JPS6344815B2 - - Google Patents

Info

Publication number
JPS6344815B2
JPS6344815B2 JP13431280A JP13431280A JPS6344815B2 JP S6344815 B2 JPS6344815 B2 JP S6344815B2 JP 13431280 A JP13431280 A JP 13431280A JP 13431280 A JP13431280 A JP 13431280A JP S6344815 B2 JPS6344815 B2 JP S6344815B2
Authority
JP
Japan
Prior art keywords
equivalent
austenite
corrosion resistance
amount
erosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13431280A
Other languages
Japanese (ja)
Other versions
JPS5760061A (en
Inventor
Tsutomu Konuma
Fumio Hataya
Yasuyuki Akatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13431280A priority Critical patent/JPS5760061A/en
Publication of JPS5760061A publication Critical patent/JPS5760061A/en
Publication of JPS6344815B2 publication Critical patent/JPS6344815B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydraulic Turbines (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発電用水車ランナあるいは送水用ポン
プランナ等の高速流水中で、特にキヤビテーシヨ
ン壊食作用の著しい水中高速回転体用ステンレス
鋳鋼に関する。 水車ランナなど水中高速回転体や高速で流体を
搬送する機器では流体にキヤビテシヨン現象が生
じて、その部分の材料は壊食(侵食)作用により
破壊されて行く、その対策としては設計的にキヤ
ビテーシヨンの発生しにくい形状にする。しかし
この場合、機器としての性能が十分得られない形
状となることがある。次にキヤビテーシヨン壊食
に対して、抵抗力の強い材料を用いる。この方法
は使用材のキヤビテーシヨン壊食の生ずる部分を
耐壊食性材料で板張り溶接、または肉盛溶接もし
くは溶射で覆う方法があるが、この方法は比較的
経済的であるが、母材に対し溶接、溶射を行いそ
の部分が変質するのと、肉盛部は一般的に異材と
なるのでキヤビテーシヨン壊食以外の欠陥や損傷
を引き起す要因を持つている。 すなわち、使用部品全体を耐壊食性の優れた一
様な材料で作ることが最も好ましい。そのため現
在、例えば大型、高速水車ランナにはマルテンサ
イト系ステンレス鋼やオーステナイトステンレス
鋼が使用されているが、更にキヤビテーシヨン壊
食に抵抗力のある材料が望まれている。 本発明の目的は上記の欠点を解決するため、耐
壊食性がすぐれた特に高落差水車ランナのような
水中高速回転体用ステンレス鋳鋼を提供すること
にある。 本発明の水中高速回転体用ステンレス鋳鋼は、
重量で、C0.15〜0.25%、Si0.1〜0.8%、Mn3.0〜
7.0%、Ni2.5〜5.0%、Co4.38〜12.0%、Cr17.0〜
22.0%、残部Fe及び不可避の不純物とからなり、
Ni当量(Nieq)=Ni(重量%)+30×C(重量%)
+1/2×Mn(重量%)+1/3×Co(重量%)及びCr
当量(Creq)=Cr(重量%)+1.5×Si(重量%)で
表わされる前記Cr当量を17.50%以上とし、かつ
前記Ni当量を次式(1)及び(2)で得られる値の範囲
内となるように成分を調整し、全オーステナイト
相又はオーステナイト相とフエライト相とからな
る組成を有するものである。 〔(1);(1.125×Creq−8.75)+1.0〕 〔(2);(1.125×Creq−8.75)−1.5〕 本発明に係る鋳鋼は良好な成分調整を行い金属
組織学的にオーステナイト組織もしくはオーステ
ナイトに数%のデルタフエライトを含有させた時
に最も好適な耐壊食性を有する。以下、夫々の成
分の限定理由について説明する。 Cは強力なオーステナイト化元素であり、本発
明のような低Ni材においてはその安定化に貢献
している。C量が少ない場合本発明鋼はマルテン
サイト組織となり、靭性が低下すると共に耐壊食
性が低下する。そのためオーステナイト化元素で
あるNi、Mn、Coを好ましい割合で添加する必要
がある。Niのオーステナイト化の係数を1とす
ると、Cはその30倍で計算され、Mnは1/2、Co
は1/3と計算される。 すなわちC量が少ない場合、Ni、Mn、Coでオ
ーステナイト化をしなければならない。しかしこ
の場合オーステナイト組織の硬さが低くなり、耐
壊食性は最も好ましい状態からはずれる。本発明
鋼の耐壊食性の改善はキヤビテーシヨン衝撃によ
るオーステナイト組織の加工硬化特性の利用と合
金元素の治金的操作による硬いオーステナイト組
織を応用したものである。C量の増加は硬いオー
ステナイト組織を作るため耐壊食性を得るための
好ましいC量は0.15〜0.25%である。 Siは製鋼時の脱酸剤として0.1%以上必要であ
るが、靭性の点から0.8%以下が適当である。好
ましくは0.2〜0.6%である。また脱酸剤として例
えばAl、Zrあるいは希土類元素を添加し、これ
らが合計0.1%以下在存しても良い。また製鋼時
に不純物としてNが混入するがこれはオーステナ
イト生成元素でNiの30倍の効果を示すが、0.1%
以上存在させてはならない。 Mnは製鋼時の脱酸剤として用いられるが、本
発明鋼ではオーステナイト化を促す重要な元素
で、その添加量は本発明の特徴の一つである。
Mnの加工硬化能によりキヤビテーシヨン発生面
が硬化して耐壊食性を著しく向上させる。Mnの
より多くの添加は加工硬化性、延性を向上させる
が、オーステナイトが適度に安定化し耐壊食性が
低下し、強度上も降伏点を低下させるため7%を
越えるの添加は好ましくない。また3%未満では
延性を低下させ溶接性に悪影響を及ぼす。耐壊食
性を十分に発揮するには3.5〜6.0%が好ましい。 Niはオーステナイト生成元素であり、Crと共
存して地をオーステナイトにして強度、靭性を向
上させる。本発明鋼は適度に不安定なオーステナ
イト組織を有しキヤビテーシヨン発生面に加工誘
