JPH0146585B2 - - Google Patents

Info

Publication number
JPH0146585B2
JPH0146585B2 JP56093766A JP9376681A JPH0146585B2 JP H0146585 B2 JPH0146585 B2 JP H0146585B2 JP 56093766 A JP56093766 A JP 56093766A JP 9376681 A JP9376681 A JP 9376681A JP H0146585 B2 JPH0146585 B2 JP H0146585B2
Authority
JP
Japan
Prior art keywords
less
water turbine
cavitation
turbine runner
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56093766A
Other languages
Japanese (ja)
Other versions
JPS57210958A (en
Inventor
Takashi Ebitani
Masao Yamamoto
Mitsuo Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56093766A priority Critical patent/JPS57210958A/en
Publication of JPS57210958A publication Critical patent/JPS57210958A/en
Publication of JPH0146585B2 publication Critical patent/JPH0146585B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐キヤビテーシヨン・エロージヨン
性に優れた水車ランナに関するものである。 近年、火力、原子力発電の単機容量は増大する
傾向にあるが、単機容量の大きい火力、原子力発
電所では、瞬時のピーク・ロードに対処すること
は困難である。このようなピーク・ロードの対策
のひとつとして、比較的短時間で電力の調整が可
能な水力発電、特に揚水発電所の建設が盛んに行
なわれるようになつて来た。 この揚水発電機に使用される水車ランナは昼間
の発電用と、夜間の揚水用との両機能を有するも
のであるが、開発地点の有効利用、単機容量に対
する建設費の低減などの観点からポンプ水車は、
高落差、高揚程、大容量化する傾向にある。 従来、水車ランナ用材料としては、主に13クロ
ム鋼が用いられていたが、高落差、高揚程、大容
量化の傾向の中で、使用条件は一層厳しくなつて
きている。即ち水流の高速化により、第1図に斜
視的に、又第2図に断面的に示す如き水車ランナ
の羽根3の表面にキヤビテイが発生し、これが崩
壊するときに衝撃圧力を生じ、羽根表面を損耗す
るキヤビテーシヨン・エロージヨンが発生する。 なお図中1はランナコーン、2はクラウン、3
はランナ羽根、4はシユラウド、5はガイドベー
ン6はステーベーンをそれぞれ示す。 このため、将来一層の高落差、高揚程、大容量
化の傾向の中で、更に機械的強度と靭性の改良と
共に、特に耐キヤビテーシヨン・エロージヨン性
に優れた水車ランナの開発が望まれている。 本発明は、かかる要望に鑑みなされたもので、
水車ランナとして高い機械的強度と靭性を有し、
特に耐キヤビテーシヨン・エロージヨン性に優れ
たマルテンサイト相からなるステンレス鋳鋼で構
成された水車ランナを提供する事を目的とする。 即ち本発明は、重量比で0.1%以下の炭素、シ
リコン1.0%以下、マンガン2.0%を越え9.0%ま
で、ニツケル0.5〜8.0%、クロム11.0〜14.0%、
モリブデン2.0%以下、残部が実質的に鉄あるい
はさらに0.01〜0.1%のニオブ、0.1〜0.5%の銅、
0.05〜0.2%のパナジウムの1種または2種以上
を含み、かつMn+Ni量が6%以上のマルテンサ
イト相からなるステンレス鋳鋼からなることを特
徴とする水車ランナである。 以下本発明を詳細に説明する。 本発明の水車ランナにおいて、各成分の添加理
由およびその成分限定理由について次に説明す
る。 炭素Cは熱処理によつてマトリツクスをマルテ
ンサイト化して強度を向上させる作用をなすもの
である。なお炭素の過剰の添加は著しく靭性を低
下させることから、含有量の上限は0.1%とした。 シリコンSiは溶解時にマンガンと共に脱酸剤と
して添加するもので、また鋳鋼の湯流れ性及び靭
性を向上させる作用も併せて有するものである。
なおシリコンの過剰添加は靭性を害するため、含
有量の上限を1.0%とした。 マンガンMnは、本発明ステンレス鋳鋼におい
て耐キヤビテーシヨン・エロージヨン性を向上さ
せるのに特に重要な作用をなす元素であると共に
脱酸剤としての作用もなすものである。ここでマ
ンガンの含有量を2.0%を越え9.0%までに限定し
た理由は2.0%以下では効果が顕著でなく、また
9.0%を越えると、イプシロン相やオーステナイ
ト相があらわれて耐力の低下を来たすからであ
る。 ニツケルNiはマトリツクスとなる鉄に固溶し
て焼入れ性を改善すると共に、靭性を増す作用を
なす元素である。ニツケルの割有量を0.5〜8.0%
としたのは、0.5%未満では添加の効果が少なく、
また8.0を越えると硬さが増大し、加工性を著し
く悪くすると共に、残留オーステナイト量が増大
して耐力が低下するからである。 クロムCrは前記ニツケルとの共存において耐
食性を向上させると共に、鋳鋼の強度を向上させ
る作用をなす元素である。クロムの含有量を11.0
〜14.0%の範囲に限定した理由は、11.0%未満で
は添加効果が十分でなく、また14.0%を越える過
剰添加ではニツケル添加量との関係でマトリツク
ス中にデルタフエライトを多量に生成して耐キヤ
ビテーシヨン・エロージヨン性を害するからであ
る。 モリブデンMoは炭素との親和力が強く、硬い
炭化物を生成して鋳鋼の強度を向上させると共に
オーステナイト中に固溶して鋳鋼の焼入れ性を改
善し、しかもマルテンサイトの焼戻し軟化抵抗を
大きくする上、焼戻し脆性を防止するなどの作用
をなすものである。このモリブデンの含有量は、
2.0%を越えると衝撃値を低下させるので、これ
以下に抑える必要がある。 ニオブNbは、結晶粒を微細化して耐力を向上
させる作用をなすものである。ニオブ0.01%未満
では、添加効果が十分でなく、また0.1%を越え
ると、マトリツクス中にフエライトを多量に生成
して耐キヤビテーシヨン・エロージヨン性を害す
るため、その含有範囲を0.01〜0.1%に限定した。 銅Cuは、耐キヤビテーシヨン・エロージヨン
性を向上させる作用をなすものである。銅0.1%
未満では、添加効果が十分でなく、また0.5%を
越えると、靭性が劣化するため、その含有範囲を
0.1〜0.5%に限定した。 パナジウムVは、結晶粒を微細化して耐力を向
上させる作用をなすものである。パナジウムが
0.05%未満では、添加効果が十分でなく、また、
0.2%を越えると、マトリツクス中にフエライト
を多量に生成して耐キヤビテーシヨン・エロージ
ヨン性を害するため、その含有範囲を0.05〜0.2
%に限定した。 また本発明においてMn+Ni量を6%以上とし
たのは、6%未満で充分な耐キヤビテーシヨン・
エロージヨン性が得られないためである。 なお、本発明においてV、Nb、Cuなどの元素
を含まない場合にはMn+Ni量が7%以上が望ま
しい。またニオブNb、銅Cu、パナジウムVなど
の元素の他にハフニウムHf、タンタルTa、ジル
コニウムZr、チタンTiなどの元素を添加しても
同様の効果が得られる。 本発明水車ランナの製造方法を簡単に説明する
と、溶解法として、例えば高周波溶解、電弧炉に
よる溶解などの方法で行ない、また鋳造は砂型鋳
造、金型鋳造などの通常の鋳造法で行なうことが
できる。 また鋳造後、形状、大きさにより異なるが割れ
を生じない速度で冷却し、1000〜1100℃からの焼
入とさらに500〜700℃の焼戻しを行なうことが好
ましい。 次に本発明の実施例について説明し、併せて本
発明の効果を確認するため、比較例についても説
明する。 実施例 高周波誘導溶解炉で第1表No.1〜No.15に示す成
分組成の水車ランナモデルを溶製した後、改めて
