needed or automatically.
The control calculation unit 100 also includes a deflection prism rotation drive unit 90.
To control the deflection prism 4 around the optical axis by a predetermined period T
Rotate with.

【0031】次に、図6を参照して本発明による第2の
図示例を説明する。
Next, a second example of the present invention will be described with reference to FIG.

【0032】図6は第2の図示例における光学手段を示
していて、図1と同一の構成要素には同じ符号が付して
ある。以下では図1との相違点を中心に説明する。
FIG. 6 shows the optical means in the second illustrated example, and the same components as those in FIG. 1 are designated by the same reference numerals. In the following, differences from FIG. 1 will be mainly described.

【0033】第2の図示例では、第1の図示例の偏向プ
リズム4は設けられていない。その代わりに、ステージ
部30aが、光軸方向のみならず、光軸と直交するXY
平面内でも移動可能になっており、それによってXY平
面内で被測定物Mをわずかに移動させることによって、
第1の図示例の偏光プリズム4の回転と同様の作用を得
るのである。
In the second illustrated example, the deflecting prism 4 of the first illustrated example is not provided. Instead, the stage unit 30a is arranged not only in the optical axis direction but also in the XY direction orthogonal to the optical axis.
It is also movable in the plane, and by moving the DUT M slightly in the XY plane,
The same effect as the rotation of the polarization prism 4 in the first illustrated example is obtained.

【0034】第2の図示例においては、XY平面内の移
動は、走査用の第2モータ33の駆動力で行われる。第
2モータ33によってベアリング34に載せられたステ
ージ35がXY平面内に移動する構成になっていて、こ
れが『走査手段』を構成している。走査用の第2モータ
33によって、X方向とY方向に移動可能な構成におい
て、X方向とY方向の移動の振幅と周期(周波数)を等
しくし、互いに90°位相の差を与える。その結果、光
源1からの光による被測定物M上に形成されるスポット
Sは、等角速度の円運動を行なう。
In the second illustrated example, the movement in the XY plane is performed by the driving force of the second scanning motor 33. The stage 35 mounted on the bearing 34 is moved in the XY plane by the second motor 33, and this constitutes the "scanning means". In a configuration in which the second scanning motor 33 is movable in the X and Y directions, the amplitude and period (frequency) of the movement in the X and Y directions are made equal to each other, and a phase difference of 90 ° is provided between them. As a result, the spot S formed on the object to be measured M by the light from the light source 1 makes a circular motion at a constant angular velocity.

【0035】図7は、本発明の第3の図示例を示す。断
面台形の柱の形状をした偏向プリズム4aが、光源1か
らの光を図面と直交する方向に偏向するように、図面の
上下方向の軸回りに回転させられるように構成されてい
る。偏向プリズム4aの回転により、光源1からの光
は、紙面と直交する方向(Y軸方向)に移動する。一
方、ステージ30は、X方向(偏向プリズム4aによる
光の動きと直交する方向)にモータ32で移動させられ
る。上述した偏向プリズム4aによるY方向の移動範囲
と、ステージ30によるX方向の移動範囲とが、等しい
同じ周期(周波数)の移動になる様に設定し、かつ両者
に90°位相の差を与える。その結果、光源1からの光
によって被測定物M上に形成されるスポットSは、被測
定物M上に対して等角速度の円運動を行なう。
FIG. 7 shows a third illustrated example of the present invention. A deflection prism 4a having a trapezoidal cross section is configured to rotate about the vertical axis of the drawing so as to deflect the light from the light source 1 in a direction orthogonal to the drawing. The rotation of the deflection prism 4a causes the light from the light source 1 to move in a direction (Y-axis direction) orthogonal to the paper surface. On the other hand, the stage 30 is moved by the motor 32 in the X direction (direction orthogonal to the movement of light by the deflection prism 4a). The moving range in the Y direction by the deflection prism 4a and the moving range in the X direction by the stage 30 are set to have the same period (frequency) of movement, and a 90 ° phase difference is given to both. As a result, the spot S formed on the object to be measured M by the light from the light source 1 makes a circular motion at a constant angular velocity with respect to the object to be measured M.