起マルテンサイトを適量発生させ、耐壊食性を向
上させたものでNiを低くおさえるのが望ましい
が、2.5%未満ではオーステナイトが過剰に不安
定となりマルテンサイト組織を含むようになり延
性が低下して溶接性が悪くなる。またキヤビテー
シヨン発生面に加工誘起マルテンサイトが過剰に
生じ靭性が低下して耐壊食性がかえつて低下す
る。一方5.0%を超えると共在するMnやCoの作
用と相まつてオーステナイト組織が過剰に安定と
なり延性は向上するが耐壊食性はやはり低下する
のでNi量は2.5〜5.0%とした。この中でも上述の
作用を有効に発揮させるには2.7〜4.5%が望まし
い。 Coは弱いオーステナイト生成元素であり、Ni、
Mnと共にオーステナイト組織を適度に安定にし
て、かつ地の強化、耐壊食性向上に貢献する。
4.38%未満ではこれらの作用が十分でなく、12.0
%を超えると地の強化が進み、延性及び靭性が低
下して溶接時の割れが生じ易くなるので4.38〜
12.0%とした。好ましくは5.5〜9.0%である。 Crは水中における耐食性を向上し、またNiと
共在してオーステナイト地を生成するが一部少量
のデルタフエライトを生じる。17.0%未満ではオ
ーステナイトが不安定となつてマルテンサイドが
生じ、22.0%を超えるとフエライトが過剰にな
り、靭性及び耐壊食性が低下するので17.0〜22.0
%とした。好ましくは18.0〜21.0%である。 残部はFe及び同伴する不純物とからなり、不
純物としてP、Sがあるがこれらは少ない方が望
ましく0.030以下が良い。 上述した成分範囲は夫々独立に考えては意味が
なく、特にC、Ni、Co、Mn、及びSiとCrが
夫々の範囲内で共在することにより過剰のマルテ
ンサイト及びフエライトを生せず、またオーステ
ナイトが適度に安定しないように選んである。す
なわちCreq=Cr+1.5Si(%)で表わす量において
Creqを17.50%以上とし、Nieq=Ni+30C+1/2
Mn+1/3Coで表わす量との関係においてNieqを
前述の式(1)及び(2)の範囲内となるようにNi、C、
Mn、Coを選定することによつて耐壊食性の優れ
たステンレス鋼が得られる。 即ち、本発明のステンレス鋳鋼は所定のCr当
量に対してNi当量を前述のように選定すること
によつて組織的に不安定なオーステナイト相とす
るもので、不安定なオーステナイト相はキヤビテ
ーシヨンによる加工を受けることによる加工硬化
性が高く、そのため耐壊食性が向上するもので、
前述の(1)式より求められる値以上のNi当量とす
るとオーステナイト相が安定となるため加工硬化
性が低く耐壊食性が低く、逆に(2)式より求められ
る値以下のNi当量とするとフエライト相が多く
なるので、耐食性が低下する。尚、式中(1.125
×Creq−8.75)はシエフラ組織図におけるフエラ
イト量0%に相当するものであり、(2)式はフエラ
イト量5%に相当するものである。従つて、本発
明はこのフエライト量0%付近の不安定なオース
テナイト相とするNi当量及びCr当量を選ぶこと
にある。 次に本実施例について説明する。表1は高周波
溶解で溶製したステンレス鋳鋼の化学組成を示
す。No.1〜No.3は従来品であり、0.23〜0.36C−
18Cr−2〜5Ni−6〜7Co鋼でMnは通常0.5%程
度しか含まない。No.4及びNo.8は比較のものであ
る。 本発明はNo.5〜7でありNo.1〜3に対してMn
を多量に添加してある。これら実施例の室温にお
ける引張試験による機械的性質及び磁歪振動式キ
ヤビテーシヨン試験による壊食量を夫々比較し調
べた。表2はそれらの結果を示す。なお本実施例
は溶解後熱処理を実施しない状態のものである。 No.3はCが多いためにオーステナイト組織であ
るがNiが少ないため硬く脆い性質となり、延性
を示す伸び、絞りが低下する。この延性の低下は
溶接を行うと割れを誘発することがある。これを
防ぐにはMn、Niを添加したオーステナイト組織
にして延性を大きくすることが必要である。
The present invention relates to stainless steel cast steel for underwater high-speed rotating bodies, which are particularly prone to cavitation erosion in high-speed flowing water, such as water turbine runners for power generation or pump runners for water supply. Cavitation phenomenon occurs in the fluid in underwater high-speed rotating bodies such as water turbine runners and equipment that transports fluid at high speed, and the material in the affected area is destroyed by erosion (erosion).As a countermeasure to this, cavitation is used in the design. Create a shape that is less likely to occur. However, in this case, the shape may not provide sufficient performance as a device. Next, use a material that is highly resistant to cavitation erosion. This method involves covering the parts of the material where cavitation corrosion occurs by plate welding, build-up welding, or thermal spraying with erosion-resistant materials. Although this method is relatively economical, Thermal spraying alters the quality of the part, and the built-up part is generally made of a different material, so there are factors that can cause defects and damage other than cavitation erosion. That is, it is