JPH0147697B2 - - Google Patents
Info
- Publication number
- JPH0147697B2 JPH0147697B2 JP7629882A JP7629882A JPH0147697B2 JP H0147697 B2 JPH0147697 B2 JP H0147697B2 JP 7629882 A JP7629882 A JP 7629882A JP 7629882 A JP7629882 A JP 7629882A JP H0147697 B2 JPH0147697 B2 JP H0147697B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- air
- heat storage
- storage tank
- storage material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/001—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
本発明は空気熱源ヒートポンプを使用する冷暖
房システムの改善に係り、ヒートポンプの規模を
小さくしても効率のよい冷暖房が実施できかつ全
体として省エネルギーが達成されると共に国家レ
ベルで見た場合にも電力ピークの問題が解決され
経済的な冷暖房が行ない得る省エネルギー冷暖房
システムの提供を目的とするものである。
空気熱源ヒートポンプによる冷暖房にあつては
熱源や排熱の蓄熱が効率よく行ない得ないという
問題が常に付随した。蓄熱を行なう最も一般的な
方式として、蓄熱水槽を設置し、この熱源水に外
部熱源機器や建物内廃熱を蓄熱する方式が普及し
ているが、この蓄熱の取出しには水熱源ヒートポ
ンプを必要としかつ設置が大ががりになることは
否めない。
本発明は、空気熱源ヒートポンプによる冷暖房
システムにおいて、1日を通じての外気温度の変
化やシーズンを通じての外気温度の変化に応じて
冷熱または温熱を効率よく貯えかつこれを熱源と
して負荷に応じて適宜利用できるようにした設備
負担の少ない省エネルギー冷暖房システムを提供
するものであり、空気熱源ヒートポンプと潜熱利
用の蓄熱槽とを特定の空気循環路によつて接続し
たことを特徴とするものである。
本発明で使用する潜熱蓄熱槽は、使用温度域で
固液変化する水以外の蓄熱物質を封入した槽であ
り、この蓄熱物質の相変化に基づく潜熱を利用し
て蓄熱を潜熱形態で行なえるようにしたものであ
る。このような潜熱蓄熱槽は同一出願人に係る特
願昭56−165369号明細書および図面に記載した蓄
熱器ユニツトの集合体あるいは第1図に示したよ
うな構造のものを使用することができる。第1図
において、10は蓄熱物質を封入した密閉容器で
あり断熱板で作つてある。また、11と12は互
いに独立した空気循環路であり、容器10の内部
において互いに交互に配置されるパイプを有して
おり、各パイプには蓄熱物質との伝熱面積を大き
くするためのエロフインやプレートフインが取付
けてある。また、第1図の例では容器内が上下に
多段に分割されている。
このよう蓄熱槽に封入する蓄熱物質としては、
第1表に示したような物質を使用することができ
る。第1表において、低温用潜熱蓄熱物質と中温
用潜熱蓄熱物質とにランク付けして示してある
が、後述のように、これらは使用温度に応じて使
い分けられる。
The present invention relates to an improvement in a heating and cooling system using an air source heat pump, which enables efficient heating and cooling even if the scale of the heat pump is reduced, achieves overall energy savings, and also achieves peak power consumption at the national level. The purpose of the present invention is to provide an energy-saving heating and cooling system that solves these problems and provides economical heating and cooling. Air-conditioning and heating using air-source heat pumps has always had the problem that the heat source and waste heat cannot be efficiently stored. The most common method of storing heat is installing a heat storage water tank and storing waste heat from external heat source equipment or the building in this heat source water, but a water source heat pump is required to extract this stored heat. It cannot be denied that the installation will be extensive. The present invention is an air-conditioning system using an air source heat pump, which can efficiently store cold or warm heat according to changes in outside air temperature throughout the day or throughout the season, and use this as a heat source as appropriate according to the load. The present invention provides an energy-saving heating and cooling system that requires less equipment load, and is characterized in that an air source heat pump and a heat storage tank that utilizes latent heat are connected through a specific air circulation path. The latent heat storage tank used in the present invention is a tank filled with a heat storage substance other than water that changes into solid-liquid in the operating temperature range, and can store heat in the form of latent heat by utilizing latent heat based on the phase change of this heat storage substance. This is how it was done. As such a latent heat storage tank, it is possible to use an assembly of heat storage units described in the specification and drawings of Japanese Patent Application No. 56-165369 filed by the same applicant, or a structure as shown in Fig. 1. . In FIG. 1, reference numeral 10 denotes a closed container containing a heat storage material, which is made of a heat insulating board. Further, 11 and 12 are independent air circulation paths, each having pipes arranged alternately inside the container 10. and plate fins are installed. Furthermore, in the example shown in FIG. 1, the inside of the container is divided into multiple stages vertically. The heat storage material sealed in the heat storage tank is as follows:
Substances such as those listed in Table 1 can be used. In Table 1, latent heat storage materials for low temperatures and latent heat storage materials for medium temperatures are ranked and shown, but as will be described later, these materials are used depending on the operating temperature.