1050℃で均質化処理したのち、焼戻しに相当する
650℃の熱処理を施した。このようにして得られ
た水車ランナモデルから試験片を切り出し、引張
強さ、耐力、伸び、絞り、衝撃値(シヤルピー
2V、0℃)、ピツカース硬さ、およびキヤビテー
シヨン・エロージヨン指数(C.E.I.)の各特性を
調べた。 その結果を第2表に示す。 なお、キヤビテーシヨン・エロージヨン試験は
電歪振動法により、周波数6.5KHz、振幅100μm、
25℃純水中で3時間行ない、次式によりキヤビテ
ーシヨン・エロージヨン指数を求めた。 C.E.I.=キヤビテーシヨン・エロージヨン
試験減量(グラム)/試験時間(分)×比重×106 比較例 第1表のNo.16〜No.22に示す成分組成の試料を用
いて、上記実施例と同一の条件で溶解、鋳造およ
び熱処理を行なつた。 このようにして得られた比較試料についても同
様に各種の特性を調べ、その結果を第2表に併記
した。
The present invention relates to a water turbine runner with excellent cavitation and erosion resistance. In recent years, the capacity of thermal and nuclear power plants has been increasing, but it is difficult for thermal and nuclear power plants with large capacities to handle instantaneous peak loads. As a measure against such peak loads, construction of hydroelectric power generation, especially pumped storage power plants, which can adjust power in a relatively short period of time, has become popular. The water turbine runner used in this pumped storage generator has the functions of both daytime power generation and nighttime water pumping. The water wheel is
There is a trend toward higher head, higher head, and larger capacity. Traditionally, 13 chromium steel has been mainly used as a material for water turbine runners, but with the trend toward higher heads, higher heads, and larger capacities, the conditions for use are becoming more severe. That is, as the water flow increases in speed, a cavity is generated on the surface of the blade 3 of the water turbine runner, as shown in perspective in Fig. 1 and cross-sectionally in Fig. 2, and when this cavity collapses, impact pressure is generated and the blade surface is Cavitation/erosion occurs, which causes wear and tear. In the figure, 1 is the runner cone, 2 is the crown, and 3 is the runner cone.
4 represents a shroud, 5 represents a guide vane, and 6 represents a stay vane. For this reason, with the trend towards higher heads, higher heads, and larger capacities in the future, it is desired to develop water turbine runners that have further improved mechanical strength and toughness, as well as particularly excellent cavitation and erosion resistance. The present invention was made in view of such demands,
It has high mechanical strength and toughness as a water turbine runner.
The object of the present invention is to provide a water turbine runner made of cast stainless steel having a martensitic phase that has particularly excellent cavitation and erosion resistance. That is, the present invention includes carbon of 0.1% or less, silicon of 1.0% or less, manganese of more than 2.0% and up to 9.0%, nickel of 0.5 to 8.0%, chromium of 11.0 to 14.0%,
Molybdenum 2.0% or less, balance substantially iron or even 0.01-0.1% niobium, 0.1-0.5% copper,
This water turbine runner is characterized in that it is made of stainless steel cast stainless steel containing 0.05 to 0.2% of one or more types of panadium and a martensitic phase containing 6% or more of Mn+Ni. The present invention will be explained in detail below. In the water turbine runner of the present invention, the reason for adding each component and the reason for limiting the components will be explained below. Carbon C functions to improve strength by converting the matrix into martensite through heat treatment. Note that since adding too much carbon significantly reduces toughness, the upper limit of the content was set at 0.1%. Silicon is added as a deoxidizing agent along with manganese during melting, and also has the effect of improving the flowability and toughness of cast steel.