most preferable that the entire parts used be made of a uniform material with excellent corrosion resistance. For this reason, for example, martensitic stainless steel and austenitic stainless steel are currently used for large, high-speed water turbine runners, but materials that are more resistant to cavitation erosion are desired. SUMMARY OF THE INVENTION In order to solve the above-mentioned drawbacks, an object of the present invention is to provide a stainless steel cast steel for underwater high-speed rotating bodies, such as high-head water turbine runners, which has excellent corrosion resistance. The stainless steel cast steel for underwater high-speed rotating bodies of the present invention is
By weight, C0.15~0.25%, Si0.1~0.8%, Mn3.0~
7.0%, Ni2.5~5.0%, Co4.38~12.0%, Cr17.0~
Consists of 22.0%, balance Fe and unavoidable impurities,
Ni equivalent (Nieq) = Ni (weight%) + 30 x C (weight%)
+1/2×Mn (weight%) +1/3×Co (weight%) and Cr
The Cr equivalent expressed as equivalent (Creq) = Cr (wt%) + 1.5 x Si (wt%) is 17.50% or more, and the Ni equivalent is the value obtained by the following formulas (1) and (2). The components are adjusted so as to fall within the range, and the composition has a composition consisting entirely of austenite phase or an austenite phase and a ferrite phase. [(1); (1.125×Creq−8.75)+1.0] [(2); (1.125×Creq−8.75)−1.5] The cast steel according to the present invention has a metallographically austenitic structure through good composition adjustment. Alternatively, the most suitable corrosion resistance is obtained when austenite contains several percent of delta ferrite. The reason for limiting each component will be explained below. C is a strong austenitizing element and contributes to the stabilization of low Ni materials such as those of the present invention. When the amount of C is small, the steel of the present invention becomes a martensitic structure, resulting in lower toughness and lower corrosion resistance. Therefore, it is necessary to add Ni, Mn, and Co, which are austenitizing elements, in a preferable ratio. If the coefficient of austenitization of Ni is 1, C is calculated as 30 times that value, Mn is calculated as 1/2, Co
is calculated as 1/3. That is, when the amount of C is small, it is necessary to austenitize with Ni, Mn, and Co. However, in this case, the hardness of the austenite structure decreases, and the corrosion resistance deviates from the most desirable state. The corrosion resistance of the steel of the present invention is improved by utilizing the work hardening properties of the austenite structure due to cavitation impact and by metallurgically manipulating alloying elements to create a hard austenite structure. Since an increase in the amount of C creates a hard austenite structure, the preferable amount of C in order to obtain erosion resistance is 0.15 to 0.25%. 0.1% or more of Si is required as a deoxidizing agent during steel manufacturing, but from the viewpoint of toughness, 0.8% or less is appropriate. Preferably it is 0.2-0.6%. Further, as a deoxidizing agent, for example, Al, Zr, or a rare earth element may be added, and these may be present in a total amount of 0.1% or less. In addition, N is mixed as an impurity during steel manufacturing, but this is an austenite-forming element that is 30 times more effective than Ni, but at 0.1%