【表】
本発明で使用する空気熱源ヒートポンプは、例
えば第2図および第3図に示したような圧縮式の
ものが便宜である。第2図において、5は熱源側
熱交換器であつて熱源用空気と冷媒との熱交換を
行なうもの、4は熱取出側熱交換器であつて循環
空気と冷媒との熱交換を行なうもの、15は膨脹
弁、16は四方弁、17は圧縮機をそれぞれ示し
ており、四方弁16の切換によつて熱交換器5が
蒸発器で熱交換器4が凝縮器として、あるいは熱
交換器5が凝縮器で熱交換器4が蒸発器としてい
づれにも機能できるようにした例を示している。
また第3図において、18は受液器、19はフイ
ルタドライヤを示しており、熱交換器5が凝縮器
としてまた熱交換器4が蒸発器として機能するよ
うにした例を示している。
本発明は、このような潜熱蓄熱槽、蓄熱物質並
びに空気熱源ヒートポンプを使用し、特定の空気
循環路を形成することによつて前述の目的を達成
する冷暖房システムに構成したものである。
以下にその詳細を図面の実施例に基づいて具体
的に説明する。
第4図に示した実施例は、空調ゾーン1と使用
温度域で相変化可能な蓄熱物質を封入した潜熱蓄
熱槽2との間を該蓄熱物質と熱交換しながら空気
が循環するように形成した空気循環路Aと、該蓄
熱槽2と空気熱源ヒートポンプ3の熱取出側熱交
換器4との間を該蓄熱物質と熱交換しながら空気
が循環するように形成した空気循環路Bと、から
なる冷暖房システムである。この潜熱蓄熱槽2に
封入する蓄熱物質としては、前記第1表に示した
低温用潜熱蓄熱物質を使用するとよい。なお図に
おいて、7は空気循環路Aのフアン、8は空気循
環路Bのフアンであり、Cはヒートポンプ3の熱
源側熱交換器5に外気を送排気する熱源空気路で
あり、フアン9がこれに介装してある。
この第4図の実施例の運転態様を以下に説明す
る。
(1) 冷房期
夜間などの外気温度が低下している時間帯に
おいて、ヒートポンプ3を、熱交換器5を凝縮
器、熱交換器4を蒸発器として運転し、蓄熱槽
2に冷熱を貯える。外気温度の上昇と共にヒー
トポンプ3の運転を停止し、冷房が必要なとき
はフアン7のみの駆動によつて蓄熱槽2内の冷
熱を循環路Aの空気に与えて冷房する。冷房負
荷が大きく、蓄熱された冷熱でこれをまかなえ
ない場合は、フアン7の駆動に加えてヒートポ
ンプ3も冷房運転して蓄熱槽2に冷熱を送り込
む。
(2) 暖房期
昼間などのできるだけ外気温度が高い時間帯
において、ヒートポンプ3を、熱交換器5を蒸
発器、熱交換器4を凝縮器として運転し、蓄熱
槽2に温熱を貯える。外気温度が低下する時間
帯はヒートポンプ3の運転を停止し、暖房が必
要なときは、フアンのみの駆動によつて蓄熱槽
2内の温熱を循環路Aの空気に与えて暖房す
る。暖房負荷が大きく、蓄熱された温熱でこれ
をまかなえない場合は、フアン7の駆動に加え
てヒートポンプ3も暖房運転して蓄熱槽に温熱
を送り込む。
このようにして第4図の実施例にあつては、冷
房と暖房のピークカツトが効果的に行なえると共
に、ヒートポンプ3は熱源側空気として冷房時に
は低温の、また暖房時には高温の空気を適宜選択
して使用可能となるので、通常の空気熱源ヒート
ポンプによる空調方式に比べ、その成績係数を著
しく高めることができる。
次に、第5図に示した実施例について説明す
る。
本例は、空調ゾーン1と使用温度域で相変化可
能な蓄熱物質を封入した潜熱蓄熱槽2との間を該
蓄熱物質と熱交換しながら空気が循環するように
形成した空気循環路Aと、該蓄熱槽2と空気熱源
ヒートポンプ3の熱取出側熱交換器4との間を該
蓄熱物質と熱交換しながら空気が循環するように
形成した空気循環路Bと、該ヒートポンプの熱源
側熱交換器5に外気を排送気する熱源空気路Cに
対して切換可能に接続されかつ使用温度で相変化
可能な蓄熱物質を封入した潜熱蓄熱槽6にその蓄
熱物質と熱交換しながら空気が循環するようにし
た空気路Dと、該蓄熱槽6に外気がその蓄熱物質
と熱交換しながら循環するように形成した空気循
環路Eと、からなる冷暖房システムである。すな
わちこの第5図の実施例は、第4図における熱源
空気路Cに潜熱蓄熱槽6を付加した関係にあり、
この潜熱蓄熱槽6を付加した以外の基本構成は第
4図のものと実質的に同一であつて、第4図と同
じ引用数字で示したものは第4図で説明したのと
同じ内容である。図示の例において、潜熱蓄熱槽
6に封入する蓄熱物質としては第1表に示した低
温用または中温用潜熱蓄熱物質が好適である。こ
の潜熱蓄熱槽6の空気路Dと熱源空気路Cとの接
続は、Cの排気路にDの往路と還路が接続され、
Cの排気路と外気取入路との間には連結路25が
設けられ、開閉ダンパ26〜30が図示の関係を
もつて介装された例が示してある。またこの潜熱
蓄熱槽6の外気循環空気路Eにはフアン20が取
付けてある。
この第5図のシステムの運転態様を冷房期と暖
房期にわけて以下に説明する。
(1) 冷房期
夜間などの外気温度が低下している時間帯に
おいて、フアン20を駆動して蓄熱槽6にでき
るだけ低い温度の冷熱を貯えておく。また外気
温度が低下している時間帯においてヒートポン
プ3を冷房運転して第4図の場合と同様に蓄熱
槽2に冷熱を蓄熱する。(熱交換器5が凝縮器、
熱交換器4が蒸発器で、ダンパ26と29は
閉、ダンパ27,28,30は開として運転)。
外気温度の上昇と共にフアン20とヒートポン
プ3の運転を停止し、冷房が必要になつたとき
