JPH0148642B2 - - Google Patents

Info

Publication number
JPH0148642B2
JPH0148642B2 JP57125083A JP12508382A JPH0148642B2 JP H0148642 B2 JPH0148642 B2 JP H0148642B2 JP 57125083 A JP57125083 A JP 57125083A JP 12508382 A JP12508382 A JP 12508382A JP H0148642 B2 JPH0148642 B2 JP H0148642B2
Authority
JP
Japan
Prior art keywords
resistance
present
small
temperature
resistance material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57125083A
Other languages
Japanese (ja)
Other versions
JPS5917206A (en
Inventor
Hisashi Yoshino
Noboru Ichinose
Shunji Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57125083A priority Critical patent/JPS5917206A/en
Publication of JPS5917206A publication Critical patent/JPS5917206A/en
Publication of JPH0148642B2 publication Critical patent/JPH0148642B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電気抵抗材料に関し、更に詳しくは
固有抵抗(ρ)が大きくかつその温度係数(α)
が小さいので高温域にあつても安定なセラミツク
抵抗材料に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to electrical resistance materials, and more specifically, the present invention relates to electrical resistance materials that have a large specific resistance (ρ) and a high temperature coefficient (α).
This invention relates to ceramic resistance materials that are stable even in high temperature ranges because of their small resistance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、電気回路の小型化、精密化に伴つてそこ
に使用される抵抗材料には、固有抵抗が大きくそ
の温度変化が小さい(αが小さい)という特性を
有する材料が必要とされている。
In recent years, as electric circuits have become smaller and more precise, the resistance materials used therein are required to have high specific resistance and small temperature change (small α).

従来から、このような抵抗材料としては、Ni
−Cr合金、マンガニン合金、炭素、酸化ルテニ
ウムなどが広く用いられているが、いずれも一長
一短があり充分に満足のいくものではなかつた。
Traditionally, Ni has been used as such a resistance material.
-Cr alloys, manganin alloys, carbon, ruthenium oxide, etc. are widely used, but all have advantages and disadvantages and are not fully satisfactory.

すなわち、Ni−Cr合金は、αが20〜100ppm/
℃と約1000℃の温度に到るまで小さく、優れた抵
抗材料であるが、ρが100〜120μΩ・cmと小さい
ので、抵抗値の大きい素子として使用する際には
断面積を小さく長さを大きくしなければならず、
回路の小型化の要請に応えきれないという問題が
ある。また、マンガニン合金は、室温における標
準抵抗材料として広く用いられているが、上記し
たNi−Cr合金と同様の欠点を有し、しかも高温
(数百℃以上)では酸化するという問題を孕んで
いる。更に炭素は、低価格ではあるが、αが約−
1500ppmと大きく高精度を要求される回路に使用
することはできない。酸化ルテニウムは安定した
厚膜抵抗素子として有用であるが、高価であると
いう問題を有する。
In other words, the Ni-Cr alloy has α of 20 to 100 ppm/
℃ and approximately 1000℃, making it an excellent resistive material.However, since ρ is small at 100 to 120μΩ・cm, when used as an element with a large resistance value, it is necessary to reduce the cross-sectional area and length. It has to be made bigger;
There is a problem in that it cannot meet the demand for circuit miniaturization. Manganin alloys are widely used as standard resistance materials at room temperature, but they have the same drawbacks as the Ni-Cr alloys mentioned above, and they also have the problem of oxidation at high temperatures (above several hundred degrees Celsius). . Furthermore, although carbon is low-priced, α is about −
It is 1500ppm and cannot be used in circuits that require high precision. Ruthenium oxide is useful as a stable thick film resistive element, but has the problem of being expensive.

一方、低価格の導電性セラミツクとして
BaPbO3が知られている。これは、そのρが約
500μΩ・cmとNi−Cr合金に近似した値を有する
ものであるが、Ω〜MΩの広範囲な抵抗域をカバ
ーする抵抗素子を用いるためにはρが小さすぎる
いう欠点がある。
On the other hand, as a low-cost conductive ceramic
BaPbO3 is known. This means that ρ is approximately
Although it has a value of 500 μΩ·cm, which is similar to that of a Ni-Cr alloy, it has the drawback that ρ is too small to use a resistance element that covers a wide resistance range from Ω to MΩ.

〔発明の目的〕[Purpose of the invention]

本発明は上記した抵抗材料の欠点を解消した抵
抗材料の提供を目的とする。すなわち、ρが大き
く、αが小さく、しかも高温域に到るまで安定し
た抵抗を有するセラミツク抵抗材料の提供を目的
とするものである。
An object of the present invention is to provide a resistive material that eliminates the drawbacks of the resistive materials described above. That is, the object of the present invention is to provide a ceramic resistance material having a large value of ρ, a small value of α, and a stable resistance up to a high temperature range.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記したBaPbO3を主体とする
酸化物セラミツクに種々の元素を添加してその抵
抗材料としての特性に関し鋭意研究を重ねた結
果、Biはρの増大とαの低減・安定化に寄与る、
とりわけ、所定量のBiは抵抗の温度変化に対し
有効であるという事実を見出し本発明を完成する
に到つた。
The present inventors added various elements to the above-mentioned BaPbO 3 -based oxide ceramic and conducted extensive research into its properties as a resistance material. contributing to the
In particular, the present invention was completed based on the discovery that a predetermined amount of Bi is effective against temperature changes in resistance.

すなわち、本発明の抵抗材料は、次の組成式:
BaPb1-xBixO3(式中、xは0.15≦x≦0.25の関係
を満足する数を表わす。)で示されるセラミツク
であることを特徴とする。
That is, the resistance material of the present invention has the following compositional formula:
It is characterized by being a ceramic represented by BaPb 1-x Bi x O 3 (where x represents a number satisfying the relationship 0.15≦x≦0.25).

本発明の抵抗材料においては、xが0.15より小
さいとρは充分に増大せずかつαの低減効果が小
さい。また、xが0.25より大きくなると、ρが増
大する反面αも著しく増大して本発明の目的から
逸脱する。
In the resistance material of the present invention, if x is smaller than 0.15, ρ will not increase sufficiently and the effect of reducing α will be small. Moreover, when x becomes larger than 0.25, while ρ increases, α also increases significantly, which deviates from the purpose of the present invention.

本発明の抵抗材料は、一般に、粉末焼結法で製
造される。すなわち、Ba源として例えばBaCO3
Pb源として例えばPb3O4、Bi源として例えば
Bi2O3の粉末を、所望する組成比となるように秤
量して、これらを均一に混合した後、常法により
成形して焼結する。
The resistance material of the present invention is generally manufactured by a powder sintering method. That is, as a Ba source, for example, BaCO 3 ,
For example, Pb 3 O 4 as a Pb source, and eg Pb 3 O 4 as a Bi source.
Bi 2 O 3 powder is weighed so as to have a desired composition ratio, mixed uniformly, and then shaped and sintered by a conventional method.

〔発明の実施例〕[Embodiments of the invention]

組成式BaPb1-xBixO3において、x=0、0.1、
0.15、0.2、0.25、0.3となるようにBaCO3
Pb3O4、Bi2O3の粉末をそれぞれ秤量し、ボール
ミルで均一に混合した後乾燥してアルミナ製ルツ
ボに入れ約900℃、酸素雰囲気中で仮焼した。得
られた仮焼体を再びボールミルで粉砕・混合した
後、直径20mm厚み5mmの円板状にプレス成形し
た。成形体を白金板にのせて1000〜1100℃、酸素
雰囲気中で焼成して6種類の焼結体を製造した。
得られた焼結体をX線回折分析したところ、いず
れもベロブスカイト構造であつた。
In the composition formula BaPb 1-x Bi x O 3 , x=0, 0.1,
BaCO 3 to be 0.15, 0.2, 0.25, 0.3,
Pb 3 O 4 and Bi 2 O 3 powders were each weighed, mixed uniformly in a ball mill, dried, placed in an alumina crucible, and calcined at approximately 900° C. in an oxygen atmosphere. The obtained calcined body was again ground and mixed in a ball mill, and then press-molded into a disk shape with a diameter of 20 mm and a thickness of 5 mm. The molded bodies were placed on a platinum plate and fired at 1000 to 1100°C in an oxygen atmosphere to produce six types of sintered bodies.
When the obtained sintered bodies were analyzed by X-ray diffraction, they all had a berovskite structure.

ついで、これら焼結体から約10mm×5mm×1mm
の小片を切り出し、これにAgペーストで電極を
焼付けた後、4端子法で室温〜800℃の温度域に
おけるρを測定した。その結果を、Bi量(x)
とρとの関係として第1図に示した。
Then, from these sintered bodies, about 10mm x 5mm x 1mm
After cutting out a small piece of and baking an electrode on it with Ag paste, ρ was measured in the temperature range from room temperature to 800°C using the four-terminal method. The result is Bi amount (x)
The relationship between and ρ is shown in Figure 1.

また、室温での固有抵抗(ρ0)と各温度での固
有抵抗との比ρ/ρ0の温度との関係を第2図に示
した。
Further, FIG. 2 shows the relationship between the ratio ρ/ρ 0 of the specific resistance (ρ 0 ) at room temperature and the specific resistance at each temperature with respect to temperature.