There must not be more than that. Mn is used as a deoxidizing agent during steel manufacturing, and in the steel of the present invention, it is an important element that promotes austenitization, and its addition amount is one of the characteristics of the present invention.
The work hardening ability of Mn hardens the surface where cavitation occurs, significantly improving corrosion resistance. Addition of a larger amount of Mn improves work hardenability and ductility, but it is not preferable to add Mn in an amount exceeding 7% because it moderately stabilizes austenite, reduces corrosion resistance, and lowers the yield point in terms of strength. Moreover, if it is less than 3%, ductility decreases and weldability is adversely affected. The content is preferably 3.5 to 6.0% to fully exhibit corrosion resistance. Ni is an austenite-forming element, and coexists with Cr to turn the base into austenite, improving strength and toughness. The steel of the present invention has a moderately unstable austenite structure and has an appropriate amount of deformation-induced martensite generated on the cavitation generation surface to improve corrosion resistance.It is desirable to keep the Ni content low, but if it is less than 2.5%, it will become austenite. becomes excessively unstable and contains a martensitic structure, resulting in decreased ductility and poor weldability. In addition, excessive deformation-induced martensite is generated on the cavitation-generated surface, resulting in a decrease in toughness and a decrease in erosion resistance. On the other hand, if it exceeds 5.0%, the austenite structure becomes excessively stable due to the effects of coexisting Mn and Co, improving ductility but decreasing corrosion resistance, so the Ni content was set to 2.5 to 5.0%. Among these, 2.7 to 4.5% is desirable in order to effectively exhibit the above-mentioned effects. Co is a weak austenite forming element, Ni,
Together with Mn, it moderately stabilizes the austenite structure and contributes to strengthening the base and improving corrosion resistance.
If it is less than 4.38%, these effects are not sufficient, and 12.0%
If it exceeds 4.38%, the strength of the base will increase, the ductility and toughness will decrease, and cracks will easily occur during welding.
It was set at 12.0%. Preferably it is 5.5-9.0%. Cr improves corrosion resistance in water, and coexists with Ni to form austenite, but a small amount of delta ferrite is also formed. If it is less than 17.0%, austenite becomes unstable and martenside occurs, and if it exceeds 22.0%, ferrite becomes excessive and toughness and erosion resistance decrease.
