JPH0148459B2 - - Google Patents

Info

Publication number
JPH0148459B2
JPH0148459B2 JP454784A JP454784A JPH0148459B2 JP H0148459 B2 JPH0148459 B2 JP H0148459B2 JP 454784 A JP454784 A JP 454784A JP 454784 A JP454784 A JP 454784A JP H0148459 B2 JPH0148459 B2 JP H0148459B2
Authority
JP
Japan
Prior art keywords
storage tank
heat
water
heat storage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP454784A
Other languages
Japanese (ja)
Other versions
JPS60149835A (en
Inventor
Yozo Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP454784A priority Critical patent/JPS60149835A/en
Publication of JPS60149835A publication Critical patent/JPS60149835A/en
Publication of JPH0148459B2 publication Critical patent/JPH0148459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に熱交換器を複数個設けた、空調
設備における送水温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention particularly relates to a water supply temperature control device in an air conditioning facility, which is provided with a plurality of heat exchangers.

(従来技術) 空調設備には、クーラユニツトあるいはボイラ
のような冷却あるいは加熱用の熱源生成機器から
蓄熱槽へ冷温水(冷水または温水)を循環させ、
この蓄熱槽から複数個の空調用熱交換器(以下、
熱交換器という)にそれぞれ送水する形式のもの
がある。第1図はこの形式の空調設備を、熱交換
器を2個とした場合について示すもので、1は熱
源生成機器、2は送水ポンプ、3,4はパイプ
(管路)である。パイプ3は蓄熱槽5の内部の冷
温水6を吸入する側の水路を形成し、パイプ4は
熱源生成機器1から蓄熱槽5に冷温水を排出する
側の水路を形成する。
(Prior art) Air conditioning equipment involves circulating cold and hot water (chilled water or hot water) from a heat source generating device for cooling or heating, such as a cooler unit or boiler, to a heat storage tank.
From this heat storage tank, multiple air conditioning heat exchangers (hereinafter referred to as
There are types that send water to each heat exchanger (called a heat exchanger). FIG. 1 shows this type of air conditioning equipment with two heat exchangers: 1 is a heat source generating device, 2 is a water pump, and 3 and 4 are pipes. The pipe 3 forms a waterway on the side that sucks cold and hot water 6 inside the heat storage tank 5, and the pipe 4 forms a waterway on the side that discharges cold and hot water from the heat source generating device 1 to the heat storage tank 5.

7,8は熱交換器で、空調設備を設ける室の2
個所に別々に配設されているものである。これら
熱交換器7,8は、蓄熱槽5から冷温水6を受け
る側がパイプ9,10で蓄熱槽5内に開口してお
り、途中に送水ポンプ11,12が接続されてい
る。冷温水の排出側には1本のパイプ13が共通
に接続されている。この装置にあつては、熱源生
成機器1と送水ポンプ2を作動させて蓄熱槽5内
の冷温水を所定の温度に保ち、次に送水ポンプ1
1,12を作動させて熱交換器7,8に冷温水を
送り、熱交換させる。
7 and 8 are heat exchangers, and 2 of the rooms where air conditioning equipment is installed.
They are placed separately in different locations. These heat exchangers 7 and 8 have pipes 9 and 10 that open into the heat storage tank 5 at the sides that receive cold and hot water 6 from the heat storage tank 5, and water pumps 11 and 12 are connected to the middle. One pipe 13 is commonly connected to the cold and hot water discharge side. In this device, the heat source generating device 1 and the water pump 2 are operated to maintain the cold and hot water in the heat storage tank 5 at a predetermined temperature, and then the water pump 1 is operated.
1 and 12 are activated to send cold and hot water to heat exchangers 7 and 8 for heat exchange.

このように同一の蓄熱槽と熱源生成機器を有す
る空調設備には、次のような問題がある。すなわ
ち熱交換器が多数ある場合、たとえば20台のグル
ープが二つあり、計40台あるとする。そして熱交
換器内のコイルの設計余裕度が2グループの間で
大きく異なるものとする。この場合、多数の熱交
換器には1個の蓄熱槽から送水されるため、2グ
ループへ送られる送水温度は同一であつても、熱
交換器の能力が異なるために実際に熱交換される
量が異なり、送風温度に開きが生じ、結果として
室内温度が異なつてしまうことになる。以上は個
別に制御できる空調負荷の場合には問題とならな
いが、能力以上の負荷がかかり、制御できないと
きに問題となつてくる。そして室内温度が異なつ
てくるという問題以外に、蓄熱槽への熱交換器か
らの還水温度が大きく異なるため、蓄熱槽内に、
いわゆる混水が生ずる問題もある。
Air conditioning equipment having the same heat storage tank and heat source generating equipment as described above has the following problems. In other words, if there are a large number of heat exchangers, let's say there are two groups of 20 heat exchangers, for a total of 40 heat exchangers. It is also assumed that the design margins of the coils in the heat exchanger are largely different between the two groups. In this case, water is sent to many heat exchangers from one heat storage tank, so even though the water sent to the two groups has the same temperature, the actual heat exchange is different because the heat exchangers have different capacities. As the amount of air is different, there will be a difference in the temperature of the air being blown, and as a result, the indoor temperature will be different. The above is not a problem when the air conditioning load can be controlled individually, but it becomes a problem when the load exceeds the capacity and cannot be controlled. In addition to the problem of the indoor temperature varying, the temperature of the return water from the heat exchanger to the heat storage tank varies greatly, so there is
There is also the problem of so-called mixed water.