Since excessive addition of silicon impairs toughness, the upper limit of silicon content was set at 1.0%. Manganese (Mn) is an element that plays a particularly important role in improving the cavitation and erosion resistance of the stainless steel cast steel of the present invention, and also acts as a deoxidizing agent. The reason for limiting the manganese content to more than 2.0% and up to 9.0% is that the effect is not significant below 2.0%, and
This is because if it exceeds 9.0%, epsilon phase and austenite phase will appear, resulting in a decrease in yield strength. Nickel Ni is an element that improves hardenability by forming a solid solution in the iron matrix, and also increases toughness. Increase the amount of nickel from 0.5 to 8.0%
The reason for this is that the effect of adding less than 0.5% is small.
Moreover, if it exceeds 8.0, the hardness increases, significantly worsening workability, and the amount of retained austenite increases, resulting in a decrease in yield strength. Chromium Cr is an element that improves corrosion resistance and improves the strength of cast steel when it coexists with nickel. Chromium content 11.0
The reason for limiting the range to ~14.0% is that if it is less than 11.0%, the addition effect will not be sufficient, and if it is added in excess of 14.0%, a large amount of delta ferrite will be generated in the matrix in relation to the amount of nickel added, which will prevent cavitation. - This is because it impairs erosion properties. Molybdenum Mo has a strong affinity with carbon, improves the strength of cast steel by forming hard carbides, and improves the hardenability of cast steel by solid solution in austenite.Moreover, it increases the temper softening resistance of martensite. This serves to prevent temper brittleness. This molybdenum content is
If it exceeds 2.0%, the impact value will decrease, so it is necessary to keep it below this value. Niobium Nb functions to improve yield strength by making crystal grains finer. If the niobium content is less than 0.01%, the addition effect will not be sufficient, and if it exceeds 0.1%, a large amount of ferrite will be produced in the matrix, impairing cavitation and erosion resistance, so the content range was limited to 0.01 to 0.1%. . Copper (Cu) functions to improve cavitation and erosion resistance. Copper 0.1%
If it is less than 0.5%, the addition effect will not be sufficient, and if it exceeds 0.5%, the toughness will deteriorate, so please limit the content range.
Limited to 0.1-0.5%. Panadium V functions to improve yield strength by making crystal grains finer. Panadium is
If it is less than 0.05%, the addition effect will not be sufficient, and
If it exceeds 0.2%, a large amount of ferrite will be generated in the matrix, impairing cavitation and erosion resistance, so the content range should be limited to 0.05 to 0.2%.
%. In addition, in the present invention, the Mn+Ni content is set to 6% or more because less than 6% provides sufficient cavitation resistance.
This is because erosion properties cannot be obtained. In addition, in the present invention, when elements such as V, Nb, and Cu are not included, it is desirable that the amount of Mn+Ni is 7% or more. Further, in addition to elements such as niobium Nb, copper Cu, and panadium V, the same effect can be obtained by adding elements such as hafnium Hf, tantalum Ta, zirconium Zr, and titanium Ti. Briefly explaining the method for manufacturing the water turbine runner of the present invention, the melting method may be high frequency melting, melting using an electric arc furnace, etc., and the casting may be carried out using a normal casting method such as sand mold casting or metal mold casting. can. After casting, it is preferable to cool at a rate that does not cause cracks, although it varies depending on the shape and size, and to perform quenching from 1000 to 1100°C and further tempering at 500 to 700°C. Next, examples of the present invention will be described, and in order to confirm the effects of the present invention, comparative examples will also be described. Example After melting a water turbine runner model with the composition shown in Table 1 No. 1 to No. 15 in a high-frequency induction melting furnace,
Equivalent to tempering after homogenization at 1050℃
Heat treatment was performed at 650℃. Test specimens were cut out from the water turbine runner model obtained in this way, and their tensile strength, yield strength, elongation, area of area, and impact value (shear value) were cut out.
2V, 0°C), Pickers hardness, and cavitation erosion index (CEI) were investigated. The results are shown in Table 2. The cavitation/erosion test was conducted using the electrostrictive vibration method, with a frequency of 6.5 KHz, an amplitude of 100 μm, and
The test was carried out in pure water at 25°C for 3 hours, and the cavitation/erosion index was determined using the following formula. CEI = cavitation erosion test weight loss (grams) / test time (minutes) x specific gravity x 10 6 Comparative Example Using samples with the component compositions shown in No. 16 to No. 22 of Table 1, Melting, casting and heat treatment were carried out under the following conditions. The comparative samples thus obtained were also examined for various properties, and the results are also listed in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】 上記の結果から明らかなように、実施例試料は
C.E.I.が約45以下と比較例試料に比べて小さく、
特に従来多く用いられている13クロム鋼(比較例
No.17)のC.E.I.が約55以上であるのに比べて著し
く耐キヤビテーシヨン・エロージヨン性に優れて
いることが確認された。また実施例試料は比較例
試料に比べて、機械的強度および靭性にも優れて
いる。さらに実施例試料は溶接性にも優れてい
た。 なお、比較例試料No.19およびNo.21は耐キヤビテ
ーシヨン・エロージヨン性には優れているが、衝
撃値が著しく低く、高靭性を要求される水車ラン
ナの材料として不適当である。 以上説明した如く、本発明に係わる水車ランナ
は工業的に製造が容易である上、鋳造も特別の方
法を必要とせずに、優れた耐キヤビテーシヨン・
エロージヨン性を有すると共に、機械的強度、靭
性および溶接性にも優れた水車ランナと言える。
[Table] As is clear from the above results, the example sample
The CEI is approximately 45 or less, which is smaller than the comparative example sample.
In particular, 13 chromium steel, which is commonly used in the past (comparative example)
No. 17) had a CEI of approximately 55 or higher, and it was confirmed that this material had significantly superior cavitation and erosion resistance. Furthermore, the example samples are also superior in mechanical strength and toughness compared to the comparative example samples. Furthermore, the example samples also had excellent weldability. Although Comparative Example Samples No. 19 and No. 21 have excellent cavitation and erosion resistance, their impact values are extremely low, making them unsuitable as materials for water turbine runners that require high toughness. As explained above, the water turbine runner according to the present invention is industrially easy to manufacture, does not require any special casting method, and has excellent cavitation resistance.
It can be said that it is a water turbine runner that not only has erosion resistance but also has excellent mechanical strength, toughness, and weldability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポンプ水車ランナの斜視図、第2図は
ポンプ水車ランナの断面図である。 1……ランナコーン、2……クラウン、3……
ランナ羽根、4……シユラウド、5……ガイド・
ベーン、6……ステー・ベーン。
FIG. 1 is a perspective view of a pump-turbine runner, and FIG. 2 is a sectional view of the pump-turbine runner. 1...Rannacorn, 2...Crown, 3...
Runner blade, 4... Shroud, 5... Guide.
Vane, 6... Stay Vane.

Claims (1)

【特許請求の範囲】 1 重量比で、炭素0.1%以下、シリコン1.0%以
下、マンガン2.0%を越え9.0%まで、ニツケル0.5
〜8.0%、クロム11.0〜14.0%、2.0%以下のモリ
ブデンと残部が実質的に鉄からなり、かつMn+
Ni量が6%以上のマルテンサイト相からなるス
テンレス鋳鋼で構成されたことを特徴とする水車
ランナ。 2 重量比で、炭素0.1%以下、シリコン1.0%以
下、マンガン2.0%を越え9.0%まで、ニツケル0.5
〜8.0%、クロム11.0〜14.0%、2.0%以下のモリ
ブデンと、0.01〜0.1%のニオブ、0.1〜0.5%の
銅、0.05〜0.2%のバナジウムの少なくとも1種
とを含み、残部が実質的に鉄からなり、かつMn
+Ni量が6%以上のマルテンサイト相からなる
ステンレス鋳鋼で構成されたことを特徴とする水
車ランナ。
[Claims] 1. Carbon 0.1% or less, silicon 1.0% or less, manganese more than 2.0% up to 9.0%, nickel 0.5% by weight
~8.0%, chromium 11.0~14.0%, less than 2.0% molybdenum, and the balance consists essentially of iron, and Mn+
A water turbine runner characterized in that it is made of stainless cast steel consisting of a martensitic phase with a Ni content of 6% or more. 2 Weight ratio: carbon 0.1% or less, silicon 1.0% or less, manganese more than 2.0% up to 9.0%, Nickel 0.5
~8.0% chromium, 11.0-14.0% chromium, 2.0% or less molybdenum, and at least one of 0.01-0.1% niobium, 0.1-0.5% copper, 0.05-0.2% vanadium, with the balance being substantially consisting of iron and Mn
A water turbine runner characterized in that it is made of cast stainless steel consisting of a martensitic phase with a +Ni content of 6% or more.
JP56093766A 1981-06-19 1981-06-19 Runner of water turbine Granted JPS57210958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56093766A JPS57210958A (en) 1981-06-19 1981-06-19 Runner of water turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56093766A JPS57210958A (en) 1981-06-19 1981-06-19 Runner of water turbine

Publications (2)

Publication Number Publication Date
JPS57210958A JPS57210958A (en) 1982-12-24
JPH0146585B2 true JPH0146585B2 (en) 1989-10-09

Family

ID=14091546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56093766A Granted JPS57210958A (en) 1981-06-19 1981-06-19 Runner of water turbine

Country Status (1)

Country Link
JP (1) JPS57210958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097839A (en) * 2018-12-18 2020-06-25 郁夫 佐々木 Parking device
JP2020097382A (en) * 2019-01-17 2020-06-25 郁夫 佐々木 Stopper and motorcycle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030727A (en) * 1973-05-14 1975-03-27
JPS515611A (en) * 1974-07-06 1976-01-17 Sumikin Kiko Kk BONBETENTOSOCHI
JPS5562151A (en) * 1978-10-30 1980-05-10 Daido Steel Co Ltd Stainless cast steel for marine propeller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030727A (en) * 1973-05-14 1975-03-27
JPS515611A (en) * 1974-07-06 1976-01-17 Sumikin Kiko Kk BONBETENTOSOCHI
JPS5562151A (en) * 1978-10-30 1980-05-10 Daido Steel Co Ltd Stainless cast steel for marine propeller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097839A (en) * 2018-12-18 2020-06-25 郁夫 佐々木 Parking device
JP2020097382A (en) * 2019-01-17 2020-06-25 郁夫 佐々木 Stopper and motorcycle

Also Published As

Publication number Publication date
JPS57210958A (en) 1982-12-24

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP2014012863A (en) Precipitation hardening martensitic stainless steel, rotor blade of steam turbine and steam turbine
US4431446A (en) High cavitation erosion resistance stainless steel and hydraulic machines being made of the same
US4406698A (en) Martensitic stainless cast steel having high cavitation erosion resistance
JP3492969B2 (en) Rotor shaft for steam turbine
JPH0146585B2 (en)
JPH0432145B2 (en)
JPS6111311B2 (en)
JPS6366381B2 (en)
JPH01318763A (en) Water wheel rotor blade
JP2014208869A (en) Precipitation-strengthened martensitic steel
JPS6344815B2 (en)
JPH0941076A (en) High strength and high toughness low alloy steel
JPS6111312B2 (en)
JPS633946B2 (en)
JPS5811504B2 (en) High and low pressure integrated steam turbine rotor and its manufacturing method
JPS6111313B2 (en)
JPH09195004A (en) Stainless steel
JPS6256947B2 (en)
JPH04193933A (en) High strength martensitic stainless steel having high corrosion resistance, production and use thereof
JPH0360902B2 (en)
JPS63270445A (en) Sediment wear resistant steel
JPS6130655A (en) Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater
WO1990004659A1 (en) MODIFIED 1% CrMoV ROTOR STEEL
JP3739886B2 (en) High strength and high toughness cast steel