%. Preferably it is 18.0 to 21.0%. The remainder consists of Fe and accompanying impurities, and there are P and S as impurities, but it is preferable that these be as small as possible, preferably 0.030 or less. The above-mentioned component ranges have no meaning when considered independently, and in particular, when C, Ni, Co, Mn, and Si and Cr coexist within their respective ranges, excessive martensite and ferrite are not produced. It is also chosen so that the austenite is not reasonably stable. In other words, in the amount expressed as Creq = Cr + 1.5Si (%)
Creq should be 17.50% or more, Nieq = Ni + 30C + 1/2
Ni, C,
By selecting Mn and Co, stainless steel with excellent corrosion resistance can be obtained. That is, the stainless steel cast steel of the present invention has a structurally unstable austenite phase by selecting the Ni equivalent for a predetermined Cr equivalent as described above, and the unstable austenite phase can be processed by cavitation. It has high work hardening properties due to exposure, which improves corrosion resistance.
If the Ni equivalent is greater than the value calculated from equation (1) above, the austenite phase becomes stable, resulting in low work hardenability and low erosion resistance.On the other hand, if the Ni equivalent is less than the value calculated from equation (2), Since the ferrite phase increases, corrosion resistance decreases. In addition, in the formula (1.125
×Creq−8.75) corresponds to a ferrite amount of 0% in the Siefra organization chart, and equation (2) corresponds to a ferrite amount of 5%. Therefore, the object of the present invention is to select the Ni equivalent and Cr equivalent to form an unstable austenite phase with a ferrite content of around 0%. Next, the present embodiment will be explained. Table 1 shows the chemical composition of cast stainless steel produced by high-frequency melting. No.1 to No.3 are conventional products, 0.23 to 0.36C−
18Cr-2~5Ni-6~7Co steel usually contains only about 0.5% Mn. No. 4 and No. 8 are for comparison. The present invention is No. 5 to 7, and Mn compared to No. 1 to 3.
A large amount of is added. The mechanical properties of these Examples by a tensile test at room temperature and the amount of erosion by a magnetostrictive vibration cavitation test were compared and investigated. Table 2 shows the results. Note that in this example, post-melting heat treatment was not performed. No. 3 has an austenitic structure due to the large amount of C, but it has a hard and brittle property due to the small amount of Ni, and the elongation and reduction of area, which indicate ductility, decrease. This decrease in ductility may induce cracking when welding is performed. To prevent this, it is necessary to increase the ductility by creating an austenitic structure with the addition of Mn and Ni.