にフアン7だけを駆動することによつて蓄熱槽
2内の冷熱を循環路Aの空気に与えて冷房す
る。冷房負荷が大きく、蓄熱槽2の冷熱ではこ
れをまかなえない場合には、フアン7の駆動に
加えて、ヒートポンプ3も冷房運転する。その
さい、ダンパ27,28,30を閉、ダンパ2
6と29を開にして、熱源側熱交換器5(凝縮
器)と蓄熱槽6とを循環する空気路を形成し、
外気温度が低いときに予め貯えておいたこの蓄
熱槽6の冷熱を凝縮器に与え、ヒートポンプ3
の効率を高めるようにする。このヒートポンプ
3の凝縮熱は蓄熱槽6の温熱として溜るが、こ
れは先述のようにして、外気温度が低下したと
きにフアン20を駆動して外気に放熱し、冷熱
を貯える。
(2) 暖房期
昼間などのできるだけ外気温度が高い時間帯
において、フアン20を駆動して蓄熱槽6にで
きるだけ高い温度の温熱を貯えておく。また外
気温度が高い時間帯においてヒートポンプ3を
暖房運転して第4図の場合と同様に蓄熱槽2に
温熱を蓄熱する(熱交換器5が蒸発器、熱交換
器4が凝縮器でダンパ26と29は閉、ダンパ
27,28,30は開として運転)。外気温度
が低下したらフアン20、ヒートポンプ3の運
転を停止し、暖房が必要なときにフアン7だけ
を駆動することによつて蓄熱槽2内の温熱を循
環路Aの空気に与えて冷房する。暖房負荷が大
きくて蓄熱槽2の温熱ではこれをまかなえない
場合は、フアン7の駆動に加えて、ヒートポン
プ3も暖房運転する。そのさい、ダンパ27,
28,30を閉、ダンパ26と29を開にし
て、熱交換器5(蒸発器)と蓄熱槽6とを循環
する空気路を形成し、外気温度が高いときに予
め貯えておいたこの蓄熱槽6の温熱を蒸発器に
与え、ヒートポンプ3の効率を高めるようにす
る。この場合、蓄熱槽6には冷熱が溜るが、こ
れは外気温度が高くなつた時をみはからつてフ
アン20を駆動し、冷熱を外気に放熱すると同
時に温熱を貯える。
(3) 冷房と暖房が一日のうちで必要な場合
中間期シーズンや内部発熱の多い建物などに
おいて、冷房と暖房が一日のうちで必要な場合
があるが、このような場合は、フアン7の駆動
によつて空調ゾーン1内の排熱(温熱または冷
熱)を蓄熱槽2に貯え、この排熱によつて冷房
または暖房が実施できる。またヒートポンプ3
を駆動する場合にも、蓄熱槽6にその排熱(ヒ
ートポンプの駆動による温熱または冷熱)を貯
え、これを逆運転時に熱交換器5に供給するこ
とによつて高い成績係数のものでヒートポンプ
の運転が実施できることになる。
次に第6図の実施例について説明する。本例
は、空調ゾーン1と使用温度域で相変化可能な蓄
熱物質を封入した潜熱蓄熱槽2との間を該蓄熱物
質と熱交換しながら空気が循環するように形成し
た空気循環路Aと、該蓄熱槽2と空気熱源ヒート
ポンプ3の熱取出側熱交換器4との間を該蓄熱物
質と熱交換しながら空気も循環するように形成し
た空気循環路Bと、該ヒートポンプの熱源側熱交
換器5に外気を送排気する熱源空気路Cに対して
切換可能に接続されかつ使用温度で相変化可能な
蓄熱物質を封入した潜熱蓄熱槽6にその蓄熱物質
と熱交換しながら空気が循環するようにした空気
路Dと、該蓄熱槽6に外気がその蓄熱物質と熱交
換しながら循環するように形成した空気循環路E
と、前記空気循環路Aと前記空気循環路Eとを連
結するためのバイパス空気路Fおよび/または前
記空気循環路Bと前記空気路Dとを連結するため
のバイパス空気路Gと、からなる冷暖房システム
である。この第6図において、蓄熱槽6は6aと
6bの2槽が示してあるが、これは1槽であつて
も、また3槽以上であつてもよく、要は、バイパ
ス空気路Fおよび/またはGを第5図の実施例に
付加した関係にある。蓄熱槽6aおよび6bに封
入する潜熱蓄熱物質としは第1表の中温用潜熱蓄
熱物質が好適である。またこの蓄熱槽を複数設置
する場合に、低温用あるいは中温用潜熱蓄熱物質
をそれぞれ封入した構成にして一層効率のよいシ
ステムに構成することもできる。
以下にこの第6図の実施例の運転態様を説明す
る。
(1) 冷房期
(a) 夜間または早期(放熱運転と蓄熱運転)
外気温度が低下した時間帯において、フア
ン20aおよび20bを運転し、昼間冷房運
転時に蓄熱槽6a,6bに溜つた排熱(温
熱)を放出すると共に、できるだけ温度の低
い冷熱をこの蓄熱槽6a,6bに貯える。ま
た、ヒートポンプ3を冷房運転して蓄熱槽2
に冷熱を貯える。この放熱および蓄熱運転に
おいて、図示の位置にあるダンパ31〜39
のうち、閉じているダンパは31,32,3
3,34,39であり、開いているダンパは
35,36,37,38である。なお、ダン
パ35を閉、ダンパ34を開にして予備外気
口40からヒートポンプ3に直接外気を取入
れてもよい。第4〜5図の場合と同様に、蓄
熱槽2への冷熱蓄熱運転はヒートポンプ3の
成績係数を高い状態に維持して実施できる。
なお、ヒートポンプ3による冷房運転によつ
て蓄熱槽2の冷熱蓄熱がほぼ飽和に達しても
なお余力があれば(外気温度が低ければ)、
空気路Bをバイパス空気路Gに切換えて(ダ
ンパ38,32を閉、39を開)、蓄熱槽6
bに冷熱を貯えておくとよい。
(b) 昼間(冷房運転)
外気温度の上昇とともにフアン20a,2
0bの運転を停止する。しばらくの間(まだ
外気温度が低い朝方)は夜間と同様にヒート
ポンプ3を冷房運転して蓄熱槽2および/ま
たは蓄熱槽6bに冷熱を蓄熱するようにして