(発明の目的) 本発明は上記した従来技術が有する問題を解決
するために成されたもので、熱交換器の能力以上
の過大負荷か、あるいは熱源生成機器の容量不足
のときに、熱交換器の能力に合わせた送水温度
を、それぞれの系統ごとに個別に制御することに
より、別々の室内の温度を一定に制御し、かつ、
熱交換器から蓄熱槽への還水温度がほぼ一定にな
るようにし、蓄熱槽の温度成層を乱さないように
した装置を提供することを目的とする。
(Objective of the Invention) The present invention has been made to solve the problems of the prior art described above. By individually controlling the water supply temperature for each system according to the capacity of the container, the temperature in separate rooms can be controlled at a constant level, and
It is an object of the present invention to provide a device in which the temperature of water returned from a heat exchanger to a heat storage tank is kept almost constant, and the temperature stratification of the heat storage tank is not disturbed.

(発明の構成) 本発明は上記目的を達成するため、熱源生成機
器から蓄熱槽へ冷温水を循環させ、該蓄熱槽から
それぞれの空調用熱交換器に送水する、複数個の
熱交換器を有する空調設備において、任意の熱交
換器と蓄熱槽を結ぶ管路に前記熱源生成機器から
蓄熱槽に送水する管路の一部を連通させ、併せて
該連通部と熱交換器の間に流量制御弁を設けた構
成としたものである。そしてこの流量制御弁は、
それぞれの系路の送水温度を取り込み、一定温度
差で送水するように作用する。
(Structure of the Invention) In order to achieve the above object, the present invention includes a plurality of heat exchangers that circulate cold and hot water from a heat source generating device to a heat storage tank and send water from the heat storage tank to each air conditioning heat exchanger. In the air conditioning equipment, a part of the pipe that sends water from the heat source generation device to the heat storage tank is connected to a pipe that connects any heat exchanger and the heat storage tank, and a flow rate is maintained between the communication part and the heat exchanger. The structure is equipped with a control valve. And this flow control valve is
It takes in the water supply temperature of each system and works to supply water at a constant temperature difference.

(実施例) 次に、本発明の一実施例を、第2図について第
1図と同一部分には同一の符号を付して説明す
る。まず、第1図のものと同様に、蓄熱槽5には
クーラユニツトあるいはボイラのような冷温水生
成機器1(これらを1次系という)と、各室に設
けられた熱交換器7,8(これらを2次系とい
う)が接続される。熱交換器は2台に限らず、多
数台でもよい。そして1次系には送水ポンプ2
が、また2次系には送水ポンプ11,12が接続
されている。
(Embodiment) Next, an embodiment of the present invention will be described with reference to FIG. 2, in which the same parts as in FIG. 1 are given the same reference numerals. First, like the one in FIG. 1, the heat storage tank 5 includes a cold/hot water generating device 1 such as a cooler unit or a boiler (these are referred to as primary systems), and heat exchangers 7 and 8 provided in each room. (these are called secondary systems) are connected. The number of heat exchangers is not limited to two, and may be multiple. And the water supply pump 2 is in the primary system.
However, water pumps 11 and 12 are also connected to the secondary system.

第1図のものと同様に、パイプ4は冷温水生成
機器1と蓄熱槽5の内部とを結ぶが、その一部が
A部においてパイプ4aと4bに分岐し、パイプ
4bは流量制御弁14を介して熱交換器7から蓄
熱槽5に至るパイプ9の途中部分に連通させてあ
る。流量制御弁14はパイプ9,10を流れる冷
温水の温度T2、T4を取り込み、両者の差がα(一
定値)となるように開閉作動する。15はこのた
めの制御装置である。
Similar to the one in FIG. 1, the pipe 4 connects the cold/hot water generating device 1 and the inside of the heat storage tank 5, but a part of it branches into pipes 4a and 4b at part A, and the pipe 4b is connected to the flow control valve 14. The heat exchanger 7 is connected to a midway portion of a pipe 9 extending from the heat storage tank 5 via the heat exchanger 7 to the heat storage tank 5. The flow rate control valve 14 takes in the temperatures T 2 and T 4 of the cold and hot water flowing through the pipes 9 and 10, and opens and closes so that the difference between the two becomes α (a constant value). 15 is a control device for this purpose.

次に、この装置の作用を理論的に説明する。い
ま、送水ポンプ2をP1、送水ポンプ11をP2
それぞれ示し、これらの搬送流量をそれぞれQ1
Q2、送水温度をそれぞれT1、T2、またA部での
流量分配を送水ポンプP2側へxとし、蓄熱槽5
側へ(1−x)とする。そして送水ポンプP2
蓄熱槽5よりの汲み上げ分をQ20とする。また蓄
熱槽5の中で冷暖房に利用できる冷温水量をQ4
とし、1次系からの混入以前の温度をT3、混入
以後の温度をT4とする。ただし、Q4は、Q1
Q2、Q20の流量に比べてきわめて多いため、1次
系からの混入前後により流量変化はなく、ほぼ一
定とする。
Next, the operation of this device will be explained theoretically. Now, the water pump 2 is denoted by P 1 and the water pump 11 is denoted by P 2 , and their conveyance flow rates are respectively Q 1 and
Q 2 , the water supply temperature is T 1 and T 2 respectively, and the flow rate distribution at part A is x to the water supply pump P 2 side, and the heat storage tank 5
(1-x) to the side. The amount pumped from the heat storage tank 5 by the water pump P2 is defined as Q20 . Also, the amount of cold and hot water that can be used for cooling and heating in the heat storage tank 5 is Q 4
Let T 3 be the temperature before mixing from the primary system, and T 4 be the temperature after mixing. However, Q 4 is Q 1 ,
Since the flow rate is extremely high compared to the flow rates of Q 2 and Q 20 , there is no change in flow rate before and after mixing from the primary system, and it is assumed to be almost constant.

以上のことから次の4方程式が成立する。 From the above, the following four equations are established.

Q1x+Q20 ……(1) T4−T2=α(一定値) ……(2) Q1x×T1+Q20×T4/Q1x+Q20=T2 ……(3) Q1(1−x)×T1+Q4×T3/Q1(1−x)+Q4=T4……
(4) ここで変数(未知数)はx、Q20、T2、T3
T4の5個であり、常数はQ1、Q2、Q4、T1、αの
5個である。5個の変数に対し、4方程式が成立
しているため、変数のうちのどれか1個を固定す
ると、他の変数4個が決まり、第2図の回路は完
全に送水温度の決つたシステムとなる。ここでx
の値を第2図の流量制御弁14で決定させると、
他の変数Q20、T2、T3、T4が求まり、各熱交換
器7,8(前述のように多数個の場合がある)に
対し、送水温度差αで送水できることになる。
Q 1 x+Q 20 ……(1) T 4 −T 2 = α (constant value) ……(2) Q 1 x×T 1 +Q 20 ×T 4 /Q 1 x+Q 20 =T 2 ……(3) Q 1 (1-x)×T 1 +Q 4 ×T 3 /Q 1 (1-x)+Q 4 =T 4 ...
(4) Here, the variables (unknowns) are x, Q 20 , T 2 , T 3 ,
There are five constants, Q 1 , Q 2 , Q 4 , T 1 , and α. Since four equations hold true for five variables, fixing any one variable determines the other four variables, and the circuit in Figure 2 is a system in which the water supply temperature is completely determined. becomes. Here x
When the value of is determined by the flow rate control valve 14 in Fig. 2,
Other variables Q 20 , T 2 , T 3 , and T 4 are determined, and water can be fed to each of the heat exchangers 7 and 8 (as described above, there may be a plurality of heat exchangers) at the water feeding temperature difference α.

(発明の効果) 本発明は以上説明したように構成したものであ
るから、次のような効果がある。
(Effects of the Invention) Since the present invention is configured as described above, it has the following effects.

空調システム系の温度制御ができない場合
(熱交換器の能力以上の過大負荷時、あるいは
熱源生成機器の容量不足時)に異能力の空調ゾ
ーンに対し、同一の温度にて空調できる。
When the temperature of the air conditioning system cannot be controlled (when the load exceeds the capacity of the heat exchanger, or when the capacity of the heat source generating equipment is insufficient), air conditioning zones with different capacities can be air conditioned at the same temperature.

上記の場合、熱交換器から蓄熱槽への還水
温度がほぼ一様となるため、蓄熱槽の温度成層
が保たれ、混水等によるロスがなくなる。
In the above case, since the temperature of the water returned from the heat exchanger to the heat storage tank becomes almost uniform, the temperature stratification of the heat storage tank is maintained, and losses due to mixed water and the like are eliminated.

空調システム系の温度制御ができているよう
な場合でも、温度差等の設定変更をしなくて
も、上記二つの利点を生かし、そのまま使用で
きる。
Even if the temperature of the air conditioning system is controlled, the above two advantages can be taken advantage of and the system can be used as is without changing settings such as temperature differences.

以上〜により、空調設備としての熱交換
器の消費負荷に見合つた送水温度制御ができ、
オープン型とクローズド型の併用特性で省動力
が達成できる。要約すれば、同一の蓄熱槽から
異なる温度で送水できるものである。
As a result of the above, it is possible to control the water supply temperature in accordance with the consumption load of the heat exchanger as an air conditioning equipment.
Power savings can be achieved through the combined use of open and closed types. In short, water can be delivered at different temperatures from the same heat storage tank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空調設備の系統図、第2図は本
発明の一実施例の系統図である。 1……熱源生成機器、2,11,12……送水
ポンプ、3,4,9,10,13……パイプ、5
……蓄熱槽、6……冷温水、7,8……熱交換
器、14……流量制御弁。
FIG. 1 is a system diagram of a conventional air conditioning system, and FIG. 2 is a system diagram of an embodiment of the present invention. 1...Heat source generation equipment, 2, 11, 12...Water pump, 3, 4, 9, 10, 13...Pipe, 5
... Heat storage tank, 6 ... Cold and hot water, 7, 8 ... Heat exchanger, 14 ... Flow rate control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 熱源生成機器から蓄熱槽へ冷温水を循環さ
せ、該蓄熱槽からそれぞれの空調用熱交換器に送
水する、複数個の熱交換器を有する空調設備にお
いて、任意の熱交換器と蓄熱槽を結ぶ管路に前記
熱源生成機器から蓄熱槽に送水する管路の一部を
連通させ、併せて該連通部と熱交換器の間に流量
制御弁を設けたことを特徴とする空調設備におけ
る送水温度制御装置。
1. In air conditioning equipment that has multiple heat exchangers that circulate cold and hot water from a heat source generation device to a heat storage tank and send water from the heat storage tank to each air conditioning heat exchanger, any heat exchanger and heat storage tank may be connected to each other. Water supply in an air conditioner, characterized in that a part of the pipe for sending water from the heat source generation device to the heat storage tank is communicated with the connecting pipe, and a flow control valve is provided between the communication part and the heat exchanger. Temperature control device.
JP454784A 1984-01-13 1984-01-13 Water supply temperature control device in air conditioning installation Granted JPS60149835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP454784A JPS60149835A (en) 1984-01-13 1984-01-13 Water supply temperature control device in air conditioning installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP454784A JPS60149835A (en) 1984-01-13 1984-01-13 Water supply temperature control device in air conditioning installation

Publications (2)

Publication Number Publication Date
JPS60149835A JPS60149835A (en) 1985-08-07
JPH0148459B2 true JPH0148459B2 (en) 1989-10-19

Family

ID=11587073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP454784A Granted JPS60149835A (en) 1984-01-13 1984-01-13 Water supply temperature control device in air conditioning installation

Country Status (1)

Country Link
JP (1) JPS60149835A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028461A (en) * 2018-05-24 2018-12-18 青岛海尔空调器有限总公司 Air conditioner defrosting control method

Also Published As

Publication number Publication date
JPS60149835A (en) 1985-08-07

Similar Documents

Publication Publication Date Title
US7913501B2 (en) Water-cooled air conditioning system using condenser water regeneration for precise air reheat in dehumidifying mode
US3378062A (en) Four pipe heat pump apparatus
RU2100709C1 (en) Air-conditioning unit for habitable spaces
US3670806A (en) Air conditioning system and method
EP3726146A1 (en) Combined heating and cooling system
US5573183A (en) Method and apparatus for heating building and ventilation air
US3303873A (en) Heating and cooling system
EP3354996A1 (en) Chiller plant with ice storage
EP0508245B1 (en) Combined heating and cooling system
JP2001241735A (en) Air conditioning system and its controlling method
JPH0148459B2 (en)
JP2008020168A (en) Air conditioning system
JP4568119B2 (en) Heat supply system having a plurality of heat source units and pump groups
JP7361645B2 (en) Loop structure system for heat medium piping in air conditioning equipment
JPH0310855B2 (en)
EP1033539B1 (en) Modular collector provided with a system of thermoregulation for heating plants with radiating panels or the like
EP0468318A2 (en) Monobloc heating and cooling system
WO2023057409A1 (en) Fluid transportation network and method
JP3236927B2 (en) Refrigerant circulation type air conditioning system
JPH0926186A (en) Refrigerant circulation type air conditioning system
FI114566B (en) A method for heating and cooling a room with liquid circulation and the apparatus used in the method
JPH08296874A (en) Heat storage equipment
JP4421983B2 (en) Air conditioning system.
JPS62102040A (en) Air conditioner of type to incorporate heat accumulating tank
JPS61145316A (en) Cooling water device