【表】【table】

【表】 表2の結果、No.1の伸びは約11%でこれだけあ
れば溶接割れの発生は少ないが、壊食量が約10mg
でこの程度の耐壊食性では不十分でキヤビテーシ
ヨンの激しく発生する機器に使用するのは好まし
くなく、5mg以下が望ましい。 No.2〜3は更に壊食量の減少を図つたもので
4.2〜4.7mgと少なくなつているが、同時に伸びも
4.6〜7.2%と低くなり、溶接時に割れが生じ易く
なる。実用上溶接割れを防ぐには伸びは10%以上
が望ましい。No.4及びNo.8は伸び率が高いが壊食
量が多くまずい。これらの材料は各々C量が本発
明材より少ないか又は多いものである。 本発明のNo.5〜7は従来のNo.1〜3の破断伸び
を下げずに、壊食量を減少させようとしたもので
あり、伸びは19〜23%と大きくなり、かつ、壊食
量は3.9〜4.9と減少している。また0.2%耐力と引
張強さとの関係をみると本発明材の耐力は32.2〜
42.0Kgf/mm2で従来材のNo.1〜3の47.6〜50.1Kg
f/mm2より低いが、引張強さは75.1〜88.3Kgf/
mm2で従来材No.1〜3の61.0〜69.9Kgf/mm2より高
く優れている。 No.4、No.8は本発明と類似しているがCの添加
を本発明よりはずしたものである。引張試験によ
る伸びは十分確保できるか耐壊食性が低下する。 第1図は実施例についての成分量からCr当量
及びNi当量を計算してシエフラーの組織図上に
示したものである。本発明材はNo.5〜7である
が、Creqが少なくとも17.50%以上にあり、Nieq
が前述(1)及び(2)式によつて求められる範囲内にあ
り、高い耐壊食性を有する。従来品No.1、2もそ
の範囲にあるが、Mn、Ni、Coなど適正な成分選
択がなされていないため、伸びもしくは壊食量の
いずれかが低下してしまうことが表2の結果を合
わせてみると判る。本発明のステンレス鋼は以上
説明したようにすぐれた耐壊食性及び十分な強度
と延性を兼ね備えているので水力機器のキヤビテ
ーシヨン発生の激しい部分に使用する材料として
好ましい。 本発明に係る鋳鋼は成分限定理由及び実施例で
説明したようにその成分を請求範囲内に選ぶこと
により、組織をオーステナイト、もしくは少量の
フエライトを含むオーステナイトにすることがで
き、すぐれた耐壊食性ものが得られ、発電用水車
ランナその他水中高速回転体のキヤビテーシヨン
発生部に使用することにより、機器の耐壊食性を
向上させることが出来る。 本発明に係る鋳鋼は溶製のまま熱処理を施さな
くても十分な耐壊食性及び延性を有するが、溶製
後の冷却の遅くなる大型の材料では固溶化熱処理
を実施することによつて更に良好な耐壊食性と延
性を得ることが出来る。
[Table] As a result of Table 2, the elongation of No. 1 is about 11%, which is enough to reduce the occurrence of weld cracking, but the amount of erosion is about 10 mg.
This level of corrosion resistance is insufficient, and it is not preferable to use it in equipment where cavitation occurs frequently, and 5 mg or less is preferable. Nos. 2 and 3 are designed to further reduce the amount of erosion.
Although it has decreased to 4.2 to 4.7 mg, it has also increased at the same time.
It becomes low at 4.6 to 7.2%, making it easier for cracks to occur during welding. In order to practically prevent weld cracking, elongation is preferably 10% or more. No. 4 and No. 8 have a high elongation rate, but have a large amount of erosion and are unpalatable. These materials each have a lower or higher C content than the present invention material. Nos. 5 to 7 of the present invention are intended to reduce the amount of erosion without reducing the elongation at break of conventional Nos. 1 to 3, and the elongation is as large as 19 to 23%, and the amount of erosion is increased. has decreased from 3.9 to 4.9. Also, looking at the relationship between 0.2% yield strength and tensile strength, the yield strength of the material of the present invention is 32.2~
42.0Kgf/ mm2 and 47.6 to 50.1Kg of conventional materials No. 1 to 3
Although lower than f/mm 2 , the tensile strength is 75.1~88.3Kgf/
mm 2 is higher and superior to conventional materials No. 1 to 3, which are 61.0 to 69.9 Kgf/mm 2 . No. 4 and No. 8 are similar to the present invention, but the addition of C is omitted from the present invention. Sufficient elongation in the tensile test may be ensured or the corrosion resistance will deteriorate. FIG. 1 shows the Cr equivalent and Ni equivalent calculated from the component amounts for Examples on a Schiffler's organizational diagram. The present invention materials are No. 5 to 7, but the Creq is at least 17.50% or more, and the Nieq
is within the range determined by equations (1) and (2) above, and has high corrosion resistance. Conventional products No. 1 and 2 are also within this range, but due to improper selection of ingredients such as Mn, Ni, and Co, the results in Table 2 show that either elongation or the amount of erosion decreases. You can see it by looking at it. As explained above, the stainless steel of the present invention has excellent corrosion resistance and sufficient strength and ductility, so it is preferable as a material for use in parts of hydraulic equipment where cavitation is severe. The cast steel according to the present invention can have an austenite structure or austenite containing a small amount of ferrite by selecting the components within the claimed range as explained in the reasons for limiting the components and the examples, and has excellent corrosion resistance. The corrosion resistance of equipment can be improved by using it in cavitation generating parts of water turbine runners for power generation and other underwater high-speed rotating bodies. The cast steel according to the present invention has sufficient erosion resistance and ductility even without heat treatment as it is made, but for large materials that cool down slowly after being made, it is possible to improve the corrosion resistance and ductility by performing solution heat treatment. Good erosion resistance and ductility can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシエフラー組織図上に実施例をのせた
説明図である。
FIG. 1 is an explanatory diagram in which Examples are placed on a Scheffler organizational chart.

Claims (1)