もよい。空調ゾーン1に冷房が必要となつた
ときに、フアン7を駆動し、蓄熱槽2の冷熱
を循環空気路Aの空気に与えて冷房する。冷
房負荷が小さいときはバイパス空気路Fを開
いて(ダンパ31を開)、夜間の冷気を貯え
た蓄熱槽6aの冷熱で冷房することもでき
る。このようにして、外気温度が高い場合
は、ヒートポンプ3の運転を停止した状態で
空調ゾーンの冷房が実施できる。もし、蓄熱
槽の冷熱だけで冷房負荷がまかなえない場合
は、フアン7の駆動に加えて、ヒートポンプ
3も冷房運転する。そのさいには、熱源空気
路Cを空気路Daおよび/または空気路Dbに
切換えて、ヒートポンプ3の凝縮器(熱交換
器5)に夜間の冷気で貯えた冷熱を供給して
ヒートポンプ3の効率を高めるようにする。
したがつて、この場合にも、外気温度が高く
てもヒートポンプ3は高い成績係数のもとで
運転できることになる。
(2) 暖房期
昼間の少しでも高い熱を、フアン20a,2
0bの運転によつて蓄熱槽6a,6bに貯え
る。空調ゾーン1の暖房に、この蓄熱槽の温熱
で十分な場合は、フアン20aを停止し、バイ
パス空気路Fによつてフアン7の駆動でこの温
熱を空調ゾーン1に導入する(ダンパ31は
閉)。暖房負荷が大きくなつたときは、フアン
7、フアン8、フアン9の駆動と共にヒートポ
ンプ3を運転する。そのさい、空気循環路Bを
蓄熱槽6bを循環させるバイパス空気路Gに、
また熱源空気路Cを蓄熱槽6aを循環させる空
気路Daに切換え、空気循環路Aは蓄熱槽6a
を循環させるバイパス空気路Fとすると、ヒー
トポンプ3は、先の冷房運転の場合と同様に、
熱交換器4を蒸発器、熱交換器5を凝縮器とし
て稼動することによつて暖房が実施できる。し
たがつてこの第6図の実施例では、第3図に示
したようなヒートポンプの使用が可能であり、
必ずしも冷暖房切換型のヒートポンプ(例えば
第2図のもの)を使用しなくてもすむ。
(3) 冷暖房が一日のうちで必要な場合
(a) 夜間や早朝の暖房時
夜間や早朝の外気温度が低下している時に
フアン20bの駆動により蓄熱槽6bの放熱
運転を行ない、暖房は蓄熱槽6aに貯えられ
ていた昼間のヒートポンプの排熱をバイパス
空気路Fによつてフアン7の駆動で取入れる
ことによつて行なう。
(b) 暖房負荷が大きくなつた場合
ヒートポンプ3を運転し、蒸発器(熱交換
器4)側の排熱(冷熱)をフアン8によつて
蓄熱槽2に貯えながら、凝縮器(熱交換器
5)の温熱を空気路Daを経てフアン9によ
つて送り、この温熱をバイパス空気路Fを経
てフアン7によつて空調ゾーンに送つて暖房
する。
(c) 昼間の冷房運転(冷房負荷が小さいとき)
前記(b)のヒートポンプの運転により蓄熱槽
2に貯めた冷熱をフアン7の駆動だけで空気
循環路Aによつて空調ゾーン1を冷房する。
なお、フアン9,20a,20bを運転して
昼間の温度の高い外気を蓄熱槽6a,6bに
温熱として貯え、先の暖房に備えておく。
(d) 昼間の冷房運転(冷房負荷が大きいとき)
蓄熱槽2の冷熱だけでは冷房負荷がまかな
えない場合に、ヒートポンプ3を運転し、そ
の蒸発器4の冷熱を蓄熱槽2を介して空調ゾ
ーン1に送り込む。また凝縮器5の温熱は蓄
熱槽6aおよび/または蓄熱槽6bに貯え
る。
以上のようにして本発明によると、空気を熱源
とするヒートポンプによる冷暖房において、空気
の循環路を切換えるだけで冷房には低温の熱源空
気を、また暖房には高温の熱源空気を、外部熱源
機器を用いることなく、供給可能となり、ヒート
ポンプの小型と成績係数の向上が省設備的に達成
され、また空調負荷がピークに達するような時間
帯にあつてもその電力消費量はわずかで済むこと
になるなど、近時の省エネルギー冷暖房要請に対
して大きな貢献ができる。[Table] The air source heat pump used in the present invention is conveniently a compression type as shown in FIGS. 2 and 3, for example. In Fig. 2, 5 is a heat exchanger on the heat source side, which exchanges heat between heat source air and the refrigerant, and 4 is a heat exchanger on the heat extraction side, which exchanges heat between circulating air and the refrigerant. , 15 is an expansion valve, 16 is a four-way valve, and 17 is a compressor. By switching the four-way valve 16, the heat exchanger 5 can be used as an evaporator, the heat exchanger 4 can be used as a condenser, or as a heat exchanger. An example is shown in which 5 is a condenser and heat exchanger 4 can function as an evaporator.