第1図から明らかなように、ρは大きくしかも
その値はBiの量(x)の増同とともに指数関数
的に著しく増大する。また、第2図から明らかな
ように、xが0.15〜0.25に相当するものは、高温
になつても室温時の固有抵抗ρ0に対してその変化
量が小さく安定していることがわかる。これに反
し、x=0.1、x=0.3のものは高温でのρ/ρ0
極めて大きく安定性に欠くものである。
As is clear from FIG. 1, ρ is large and its value significantly increases exponentially as the amount of Bi (x) increases. Moreover, as is clear from FIG. 2, it can be seen that for those in which x corresponds to 0.15 to 0.25, the amount of change in resistivity ρ 0 at room temperature is small and stable even at high temperatures. On the other hand, those with x=0.1 and x=0.3 have extremely large ρ/ρ 0 at high temperatures and lack stability.

なお、実施例では焼結体に関して述べたが、本
発明の抵抗材料は、焼結体に限らず、これを粉砕
して粉末にし適宜なバインダーでペースト状にし
た後、印刷し焼付けた厚膜形状の抵抗材としても
用いることができることはいうまでもない。
Although the embodiments have been described with respect to sintered bodies, the resistance material of the present invention is not limited to sintered bodies, but can also be used as a thick film made by crushing this into powder, making it into a paste with an appropriate binder, and then printing and baking it. Needless to say, it can also be used as a shaped resistance material.

〔発明の効果〕〔Effect of the invention〕

本発明の抵抗材料は、固有抵抗が大きく、温度
係数が小さいので高温域に到るまで抵抗が安定し
ていて有用である。また、酸化物なので大気中で
使用しても極めて安定しており、信頼性の高い抵
抗材料である。
The resistance material of the present invention has a large specific resistance and a small temperature coefficient, so the resistance is stable even in a high temperature range and is useful. Furthermore, since it is an oxide, it is extremely stable even when used in the atmosphere, making it a highly reliable resistance material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Bi量(x)と固有抵抗(ρ)との
関係図、第2図はρ/ρ0と温度との関係図であ
る。
FIG. 1 is a diagram showing the relationship between Bi amount (x) and specific resistance (ρ), and FIG. 2 is a diagram showing the relationship between ρ/ρ 0 and temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 BaPb1-xBixO3(式中、xは0.15≦x≦0.25の
関係を満足する数を表わす。)で示されるセラミ
ツク低抗材料。
1. A ceramic low strength material represented by BaPb 1-x Bi x O 3 (wherein x represents a number satisfying the relationship of 0.15≦x≦0.25).
JP57125083A 1982-07-20 1982-07-20 Ceramic resistance material Granted JPS5917206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57125083A JPS5917206A (en) 1982-07-20 1982-07-20 Ceramic resistance material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57125083A JPS5917206A (en) 1982-07-20 1982-07-20 Ceramic resistance material

Publications (2)

Publication Number Publication Date
JPS5917206A JPS5917206A (en) 1984-01-28
JPH0148642B2 true JPH0148642B2 (en) 1989-10-20

Family

ID=14901406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57125083A Granted JPS5917206A (en) 1982-07-20 1982-07-20 Ceramic resistance material

Country Status (1)

Country Link
JP (1) JPS5917206A (en)

Also Published As

Publication number Publication date
JPS5917206A (en) 1984-01-28

Similar Documents

Publication Publication Date Title
JPS6031797B2 (en) dielectric porcelain composition
JP6152481B2 (en) Conductive oxide sintered body, conductive member, gas sensor, piezoelectric element, and method of manufacturing piezoelectric element
CN110372335A (en) A kind of manganese nickel aluminium cobalt-based NTC thermistor material and preparation method thereof
US4642136A (en) PTC ceramic composition
US4647895A (en) Ceramic temperature sensor
US4743881A (en) Ceramic temperature sensor
CN110304905A (en) A kind of copper samarium is the NTC thermistor material and preparation method thereof of semiconducting
CN110317045A (en) A kind of manganese ferronickel cobalt-based NTC thermistor material and preparation method thereof
JP3305272B2 (en) Dielectric porcelain material
JP4548431B2 (en) Thermistor composition and thermistor element
JPH07235405A (en) Thermistor sintered body
JPH0148642B2 (en)
EP2450327A1 (en) Semiconductor ceramic and positive-coefficient thermistor
JPS61128409A (en) Dielectric ceramic composition
JP3757794B2 (en) Semiconductor porcelain for thermistor and chip type thermistor using the same
JPH11135303A (en) Thick-film thermistor composition
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
CN116655367B (en) Negative temperature coefficient thermosensitive ceramic material and preparation method thereof
CN114409397B (en) Low TCR ceramic chip resistor and material and preparation thereof
JPS6121183B2 (en)
JP3140124B2 (en) Thick film thermistor composition, method for producing the same, thick film thermistor and method for producing the same
JP2658581B2 (en) Oxide semiconductor composition
JPS5945964A (en) Ceramic resistor material
JPH0661016A (en) Thick film thermistor composition and manufacture thereof as well as thick film thermistor using same and manufacture thereof
JPS61225711A (en) Conducting paste