【特許請求の範囲】 1 重量で、C0.15〜0.25%、Si0.1〜0.8%、
Mn3.0〜7.0%、Ni2.5〜5.0%、Co4.38〜12.0%、
及びCr17.0〜22.0%を含み、残部Fe及び同伴する
不可避の不純物からなり、Ni当量(Nieq)=Ni
(重量%)+30×C(重量%)+1/2×Mn(重量%)
+1/3×Co(重量%)及びCr当量(Creq)=Cr(重
量%)+1.5×Si(重量%)で表わされる前記Cr当
量を17.50%以上とし、かつ前記Ni当量を次式(1)
及び(2)で得られる値の範囲内となるように前記成
分を調整した全オーステナイト相もしくはオース
テナイト相とフエライト相とからなる組織を有す
ることを特徴とする水中高速回転体用ステンレス
鋳鋼。 〔(1);(1.125×Creq−8.75)+1.0〕 〔(2);(1.125×Creq−8.75)−1.5〕
[Claims] 1. By weight, C0.15-0.25%, Si0.1-0.8%,
Mn3.0~7.0%, Ni2.5~5.0%, Co4.38~12.0%,
and Cr17.0~22.0%, the balance consists of Fe and accompanying unavoidable impurities, Ni equivalent (Nieq) = Ni
(weight%) + 30 x C (weight%) + 1/2 x Mn (weight%)
+1/3×Co (wt%) and Cr equivalent (Creq) = Cr (wt%) + 1.5×Si (wt%) The Cr equivalent is 17.50% or more, and the Ni equivalent is expressed by the following formula ( 1)
and (2) A stainless steel cast steel for an underwater high-speed rotating body, characterized by having a structure consisting of an all-austenite phase or an austenite phase and a ferrite phase, in which the above-mentioned components are adjusted to fall within the range of the values obtained in (2). [(1); (1.125×Creq−8.75)+1.0] [(2); (1.125×Creq−8.75)−1.5]
JP13431280A 1980-09-29 1980-09-29 Stainless steel Granted JPS5760061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13431280A JPS5760061A (en) 1980-09-29 1980-09-29 Stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13431280A JPS5760061A (en) 1980-09-29 1980-09-29 Stainless steel

Publications (2)

Publication Number Publication Date
JPS5760061A JPS5760061A (en) 1982-04-10
JPS6344815B2 true JPS6344815B2 (en) 1988-09-07

Family

ID=15125347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13431280A Granted JPS5760061A (en) 1980-09-29 1980-09-29 Stainless steel

Country Status (1)

Country Link
JP (1) JPS5760061A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278408U (en) * 1988-12-06 1990-06-15
JPH0355314U (en) * 1989-06-22 1991-05-28

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104652A (en) * 1980-12-22 1982-06-29 Hitachi Ltd Member with superior erosion-corrosion resistance
JPS57152449A (en) * 1981-03-13 1982-09-20 Toshiba Corp Corrosion resistant material
JPS601456U (en) * 1983-06-13 1985-01-08 株式会社神戸製鋼所 crushing system
JPS6071355U (en) * 1983-10-22 1985-05-20 株式会社大阪砕石工業所 Primary crushing equipment for aggregate plants
JP2689082B2 (en) * 1994-06-14 1997-12-10 株式会社テトラ Method for manufacturing fine aggregate for concrete
CN105603334A (en) * 2016-02-11 2016-05-25 曹兴奎 Low-alloy high-strength steel plate for water conservancy and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278408U (en) * 1988-12-06 1990-06-15
JPH0355314U (en) * 1989-06-22 1991-05-28

Also Published As

Publication number Publication date
JPS5760061A (en) 1982-04-10

Similar Documents

Publication Publication Date Title
KR100915489B1 (en) Low alloy steel
KR100512757B1 (en) Duplex stainless steel for urea manufacturing plants
JPS6343462B2 (en)
JPS61130462A (en) High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above
JPS6344815B2 (en)
JPH06322488A (en) High-strength austenitic heat resistant steel excellent in weldability and satisfactory in high temperature corrosion resistance
EP0109221A1 (en) High-strength austenitic steel
JP2665009B2 (en) High strength martensitic stainless steel and method for producing the same
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
JPH01318763A (en) Water wheel rotor blade
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JPH0770700A (en) High proof stress and high corrosion resistant austenitic stainless cast steel
JPS5855224B2 (en) Wear-resistant hot roll
JP4134974B2 (en) High toughness UOE steel pipe for low temperature
JP3215955B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent elongation properties
JP3220329B2 (en) Fluid equipment
JP2795605B2 (en) Roll material for continuous casting
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
JPH0151526B2 (en)
JPH0524222B2 (en)
JPH08134593A (en) High strength austenitic alloy excellent in seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS5943848A (en) Ferritic stainless steel
JPH0218960B2 (en)
JPS6130655A (en) Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater
JPH04193933A (en) High strength martensitic stainless steel having high corrosion resistance, production and use thereof