Further, in FIG. 3, 18 indicates a liquid receiver, 19 indicates a filter dryer, and shows an example in which the heat exchanger 5 functions as a condenser and the heat exchanger 4 functions as an evaporator. The present invention uses such a latent heat storage tank, a heat storage material, and an air heat source heat pump to form a heating and cooling system that achieves the above-mentioned objective by forming a specific air circulation path. The details will be specifically explained below based on the embodiments shown in the drawings. The embodiment shown in FIG. 4 is configured so that air circulates between an air conditioning zone 1 and a latent heat storage tank 2 filled with a heat storage material that can undergo a phase change in the operating temperature range while exchanging heat with the heat storage material. an air circulation path A formed so that air circulates between the heat storage tank 2 and the heat extraction side heat exchanger 4 of the air heat source heat pump 3 while exchanging heat with the heat storage material; It is a heating and cooling system consisting of As the heat storage material sealed in the latent heat storage tank 2, it is preferable to use the latent heat storage materials for low temperatures shown in Table 1 above. In the figure, 7 is a fan of the air circulation path A, 8 is a fan of the air circulation path B, C is a heat source air path that sends and exhausts outside air to the heat source side heat exchanger 5 of the heat pump 3, and the fan 9 is a fan of the air circulation path B. This is interposed. The operating mode of the embodiment shown in FIG. 4 will be explained below. (1) Cooling period During times when the outside air temperature is low, such as at night, the heat pump 3 is operated with the heat exchanger 5 as a condenser and the heat exchanger 4 as an evaporator, and cold heat is stored in the heat storage tank 2. As the outside air temperature rises, the operation of the heat pump 3 is stopped, and when cooling is required, only the fan 7 is driven to provide cold heat in the heat storage tank 2 to the air in the circulation path A for cooling. When the cooling load is large and cannot be covered by the stored cold heat, in addition to driving the fan 7, the heat pump 3 is also operated for cooling to send cold heat to the heat storage tank 2. (2) Heating period During a time period such as during the daytime when the outside air temperature is as high as possible, the heat pump 3 is operated with the heat exchanger 5 as an evaporator and the heat exchanger 4 as a condenser, and warm heat is stored in the heat storage tank 2. The operation of the heat pump 3 is stopped during times when the outside air temperature is low, and when heating is required, the fan alone is driven to apply the heat in the heat storage tank 2 to the air in the circulation path A for heating. If the heating load is large and cannot be covered by the stored heat, the heat pump 3 is also operated for heating in addition to driving the fan 7 to send the heat to the heat storage tank. In this way, in the embodiment shown in FIG. 4, the peaks of cooling and heating can be effectively cut, and the heat pump 3 appropriately selects low-temperature air during cooling and high-temperature air during heating as the heat source side air. This makes it possible to significantly increase the coefficient of performance compared to air conditioning systems using ordinary air-source heat pumps. Next, the embodiment shown in FIG. 5 will be described. This example has an air circulation path A formed so that air circulates between an air conditioning zone 1 and a latent heat storage tank 2 filled with a heat storage material that can undergo a phase change in the operating temperature range while exchanging heat with the heat storage material. , an air circulation path B formed so that air circulates between the heat storage tank 2 and the heat extraction side heat exchanger 4 of the air heat source heat pump 3 while exchanging heat with the heat storage material, and a heat source side heat exchanger 4 of the heat pump. Air is exchanged with the heat storage material while exchanging heat with the latent heat storage tank 6, which is switchably connected to the heat source air path C that exhausts and supplies outside air to the exchanger 5, and which is filled with a heat storage material that can change its phase at the operating temperature. This is a heating and cooling system consisting of an air path D configured to circulate, and an air circulation path E formed so that outside air circulates through the heat storage tank 6 while exchanging heat with the heat storage material. That is, the embodiment shown in FIG. 5 has a relationship in which a latent heat storage tank 6 is added to the heat source air path C in FIG.
The basic configuration other than the addition of the latent heat storage tank 6 is substantially the same as that in Fig. 4, and the same reference numbers as in Fig. 4 refer to the same contents as explained in Fig. 4. be. In the illustrated example, the latent heat storage materials for low temperature or medium temperature shown in Table 1 are suitable as the heat storage materials sealed in the latent heat storage tank 6. The connection between the air path D of the latent heat storage tank 6 and the heat source air path C is such that the outgoing path and return path of D are connected to the exhaust path of C,
A connecting passage 25 is provided between the exhaust passage C and the outside air intake passage, and an example is shown in which opening/closing dampers 26 to 30 are interposed in the relationship shown. Further, a fan 20 is attached to the outside air circulation path E of the latent heat storage tank 6. The operating mode of the system shown in FIG. 5 will be explained below by dividing it into a cooling period and a heating period. (1) Cooling period During times when the outside air temperature is low, such as at night, the fan 20 is driven to store cold heat at the lowest possible temperature in the heat storage tank 6. Also, during the time zone when the outside air temperature is low, the heat pump 3 is operated for cooling to store cold heat in the heat storage tank 2 as in the case of FIG. 4. (Heat exchanger 5 is a condenser,
Heat exchanger 4 is an evaporator, dampers 26 and 29 are closed, and dampers 27, 28, and 30 are open).
The operation of the fan 20 and the heat pump 3 is stopped as the outside air temperature rises, and when cooling is required, only the fan 7 is driven to provide cold heat in the heat storage tank 2 to the air in the circulation path A for cooling. do. When the cooling load is large and cannot be covered by the cold heat of the heat storage tank 2, in addition to driving the fan 7, the heat pump 3 is also operated for cooling. At that time, close dampers 27, 28, and 30, and damper 2
6 and 29 are opened to form an air path that circulates between the heat source side heat exchanger 5 (condenser) and the heat storage tank 6,
When the outside air temperature is low, the cold heat stored in the heat storage tank 6 is applied to the condenser, and the heat pump 3
to increase efficiency. The condensed heat of the heat pump 3 is stored as warm heat in the heat storage tank 6, and as described above, when the outside air temperature drops, the fan 20 is driven to radiate heat to the outside air and store cold heat. (2) Heating period During a time period such as daytime when the outside air temperature is as high as possible, the fan 20 is driven to store heat at the highest possible temperature in the heat storage tank 6. In addition, during times when the outside air temperature is high, the heat pump 3 is operated for heating to store warm heat in the heat storage tank 2 as in the case shown in FIG. and 29 are closed, and the dampers 27, 28, and 30 are open). When the outside air temperature drops, the operation of the fan 20 and the heat pump 3 is stopped, and when heating is required, only the fan 7 is driven, thereby applying the warm heat in the heat storage tank 2 to the air in the circulation path A for cooling. If the heating load is so large that the heat of the heat storage tank 2 cannot cover it, in addition to driving the fan 7, the heat pump 3 is also operated for heating. At that time, damper 27,
28 and 30 are closed, and dampers 26 and 29 are opened to form an air path that circulates between the heat exchanger 5 (evaporator) and the heat storage tank 6, and this heat storage previously stored when the outside temperature is high is formed. Heat from the tank 6 is applied to the evaporator to increase the efficiency of the heat pump 3. In this case, cold heat accumulates in the heat storage tank 6, and when the outside air temperature becomes high, the fan 20 is driven to radiate the cold heat to the outside air and at the same time store warm heat. (3) When cooling and heating are required during the day In mid-season or in buildings with a lot of internal heat generation, cooling and heating may be necessary during the day. 7, exhaust heat (hot or cold) in the air conditioning zone 1 is stored in the heat storage tank 2, and this exhaust heat can be used for cooling or heating. Also heat pump 3
When driving a heat pump, the waste heat (hot or cold heat generated by driving the heat pump) is stored in the heat storage tank 6, and this is supplied to the heat exchanger 5 during reverse operation. Driving will be possible. Next, the embodiment shown in FIG. 6 will be described. This example has an air circulation path A formed so that air circulates between an air conditioning zone 1 and a latent heat storage tank 2 filled with a heat storage material that can undergo a phase change in the operating temperature range while exchanging heat with the heat storage material. , an air circulation path B formed to circulate air while exchanging heat with the heat storage material between the heat storage tank 2 and the heat extraction side heat exchanger 4 of the air heat source heat pump 3; Air circulates through a latent heat storage tank 6 which is switchably connected to a heat source air path C that sends and exhausts outside air to the exchanger 5 and which is filled with a heat storage material that can change its phase at the operating temperature while exchanging heat with the heat storage material. and an air circulation path E formed so that outside air circulates through the heat storage tank 6 while exchanging heat with the heat storage material.
and a bypass air path F for connecting the air circulation path A and the air circulation path E and/or a bypass air path G for connecting the air circulation path B and the air path D. This is a heating and cooling system. In FIG. 6, two heat storage tanks 6a and 6b are shown, but this may be one tank or three or more tanks.In short, the bypass air path F and/or Alternatively, G is added to the embodiment of FIG. 5. As the latent heat storage material to be sealed in the heat storage tanks 6a and 6b, the medium temperature latent heat storage materials shown in Table 1 are suitable. Further, when a plurality of heat storage tanks are installed, a more efficient system can be constructed by encapsulating a latent heat storage material for low temperature or medium temperature. The operating mode of the embodiment shown in FIG. 6 will be explained below. (1) Cooling period (a) Nighttime or early stage (heat dissipation operation and heat storage operation) During the hours when the outside air temperature has decreased, the fans 20a and 20b are operated to release the waste heat accumulated in the heat storage tanks 6a and 6b during the daytime cooling operation. The heat storage tanks 6a and 6b store cold heat as low as possible. In addition, the heat pump 3 is operated to cool the heat storage tank 2.
stores cold energy. In this heat dissipation and heat storage operation, the dampers 31 to 39 in the positions shown in the figure
Among them, the dampers that are closed are 31, 32, and 3.
3, 34, and 39, and open dampers are 35, 36, 37, and 38. Note that the damper 35 may be closed, the damper 34 may be opened, and outside air may be taken directly into the heat pump 3 from the preliminary outside air port 40. As in the case of FIGS. 4 and 5, the cold heat storage operation in the heat storage tank 2 can be performed while maintaining the coefficient of performance of the heat pump 3 in a high state.
Note that even if the cold heat storage in the heat storage tank 2 reaches almost saturation due to the cooling operation by the heat pump 3, if there is still surplus power (if the outside air temperature is low),
Switch the air path B to the bypass air path G (close the dampers 38 and 32, open the damper 39), and open the heat storage tank 6.
It is a good idea to store cold energy in b. (b) Daytime (cooling operation) As the outside temperature increases, the fans 20a and 2
Stop operation of 0b. For a while (in the morning when the outside air temperature is still low), the heat pump 3 may be operated for cooling in the same way as at night to store cold heat in the heat storage tank 2 and/or the heat storage tank 6b. When cooling is required in the air-conditioning zone 1, the fan 7 is driven to apply cold heat from the heat storage tank 2 to the air in the circulating air path A for cooling. When the cooling load is small, the bypass air passage F is opened (the damper 31 is opened), and cooling can be performed using the cold heat of the heat storage tank 6a that stores cold air at night. In this way, when the outside air temperature is high, the air conditioning zone can be cooled while the operation of the heat pump 3 is stopped. If the cooling load cannot be covered only by the cold heat of the heat storage tank, in addition to driving the fan 7, the heat pump 3 is also operated for cooling. At that time, the heat source air path C is switched to the air path Da and/or the air path Db, and the cold heat stored in the night cold air is supplied to the condenser (heat exchanger 5) of the heat pump 3 to improve the efficiency of the heat pump 3. Try to increase it.