【0036】次に、前述の図示例1〜3の応用例につい
て簡単に述べる。
Next, application examples of the above-described illustrated examples 1 to 3 will be briefly described.

【0037】第1の図示例においては、第1受光素子2
1と第2受光素子22の出力を積分することにより、被
測定物Mの異なる部分の信号成分の加え合わせにより十
分な精度を得ていたが、第1受光素子21と第2受光素
子22とをCCDのような蓄積作用のある受光素子とし
て構成すれば、被測定物Mの異なる部分の信号がえられ
る適当な蓄積時間にわたって第1受光素子21と第2受
光素子22の出力を蓄積させることにより、積分回路を
設けなくとも、本発明の所望の効果を得ることができ
る。
In the first illustrated example, the first light receiving element 2
By integrating the outputs of 1 and the second light receiving element 22, sufficient accuracy has been obtained by adding the signal components of different parts of the device under test M. However, the first light receiving element 21 and the second light receiving element 22 Is configured as a light-receiving element having a storage action such as CCD, the outputs of the first light-receiving element 21 and the second light-receiving element 22 are stored for an appropriate storage time in which signals of different portions of the device under test M can be obtained. Thus, the desired effect of the present invention can be obtained without providing an integrating circuit.

【0038】また、第1の図示例においては、第1受光
素子21と第2受光素子22の出力を積分することによ
り、被測定物Mの異なる部分の信号成分の加え合わせに
より十分な精度を得ていたが、被測定物Mの異なる位置
での反射による第1受光素子21と第2受光素子22と
の信号による測定を複数回繰り返し、その平均値を求め
て被測定物Mの位置を求めることにより十分な精度を得
ることもできる。この場合にも、積分回路を用いずに本
願発明による所望の効果を得ることができる。
Further, in the first illustrated example, by integrating the outputs of the first light receiving element 21 and the second light receiving element 22, a sufficient accuracy can be obtained by adding the signal components of different portions of the device under test M. Although obtained, the measurement of the signals of the first light receiving element 21 and the second light receiving element 22 due to reflection at different positions of the object to be measured M is repeated a plurality of times, and the average value thereof is obtained to determine the position of the object to be measured M. Sufficient accuracy can be obtained by asking for it. Also in this case, the desired effect according to the present invention can be obtained without using an integrating circuit.

【図面の簡単な説明】[Brief description of drawings]

以下、図面を参照して本発明の好適な実施例を説明す
る。
Preferred embodiments of the present invention will be described below with reference to the drawings.

【図1】本発明の第1の図示例を示す概略図。FIG. 1 is a schematic view showing a first illustrated example of the present invention.

【図2】第1の図示例の信号の流れを示すブロック図。FIG. 2 is a block diagram showing a signal flow of the first illustrated example.

【図3】図1における被測定物上のスポットの様子を示
す平面図。
FIG. 3 is a plan view showing the appearance of spots on the object to be measured in FIG.

【図4】図1と図2における第1受光素子と2受光素子
の出力例を示すグラフ。
FIG. 4 is a graph showing an output example of the first light receiving element and the second light receiving element in FIGS. 1 and 2.

【図5】図4の2つの出力の減算により得られたグラ
フ。
5 is a graph obtained by subtracting the two outputs of FIG.

【図6】本発明の第2の図示例を示す概略図。FIG. 6 is a schematic diagram showing a second illustrative example of the present invention.

【図7】本発明の第3の図示例を示す概略図。FIG. 7 is a schematic diagram showing a third illustrated example of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 コリメータレンズ 3 ピンホール 4 偏向プリズム 6 ハーフミラー 7 対物レンズ 30 ステージ 31 基台 32 モータ 21 第1受光素子 22 第2受光素子 40a,40b 積分回路 50 減算回路 60 表示部 70 操作部 80 ステージ駆動部 90 偏向プリズム回転駆動部 100 制御演算部 1 light source 2 collimator lens 3 pinhole 4 deflection prism 6 half mirror 7 objective lens 30 stage 31 base 32 motor 21 first light receiving element 22 second light receiving element 40a, 40b integration circuit 50 subtraction circuit 60 display section 70 operating section 80 stage Drive unit 90 Deflection prism rotation drive unit 100 Control calculation unit