Therefore, in this case as well, the heat pump 3 can be operated with a high coefficient of performance even if the outside air temperature is high. (2) Heating period Fans 20a and 2
The heat is stored in the heat storage tanks 6a and 6b by the operation of 0b. When the heat of this heat storage tank is sufficient for heating the air conditioning zone 1, the fan 20a is stopped, and this heat is introduced into the air conditioning zone 1 by the drive of the fan 7 through the bypass air path F (the damper 31 is closed). ). When the heating load becomes large, the heat pump 3 is operated together with the fans 7, 8, and 9. At that time, the air circulation path B is connected to the bypass air path G that circulates the heat storage tank 6b.
In addition, the heat source air path C is switched to the air path Da that circulates the heat storage tank 6a, and the air circulation path A is changed to the air path Da that circulates the heat storage tank 6a.
Assuming that the bypass air path F circulates
Heating can be performed by operating the heat exchanger 4 as an evaporator and the heat exchanger 5 as a condenser. Therefore, in the embodiment shown in FIG. 6, it is possible to use a heat pump as shown in FIG.
It is not necessary to use a heating/cooling switching type heat pump (for example, the one shown in FIG. 2). (3) When heating and cooling is required during the day (a) During heating at night or early in the morning When the outside temperature is low at night or early in the morning, the heat storage tank 6b is operated to dissipate heat by driving the fan 20b, and the heating is not performed. Exhaust heat from the heat pump during the daytime stored in the heat storage tank 6a is taken in through the bypass air path F by driving the fan 7. (b) When the heating load becomes large The heat pump 3 is operated and the exhaust heat (cold heat) from the evaporator (heat exchanger 4) is stored in the heat storage tank 2 by the fan 8 while the condenser (heat exchanger 5) is sent by the fan 9 via the air path Da, and this heat is sent to the air conditioning zone by the fan 7 via the bypass air path F for heating. (c) Daytime cooling operation (when the cooling load is small) The cold heat stored in the heat storage tank 2 by the operation of the heat pump in (b) above is used to cool the air conditioning zone 1 through the air circulation path A by simply driving the fan 7. .
Note that the fans 9, 20a, and 20b are operated to store high-temperature outside air during the day in the heat storage tanks 6a, 6b as warm heat in preparation for future heating. (d) Daytime cooling operation (when the cooling load is large) When the cooling load cannot be covered by the cold heat of the heat storage tank 2 alone, the heat pump 3 is operated and the cold heat of the evaporator 4 is sent to the air conditioning zone via the heat storage tank 2. Send it to 1. Further, the heat from the condenser 5 is stored in a heat storage tank 6a and/or a heat storage tank 6b. As described above, according to the present invention, in heating and cooling using a heat pump that uses air as a heat source, by simply switching the air circulation path, low-temperature heat source air is supplied for cooling, and high-temperature heat source air is supplied to the external heat source device for heating. This makes it possible to supply heat pumps without the use of air conditioners, making the heat pump smaller and improving its coefficient of performance in an equipment-saving manner.Also, even during times when the air conditioning load is at its peak, its power consumption is minimal. This will make a major contribution to the recent demand for energy-saving heating and cooling systems.
第1図は本発明で用いる潜熱蓄熱槽の1例を示
す略断面図、第2図は本発明で用いるヒートポン
プの1例を示す回路図、第3図は同じくヒートポ
ンプの他の例を示す回路図、第4図は本発明の1
実施例を示す機器配置系統図、第5図は同じく他
の実施例を示す機器配置系統図、第6図は同じく
他の実施例を示す機器配置系統図である。
1……空調ゾーン、2……潜熱蓄熱槽(低温
用)、3……ヒートポンプ、4……熱取出側熱交
換器、5……熱源側熱交換器、6……潜熱蓄熱槽
(中温用)、7,8,9……フアン。
FIG. 1 is a schematic cross-sectional view showing one example of a latent heat storage tank used in the present invention, FIG. 2 is a circuit diagram showing one example of a heat pump used in the present invention, and FIG. 3 is a circuit diagram showing another example of the heat pump. FIG.
FIG. 5 is an equipment arrangement system diagram showing an embodiment, FIG. 5 is an equipment arrangement system diagram showing another embodiment, and FIG. 6 is an equipment arrangement system diagram showing another embodiment. 1...Air conditioning zone, 2...Latent heat storage tank (for low temperature), 3...Heat pump, 4...Heat extraction side heat exchanger, 5...Heat source side heat exchanger, 6...Latent heat storage tank (for medium temperature) ), 7, 8, 9... Juan.