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 次の構成を有する位置検出装置。被測定
物上に所定範囲でスポットを投影する投影光学手段と、 スポットが投影された被測定物からの反射光束を所定位
置に対して所定距離だけ前方の位置で受光する第1受光
素子と、 スポットが投影された被測定物からの反射光束を所定位
置に対して所定距離だけ前方の位置で受光する第2受光
素子と、 被測定物とスポットの相対位置を停止することなく変位
させる走査手段。
1. A position detection device having the following configuration. Projection optical means for projecting a spot on the object to be measured in a predetermined range, and a first light receiving element for receiving a reflected light beam from the object on which the spot is projected at a position ahead of a predetermined position by a predetermined distance, A second light receiving element for receiving a reflected light beam from the object under measurement on which the spot is projected at a position ahead of a predetermined position by a predetermined distance, and a scanning means for displacing the relative position between the object under measurement and the spot without stopping. .
【請求項2】 さらに、スポットを停止することなく走
査する所定の期間内での上記第1受光素子の出力及び上
記第2受光素子の出力とが実質的に等しい場合に所定位
置であることを決定する位置決定手段を有するクレーム
1記載の位置検出装置。
2. A predetermined position is provided when the output of the first light receiving element and the output of the second light receiving element within a predetermined period of scanning without stopping the spot are substantially equal to each other. The position detecting device according to claim 1 having a position determining means for determining.
【請求項3】 さらに、スポットを異なる位置に走査し
たときの上記第1受光素子の出力及び上記第2受光素子
の出力とに基づいて、これらの出力の平均値同志が等し
い場合に所定位置であることを決定する位置決定手段を
有するクレーム1記載の位置検出装置。
3. Based on the output of the first light receiving element and the output of the second light receiving element when the spots are scanned at different positions, when the average values of these outputs are the same, a predetermined position is set. The position detecting device according to claim 1 having a position determining means for determining that there is.
【請求項4】 上記第1受光素子及び上記第2受光素子
はスポットを停止することなく走査する所定の期間内に
受光する光量を蓄積するクレーム1記載の位置検出装
置。
4. The position detecting device according to claim 1, wherein the first light receiving element and the second light receiving element accumulate the amount of light received within a predetermined period of scanning without stopping the spot.
【請求項5】 上記位置決定手段は、上記第1受光素子
及び上記第2受光素子の出力を上記走査手段によりスポ
ットを停止することなく走査する所定の期間内、積分し
た後に、これらが実質的に等しい場合に所定位置である
ことを決定するクレーム1記載の位置検出装置。
5. The position determining means substantially integrates the outputs of the first light receiving element and the second light receiving element within a predetermined period in which the scanning means scans the spot without stopping the spot, and then integrates them. The position detecting device according to claim 1, which determines that the position is a predetermined position if
【請求項6】 上記走査手段は、上記投影光学手段によ
り形成された光束の途中で回転する偏角プリズムである
クレーム1記載の位置検出装置。
6. The position detecting device according to claim 1, wherein the scanning means is a deflection prism that rotates in the middle of the light beam formed by the projection optical means.
【請求項7】 上記走査手段は、被測定物を上記投影光
学手段に対して相対的に移動させる移動ステージである
クレーム1記載の位置検出装置。
7. The position detecting device according to claim 1, wherein the scanning means is a moving stage that moves the object to be measured relative to the projection optical means.
【請求項8】 上記走査手段は、上記投影光学手段によ
り形成された光束の途中で回転する偏角プリズムと、被
測定物を上記投影光学手段に対して相対的に移動させる
移動ステージとの組み合わせであるクレーム1記載の位
置検出装置。
8. The scanning means is a combination of a deflection prism that rotates in the middle of a light beam formed by the projection optical means, and a moving stage that relatively moves an object to be measured with respect to the projection optical means. The position detecting device according to claim 1.
【請求項9】 上記走査手段は被測定物に対してスポッ
トを実質的に等速で変位させるクレーム1記載の位置検
出装置。
9. The position detecting device according to claim 1, wherein the scanning means displaces the spot with respect to the object to be measured at a substantially constant speed.
【請求項10】 上記走査手段は被測定物に対してスポ
ットを曲線のみからなる形状に沿って変位させるクレー
ム10記載の位置検出装置。
10. The position detecting device according to claim 10, wherein the scanning means displaces the spot along a shape consisting of only a curved line with respect to the object to be measured.
【請求項11】 前記所定位置が集光位置であるクレー
ム1に記載の位置検出装置。
11. The position detecting device according to claim 1, wherein the predetermined position is a light collecting position.
【請求項12】 次の構成を有する位置検出装置。光
源、コリメータレンズ、ピンホール、ハーフミラー及び
対物レンズを有し、それらにより光束を形成して被測定
物上に前記光束によりスポットを投影する投影光学手段
と、 スポットが投影された被測定物から反射された光束を、
集光位置に対して所定距離だけ前方となる第1位置で受
光する第1受光素子と、 スポットが投影された被測定物から反射された光束を、
前記集光位置に対して所定距離だけ後方となる第2位置
で受光する第2受光素子と、 被測定物に対してその所定範囲でスポットを相対的に停
止させることなく変位させる走査手段。
12. A position detecting device having the following configuration. A projection optical unit that has a light source, a collimator lens, a pinhole, a half mirror, and an objective lens, forms a light beam by these, and projects a spot on the object to be measured by the light beam, and an object to which the spot is projected from the object to be measured. The reflected light flux,
A first light receiving element that receives light at a first position that is a predetermined distance ahead of the condensing position, and a light beam reflected from the DUT on which the spot is projected,
A second light receiving element that receives light at a second position that is behind the condensing position by a predetermined distance, and scanning means that displaces the spot relative to the object to be measured within a predetermined range without stopping.
JP23016994A 1993-09-09 1994-09-01 Position detection device Expired - Fee Related JP3638639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23016994A JP3638639B2 (en) 1993-09-09 1994-09-01 Position detection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24730893 1993-09-09
JP5-247308 1993-09-09
JP23016994A JP3638639B2 (en) 1993-09-09 1994-09-01 Position detection device