Claims (1)
熱物質を封入した潜熱蓄熱槽2との間を該蓄熱物
質と熱交換しながら空気が循環するように形成し
た空気循環路Aと、該蓄熱槽2と空気熱源ヒート
ポンプ3の熱取出側熱交換器4との間を該蓄熱物
質と熱交換しながら空気が循環するように形成し
た空気循環路Bと、からなる冷暖房システム。 2 空調ゾーン1と使用温度域で相変化可能な蓄
熱物質を封入した潜熱蓄熱槽2との間を該蓄熱物
質と熱交換しながら空気が循環するように形成し
た空気循環路Aと、該蓄熱槽2と空気熱源ヒート
ポンプ3の熱取出側熱交換器4との間を該蓄熱物
質と熱交換しながら空気が循環するように形成し
た空気循環路Bと、該ヒートポンプの熱源側熱交
換器5に外気を送排気する熱源空気路Cに対して
切換可能に接続されかつ使用温度で相変化可能な
蓄熱物質を封入した潜熱蓄熱槽6にその蓄熱物質
と熱交換しながら空気が循環するようにした空気
路Dと、該蓄熱槽6に外気がその蓄熱物質と熱交
換しながら循環するように形成した空気循環路E
と、からなる冷暖房システム。 3 空調ゾーン1と使用温度域で相変化可能な蓄
熱物質を封入した潜熱蓄熱槽2との間を該蓄熱物
質と熱交換しながら空気が循環するように形成し
た空気循環路Aと、該蓄熱槽2と空気熱源ヒート
ポンプ3の熱取出側熱交換器4との間を該蓄熱物
質と熱交換しながら空気が循環するように形成し
た空気循環路Bと、該ヒートポンプの熱源側熱交
換器5に外気を送排気する熱源空気路Cに対して
切換可能に接続されかつ使用温度で相変化可能な
蓄熱物質を封入した潜熱蓄熱槽6にその蓄熱物質
と熱交換しながら空気が循環するようにした空気
路Dと、該蓄熱槽6に外気がその蓄熱物質と熱交
換しながら循環するように形成した空気循環路E
と、前記空気循環路Aと前記空気循環路Eとを連
結するためのバイパス空気路Fおよび/または前
記空気循環路Bと前記空気路Dとを連結するため
のバイパス空気路Gと、からなる冷暖房システ
ム。[Scope of Claims] 1. Air circulation formed so that air circulates between the air conditioning zone 1 and the latent heat storage tank 2 in which a heat storage material that can undergo a phase change in the operating temperature range is sealed while exchanging heat with the heat storage material. A heating and cooling system consisting of a path A and an air circulation path B formed so that air circulates between the heat storage tank 2 and the heat extraction side heat exchanger 4 of the air heat source heat pump 3 while exchanging heat with the heat storage material. system. 2. An air circulation path A formed so that air circulates between the air conditioning zone 1 and a latent heat storage tank 2 filled with a heat storage material that can undergo a phase change in the operating temperature range while exchanging heat with the heat storage material; An air circulation path B formed so that air circulates between the tank 2 and the heat extraction side heat exchanger 4 of the air heat source heat pump 3 while exchanging heat with the heat storage material, and the heat source side heat exchanger 5 of the heat pump. The latent heat storage tank 6 is switchably connected to the heat source air path C that sends and exhausts outside air to the heat storage tank 6, which is sealed with a heat storage material that can change its phase at the operating temperature, so that the air circulates while exchanging heat with the heat storage material. and an air circulation path E formed in the heat storage tank 6 so that outside air circulates while exchanging heat with the heat storage material.
A heating and cooling system consisting of. 3. An air circulation path A formed so that air circulates between the air conditioning zone 1 and a latent heat storage tank 2 filled with a heat storage material that can undergo a phase change in the operating temperature range while exchanging heat with the heat storage material; An air circulation path B formed so that air circulates between the tank 2 and the heat extraction side heat exchanger 4 of the air heat source heat pump 3 while exchanging heat with the heat storage material, and the heat source side heat exchanger 5 of the heat pump. The latent heat storage tank 6 is switchably connected to the heat source air path C that sends and exhausts outside air to the heat storage tank 6, which is sealed with a heat storage material that can change its phase at the operating temperature, so that the air circulates while exchanging heat with the heat storage material. and an air circulation path E formed in the heat storage tank 6 so that outside air circulates while exchanging heat with the heat storage material.
and a bypass air path F for connecting the air circulation path A and the air circulation path E and/or a bypass air path G for connecting the air circulation path B and the air path D. Heating and cooling system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7629882A JPS58193034A (en) | 1982-05-07 | 1982-05-07 | heating and cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7629882A JPS58193034A (en) | 1982-05-07 | 1982-05-07 | heating and cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58193034A JPS58193034A (en) | 1983-11-10 |
JPH0147697B2 true JPH0147697B2 (en) | 1989-10-16 |
Family
ID=13601452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7629882A Granted JPS58193034A (en) | 1982-05-07 | 1982-05-07 | heating and cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58193034A (en) |
-
1982
- 1982-05-07 JP JP7629882A patent/JPS58193034A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58193034A (en) | 1983-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5211029A (en) | Combined multi-modal air conditioning apparatus and negative energy storage system | |
US4569207A (en) | Heat pump heating and cooling system | |
JPH10223442A (en) | Substation equipment cooling system and its operation method | |
JPH0147698B2 (en) | ||
CN102734878A (en) | High-efficiency dual-temperature air source heat pump assembly dedicated to capillary radiation air-conditioning system | |
JPH0147697B2 (en) | ||
JPS6367633B2 (en) | ||
JPS5960164A (en) | Heat storage type air conditioner | |
JPH10311614A (en) | Thermal storage cooling system | |
JP3502155B2 (en) | Thermal storage type air conditioner | |
CN222165295U (en) | Double-temperature cabinet | |
JP3654017B2 (en) | Multi-function heat pump system | |
CN223370557U (en) | Vehicles, battery management devices, and heat pump units | |
JPS6256426B2 (en) | ||
JPH04268143A (en) | air conditioner | |
JPH0636435Y2 (en) | A heat storage system using nighttime electricity using an individual air conditioner that penetrates the outer wall | |
JPS59225267A (en) | Supply system of energy in supermarket and use thereof | |
JPS59134469A (en) | Air-conditioning hot-water supply heater | |
KR100634812B1 (en) | Electric generation air condition system and the control method for the same | |
JPS6018895B2 (en) | Solar heat pump air conditioner | |
JPH11211259A (en) | Heat storage heat pump air conditioner | |
JPH11173689A (en) | Thermal storage cooling system | |
JPS62280551A (en) | Heat storage air conditioner | |
JPH08303900A (en) | Heat storage type heat pump air conditioner and operation method thereof | |
JP3370478B2 (en) | Air conditioning system |