Publications (2)

Publication Number Publication Date
JPH07128014A true JPH07128014A (en) 1995-05-19
JP3638639B2 JP3638639B2 (en) 2005-04-13

Family

ID=26529181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23016994A Expired - Fee Related JP3638639B2 (en) 1993-09-09 1994-09-01 Position detection device

Country Status (1)

Country Link
JP (1) JP3638639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218678A (en) * 2006-02-15 2007-08-30 Olympus Corp Measurement microscope device
CN104748673A (en) * 2013-12-27 2015-07-01 富泰华工业(深圳)有限公司 Laser detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218678A (en) * 2006-02-15 2007-08-30 Olympus Corp Measurement microscope device
CN104748673A (en) * 2013-12-27 2015-07-01 富泰华工业(深圳)有限公司 Laser detection device

Also Published As

Publication number Publication date
JP3638639B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
US5594242A (en) Position detecting apparatus which uses a continuously moving light spot
JP3457047B2 (en) Confocal 3D measuring device
JP3638639B2 (en) Position detection device
JP2000164680A (en) Position adjusting device for wafer
JPS60774B2 (en) Pattern inspection method
JPH09229639A (en) Automatic hole diameter measuring device
JPH0787378A (en) Focusing detection device
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JP2002054987A (en) Three-dimensional laser doppler vibrograph
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JPS62218802A (en) Optical type distance and inclination measuring apparatus
JP2003161610A (en) Optical measurement device
JPH07190735A (en) Optical measuring device and its measuring method
JPH10281732A (en) Dimension measuring equipment
JP2000162307A (en) Laser tracking apparatus for locating position of reactor vessel-inspecting robot
JPH095055A (en) Surface inclination detecting device
JP2861671B2 (en) Overlay accuracy measuring device
JP2674129B2 (en) Distance measuring device
JPH06137827A (en) Optical level difference measuring apparatus
JPH0540012A (en) Interferometer and its aligning method
JPS59183310A (en) Shape measuring apparatus
JP3618995B2 (en) Eccentricity measuring method and eccentricity measuring device
JPS62909A (en) Automatic focus control device
JPH08166209A (en) Polygon mirror evaluating device
JPH0635162Y2 (en) Lens inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20010830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20030703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20030924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees