JPH0146535B2 - - Google Patents

Info

Publication number
JPH0146535B2
JPH0146535B2 JP1968581A JP1968581A JPH0146535B2 JP H0146535 B2 JPH0146535 B2 JP H0146535B2 JP 1968581 A JP1968581 A JP 1968581A JP 1968581 A JP1968581 A JP 1968581A JP H0146535 B2 JPH0146535 B2 JP H0146535B2
Authority
JP
Japan
Prior art keywords
polyethylene
molecular weight
density
weight
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1968581A
Other languages
Japanese (ja)
Other versions
JPS57133136A (en
Inventor
Yoshio Shichi
Norio Sugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1968581A priority Critical patent/JPS57133136A/en
Publication of JPS57133136A publication Critical patent/JPS57133136A/en
Publication of JPH0146535B2 publication Critical patent/JPH0146535B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエチレン組成物、更に詳しくは、
耐環境応用力亀裂特性(耐environmental stress
craaking特性を略して以下「耐ESCR特性」とい
う。)、流動特性、および機械的強度が著しく改善
されたポリエチレン組成物に関する。 従来、ポリエチレン樹脂の耐ESCR特性を向上
させるためには、ポリエチレン樹脂の高分子量化
をはかるか、あるいはポリエチレン樹脂に長鎖分
岐の導入をはかるという方法が採られていた。 しかしながら、ポリエチレン樹脂の高分子量化
をはかると樹脂の流動性が低下してしまい、溶融
成形に際しての成形性が著しく悪くなるという欠
点を伴うものであつた。特に、押出被覆成形やブ
ロー成形などにあつては、近年極めて高速下での
成形に耐え得ることが要求されているが、流動性
が低下すると成形の最にメルトフラクチヤーを誘
発するなど好ましくないものであつた。 また、長鎖分岐の導入にあつては、ポリエチレ
ン樹脂の密度の低下を招くために樹脂の耐摩擦
性、耐曲げ特性等の機械的強度が低下してしまう
という欠点があつた。 本発明者らは、このような欠点を克服する方法
について鋭意研究した結果、特定の範囲の密度お
よび分子量の高分子量ポリエチレンに前記高分子
量ポリエチレンよりも低分子量の特定の範囲の密
度および分子量の低分子量ポリエチレンを所定の
割合で配合することにより、高分子量ポリエチレ
ンの機械的特性を維持し、且つ、流動性の優れた
ポリエチレン組成物が得られることを見出し本発
明をなすに至つた。 本発明のポリエチレン組成物は、密度0.950〜
0.970g/cm3、重量平均分子量20万〜40万のポリ
エチレンAを65〜95℃と、密度0.920〜0.950g/
cm3、重量平均分子量4000〜10000のポリエチレン
Bを35〜5重量%とからなつている。 本発明を詳細に説明するに、本発明において用
いられるポリエチレンAおよびポリエチレンB
は、エチレン単独重合体又はエチレンと他のα―
オレフインとの共重合体である。共重合体はアタ
クチツク、アイソタクチツク、あるいはシンジオ
タクチツクのいずれの立体規則性をとるものであ
つたもよい。共重合体中の他のα―オレフインと
しては、プロピレン、ブテン―1、4―メチレ―
ペンテン―1、ヘキセン―1、オクテン―1等が
上げられ、その含有量が10重量%以下であるもの
が用いられる。 ポリエチレンAは低圧法により製造され、密度
が0.950〜0.970g/cm3、重量平均分子量が20万〜
40万のものが用いられる。ここで、密度はJIS―
K―6758に準じて測定した値であり、重量平均分
子量は135℃トリクルベンゼン溶液中で、ゲルパ
ーミエーシヨンクロマトグラフイー(ウオーター
ズ社製)、GPC―150C使用)によりカラム8MSを
2本用いて測定した値である。重量平均分子量が
40万を越えると、組成物の流動性が低下するため
高速成形が不可能となり、重量平均分子量が20万
より低いと、組成物の溶融状態での張力(溶融張
力)が低下するためブロー成形に際してドローダ
ウンが増大し、成形品の偏肉化を招くなど好まし
くない。なお、ポリエチレンAのメルトインデツ
クス(Melt Index、以下「MI」という。)は0.02
〜0.7g/10分であることが好ましい。ここでMI
とは、190℃で一定の圧力をかけ、一定のノズル
から押出される熱可塑性樹脂のグラム数であり、
本明細書中のMIの値はJIS―K―6758に準じて求
められたものである。MIが0.7g/10分を越える
と、組成物の溶融張力が低下して前述の不都合が
生じ、MIが0.02g/10分未満になると、組成物
の流動性が低下して高速成形が不可能となり、い
ずれにしても好ましくない。 ポリエチレンBは低圧法、中圧法、あるいは高
圧法の重合法にずれにより製造されてもよく、密
度が0.920〜0.950g/cm3、重量平均分子量が4000
〜10000のものが用いられる。密度及び重量平均
分子量の値はそれぞれポリエチレンAについて用
いられた方法と同様にして得られたものである。
重量平均分子量が10000を越えると、組成物の流
動性が低下し、重量平均分子量が4000未満である
とブレンド時の練込みが不可能となり好ましくな
い。また、ポリエチレンBは、分子鎖に分岐をも
たせるためエチレンと他のα―オレフインとの共
重合体であることが組成物の耐ESCR特性の向上
という点から好ましい。 ポリエチレンAとポリエチレンBとの混合比
は、ポリエチレンA65〜95重量%、ポリエチレン
B35〜5重量%とするが、好ましくはポリエチレ
ンA75〜90重量%、ポリエチレンB25〜10重量%
とする。ポリエチレンBが35重量%を越えると、
ポリエチレンAとポリエチレンBとの混合に際し
ての均一分散がしにくくなり、サージング等を引
き起こして押出成形が困難となるので好ましいと
は言えない。また、ポリエチレンBが5重量%未
満になると、組成物の流動性が低下し高速成形が
困難となるので好ましいとは言えない。 ポリエチレンAの密度は、0.950〜0.970g/cm3
とする。これは、0.950g/cm3より小さいと、機
械的強度が低下し、密度の増加に伴つて機械的強
度は向上するが、0.970g/cm3より大きくなると
耐ESCR特性が著しく悪化するためである。 ポリエチレンBの密度は、0.920〜0.950g/cm3
とする。これは、0.920g/cm3より小さいと、機
械的強度が著しく低下し、0.950g/cm3より大き
くなると耐ESCR特性の改善効果が減少するため
である。 混合方法については特に制限はなく通常の方法
でよい。例えば単軸押出機によるバツチ式溶融混
練法、バンバリーミキサー等によるバツチ式溶融
混練法、FCM(Farrel Continuous Mixer)、
CIM(Continuous Intensive Mixer)、溶融混合
法等が挙げられる。 しかして本発明は、ポリエチレンAとポリエチ
レンBとを混合してポリエチレン組成物とする
が、本発明によるポリエチレン組成物には通常の
添加剤、例えば各種充填剤、増量剤、変性剤、あ
るいは各種安定剤などを用途に応じて適宜所定量
添加してもよい。 本発明の組成物は、流動性にすぐれた特に高剪
断時にあつてもすぐれた流動性を示すものであ
る。したがつて、D2値が3000sec-1程度以上の流
動性が問題となる高速ブロー成形やD2値が
10000sec-1程度以上の流動性が問題となる押出被
覆成形などの各種高速成形分野において用いられ
る場合は特に有利である。ここでD2とは、キヤ
ピラリー・レオメータにて剪断速度―剪断応力の
流動曲線を描き、この曲線を用いて求めた剪断能
力が2.4×1010dyn/cm3の時の剪断速度の値であ
る。D2値は高速成形性の判断基準となる値であ
り大きい方が高速成形性にすぐれている。また、
本発明の組成物は分子量や密度が高い値で維持さ
れており、耐衝撃性、耐圧縮性、曲げ強さなどの
種々の機械的物性がすぐれている。したがつて、
すぐれた流動性とも相俟つて機械的物性のすぐれ
た高速成形品の成形用樹脂として用いることがで
きる。さらに本発明の組成物は耐ESCR特性の点
においてもすぐれているものであるため特に、押
出被覆成形用やブロー成形用の樹脂として好適で
ある。 次に本発明を実施例等によつてさらに詳細に説
明するが、本発明はその趣旨を越えない限り以下
の実施例に限定されるものではない。 なお、以下の実施例等において、ポリエチレン
樹脂が液状の界面活性剤と接触するときなどに実
用上問題となることが多い耐ESCR特性はASTM
―D―1693のベル法に準じノニオン系界面活性剤
10%濃度溶液中、2mm厚さの試験片を用いて測定
した。10個の試験片のうち5個の試験片に亀裂が
生ずるまでの時間で表わした。また、流れ特性の
一つである溶融張力は、測定温度190℃において
JIS―K―6758に定められたメルトインデクサ測
定装置中に試料を詰め、ピストン降下速度毎分20
mm下で下部のオリフイスから流出するストランド
(線条)を毎分314cmの速度で引取り、この時ロー
ドセルにより検出したストランドにかかる張力に
より表示した。 実施例 1〜8 高密度ポリエチレンであるA―1、A―2と低
密度ポリエチレンであるB―1との混合比率を変
え、タンブラ型ブレンダを使用してドライブレン
ドしたものをFCMにより溶融混練後、ペレツト
化して試料とした。各実施例1〜8に係る試料に
ついてMI、密度、D2、ESCR及び溶融張力を測
定した結果を下記の表1に示す。 比較例 1〜6 高密度ポリエチレンであるA―1、A―3と低
密度ポリエチレンであるB―1、B―2、B―
3、B―4との混合比率を変え、タンブラ型ブレ
ンダを使用してドライブレンドしたものをバンバ
リーミキサにより溶融混練後、ペレツト化して試
料とした。各比較例1〜6に係る試料について
MI、密度、D2、ESCR及び溶融張力を測定した
結果を次頁の表1に併せて示す。
The present invention relates to polyethylene compositions, more specifically,
Environmental stress resistance cracking properties
Craaking characteristics are hereinafter referred to as "ESCR resistance characteristics." ), a polyethylene composition with significantly improved flow properties and mechanical strength. Conventionally, in order to improve the ESCR resistance properties of polyethylene resin, methods have been used to increase the molecular weight of the polyethylene resin or to introduce long chain branches into the polyethylene resin. However, increasing the molecular weight of the polyethylene resin results in a decrease in the fluidity of the resin, resulting in a disadvantage that the moldability during melt molding becomes extremely poor. In particular, in the case of extrusion coating molding and blow molding, in recent years it has been required to withstand molding under extremely high speeds, but if fluidity decreases, it is undesirable as it may induce melt fracture during molding. It was hot. Furthermore, the introduction of long chain branches has the disadvantage that the density of the polyethylene resin is reduced, resulting in a reduction in mechanical strength such as friction resistance and bending resistance of the resin. As a result of intensive research into methods to overcome these drawbacks, the present inventors have found that high molecular weight polyethylene with a density and molecular weight in a specific range has a density and molecular weight in a specific range lower than that of the high molecular weight polyethylene. The inventors have discovered that by blending molecular weight polyethylene in a predetermined ratio, a polyethylene composition that maintains the mechanical properties of high molecular weight polyethylene and has excellent fluidity can be obtained, leading to the present invention. The polyethylene composition of the present invention has a density of 0.950 to
Polyethylene A with a weight average molecular weight of 0.970 g/cm 3 and a weight average molecular weight of 200,000 to 400,000 at 65 to 95°C and a density of 0.920 to 0.950 g/
cm 3 and 35 to 5% by weight of polyethylene B having a weight average molecular weight of 4,000 to 10,000. To explain the present invention in detail, polyethylene A and polyethylene B used in the present invention
is an ethylene homopolymer or ethylene and other α-
It is a copolymer with olefin. The copolymer may have atactic, isotactic, or syndiotactic stereoregularity. Other α-olefins in the copolymer include propylene, butene-1,4-methyl
Examples include pentene-1, hexene-1, octene-1, etc., and those whose content is 10% by weight or less are used. Polyethylene A is manufactured by a low-pressure method, and has a density of 0.950 to 0.970 g/cm 3 and a weight average molecular weight of 200,000 to 200,000.
400,000 are used. Here, the density is JIS-
The weight average molecular weight was measured in accordance with K-6758, and the weight average molecular weight was determined using two 8MS columns using gel permeation chromatography (manufactured by Waters, GPC-150C) in a tricklebenzene solution at 135°C. This is the measured value. Weight average molecular weight
If it exceeds 400,000, high-speed molding becomes impossible because the fluidity of the composition decreases, and if the weight average molecular weight is lower than 200,000, the tension in the molten state of the composition (melt tension) decreases, making blow molding difficult. In this case, the drawdown increases, which is undesirable as it causes uneven thickness of the molded product. The melt index (hereinafter referred to as "MI") of polyethylene A is 0.02.
It is preferable that it is 0.7 g/10 minutes. MI here
is the number of grams of thermoplastic resin that can be extruded from a given nozzle under a given pressure at 190°C.
The values of MI in this specification were determined according to JIS-K-6758. When the MI exceeds 0.7 g/10 minutes, the melt tension of the composition decreases, causing the above-mentioned disadvantages, and when the MI decreases to less than 0.02 g/10 minutes, the fluidity of the composition decreases, making high-speed molding difficult. possible, which is not desirable in any case. Polyethylene B may be produced by a low pressure method, a medium pressure method, or a high pressure polymerization method, and has a density of 0.920 to 0.950 g/cm 3 and a weight average molecular weight of 4000.
~10000 are used. The density and weight average molecular weight values were each obtained in a manner similar to that used for polyethylene A.
When the weight average molecular weight exceeds 10,000, the fluidity of the composition decreases, and when the weight average molecular weight is less than 4,000, kneading during blending becomes impossible, which is not preferable. Furthermore, polyethylene B is preferably a copolymer of ethylene and another α-olefin in order to provide branching in the molecular chain, from the viewpoint of improving the ESCR resistance of the composition. The mixing ratio of polyethylene A and polyethylene B is 65 to 95% by weight of polyethylene A, polyethylene
B35-5% by weight, preferably polyethylene A75-90% by weight, polyethylene B25-10% by weight
shall be. When polyethylene B exceeds 35% by weight,
This is not preferable since it becomes difficult to uniformly disperse polyethylene A and polyethylene B when mixed, causing surging and the like, making extrusion molding difficult. Moreover, if the polyethylene B content is less than 5% by weight, the fluidity of the composition decreases and high-speed molding becomes difficult, which is not preferable. The density of polyethylene A is 0.950 to 0.970 g/cm 3
shall be. This is because when the density is smaller than 0.950g/ cm3 , the mechanical strength decreases, and as the density increases, the mechanical strength improves, but when it is larger than 0.970g/ cm3 , the ESCR resistance deteriorates significantly. be. The density of polyethylene B is 0.920 to 0.950 g/cm 3
shall be. This is because if it is smaller than 0.920 g/cm 3 , the mechanical strength will drop significantly, and if it is larger than 0.950 g/cm 3 , the effect of improving the ESCR resistance will be reduced. There are no particular restrictions on the mixing method, and any conventional method may be used. For example, a batch melt-kneading method using a single screw extruder, a batch melt-kneading method using a Banbury mixer, FCM (Farrel Continuous Mixer),
Examples include CIM (Continuous Intensive Mixer) and melt mixing method. Therefore, in the present invention, polyethylene A and polyethylene B are mixed to form a polyethylene composition, but the polyethylene composition according to the present invention may contain conventional additives such as various fillers, extenders, modifiers, or various stabilizing agents. A predetermined amount of an agent or the like may be added as appropriate depending on the purpose. The composition of the present invention exhibits excellent fluidity, especially under high shear. Therefore, high-speed blow molding where fluidity is a problem when the D2 value is about 3000 sec -1 or more, or when the D2 value is
It is particularly advantageous when used in various high-speed molding fields such as extrusion coating molding where fluidity of about 10,000 sec -1 or higher is a problem. Here, D 2 is the value of the shear rate when the shear capacity is 2.4 × 10 10 dyn/cm 3 , which was obtained by drawing a flow curve of shear rate vs. shear stress using a capillary rheometer. . The D2 value is a criterion for high-speed formability, and the larger the value, the better the high-speed formability. Also,
The composition of the present invention maintains high molecular weight and density, and has excellent various mechanical properties such as impact resistance, compression resistance, and bending strength. Therefore,
Combined with its excellent fluidity, it can be used as a molding resin for high-speed molded products with excellent mechanical properties. Furthermore, the composition of the present invention is also excellent in terms of ESCR resistance, and is therefore particularly suitable as a resin for extrusion coating and blow molding. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the spirit thereof. In addition, in the examples below, the ESCR resistance, which is often a practical problem when polyethylene resin comes into contact with a liquid surfactant, is based on ASTM.
- Nonionic surfactant according to the Bell method of D-1693
Measurements were made using a 2 mm thick test piece in a 10% solution. It was expressed as the time until cracks appeared in 5 out of 10 test pieces. In addition, the melt tension, which is one of the flow characteristics, was determined at a measurement temperature of 190℃.
The sample was packed into a melt indexer measuring device specified in JIS-K-6758, and the piston descended at a rate of 20 per minute.
The strands flowing out from the lower orifice under 100 mm were taken at a speed of 314 cm per minute, and the tension applied to the strands was detected by a load cell. Examples 1 to 8 High-density polyethylene A-1, A-2 and low-density polyethylene B-1 were dry-blended using a tumbler type blender with different mixing ratios, and then melt-kneaded by FCM. It was pelletized and used as a sample. Table 1 below shows the results of measuring MI, density, D 2 , ESCR, and melt tension for the samples of Examples 1 to 8. Comparative Examples 1 to 6 High-density polyethylene A-1, A-3 and low-density polyethylene B-1, B-2, B-
3. The mixture ratio with B-4 was changed and the mixture was dry blended using a tumbler type blender, melted and kneaded using a Banbury mixer, and then pelletized to give a sample. Regarding samples related to each comparative example 1 to 6
The results of measuring MI, density, D 2 , ESCR, and melt tension are also shown in Table 1 on the next page.

【表】 この表より、実施例1〜8によれば、ポリエチ
レンBの割合が5〜35重量%であれば、D2が向
上して流動性が改善され、且つ耐ESCR特性も向
上することが認められる。 しかし、比較例1に示すように、ポリエチレン
Bの混合割合が40重量%を越える場合には、分子
量の低下が支配的になり、D2は高くても、密度
が小さくなり、且つ耐ESCR特性の向上効果が認
められない。 また、比較例2、3に示すように、ポリエチレ
ンBの重量平均分子量が4000以下であると、流動
性は改善されるが、実施例3、4と比べて耐
ESCR特性の向上効果は小さくなる。 比較例4、5に示すように、ポリエチレンBの
重量平均分子量が10000を越えると、若干耐
ESCR特性が向上することが認められるが、流動
性の改善効果は充分ではない。 比較例6に示すように、ポリエチレンAの重量
平均分子量が40万を越えると、ポリエチレンBの
重量平均分子量が5000以下のものを用いても流動
性の改善効果は充分ではなくなる。 従つて、実施例に係るポリエチレン組成物は、
ポリエチレンAを単独で使用した場合と比べて、
ポリエチレンBを所定量混合することにより、密
度は若干下がるようなことがあつても、D2と耐
ESCR特性についてはいずれも高い値を示し、総
合的な特性として耐ESCR特性、流動特性および
機械的強度に優れていることがわかる。
[Table] From this table, according to Examples 1 to 8, if the proportion of polyethylene B is 5 to 35% by weight, D 2 is improved, fluidity is improved, and ESCR resistance properties are also improved. is recognized. However, as shown in Comparative Example 1, when the mixing ratio of polyethylene B exceeds 40% by weight, the molecular weight decreases dominantly, and even though D2 is high, the density becomes low and the ESCR resistance property decreases. No improvement effect was observed. In addition, as shown in Comparative Examples 2 and 3, when the weight average molecular weight of polyethylene B is 4000 or less, the fluidity is improved, but compared to Examples 3 and 4, the
The effect of improving ESCR characteristics becomes smaller. As shown in Comparative Examples 4 and 5, when the weight average molecular weight of polyethylene B exceeds 10,000, the durability slightly deteriorates.
Although it is recognized that the ESCR characteristics are improved, the effect of improving fluidity is not sufficient. As shown in Comparative Example 6, when the weight average molecular weight of polyethylene A exceeds 400,000, the fluidity improvement effect is no longer sufficient even if polyethylene B having a weight average molecular weight of 5,000 or less is used. Therefore, the polyethylene composition according to the example is
Compared to using polyethylene A alone,
Even if the density may decrease slightly by mixing a certain amount of polyethylene B, it will maintain the same resistance as D2 .
All of the ESCR properties showed high values, and it can be seen that the overall properties are excellent in ESCR resistance, flow properties, and mechanical strength.

Claims (1)

【特許請求の範囲】 1 密度0.950〜0.970g/cm3、重量平均分子量20
万〜40万のポリエチレンAを65〜95重量%と、密
度0.920〜0.950g/cm3、重量平均分子量4000〜
10000のポリエチレンBを35〜5重量%とからな
るポリエチレン組成物。 2 ポリエチレンAを75〜90重量%と、ポリエチ
レンBを25〜10重量%とからなる特許請求の範囲
第1項記載のポリエチレン組成物。
[Claims] 1. Density 0.950 to 0.970 g/cm 3 , weight average molecular weight 20
65-95% by weight of polyethylene A of 10,000-400,000 yen, density 0.920-0.950g/cm 3 , weight average molecular weight 4000-
A polyethylene composition comprising 35 to 5% by weight of 10,000 polyethylene B. 2. The polyethylene composition according to claim 1, comprising 75 to 90% by weight of polyethylene A and 25 to 10% by weight of polyethylene B.
JP1968581A 1981-02-13 1981-02-13 Polyethylene composition Granted JPS57133136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1968581A JPS57133136A (en) 1981-02-13 1981-02-13 Polyethylene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1968581A JPS57133136A (en) 1981-02-13 1981-02-13 Polyethylene composition

Publications (2)

Publication Number Publication Date
JPS57133136A JPS57133136A (en) 1982-08-17
JPH0146535B2 true JPH0146535B2 (en) 1989-10-09

Family

ID=12006084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1968581A Granted JPS57133136A (en) 1981-02-13 1981-02-13 Polyethylene composition

Country Status (1)

Country Link
JP (1) JPS57133136A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725829B2 (en) * 1986-03-07 1995-03-22 日本石油株式会社 Method for producing ethylene polymer
FI101546B (en) * 1994-12-16 1998-07-15 Borealis Polymers Oy Polyeteenikompositio

Also Published As

Publication number Publication date
JPS57133136A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
US5804660A (en) Impact modified thinwall polymer compositions
JP2002338760A (en) Impact modification of thermoplastic material
JPH05194796A (en) Polyethylene blend
US4319004A (en) Ternary thermoplastic molding composition containing polypropylene homopolymer
EP0069479A1 (en) Thermoplastic resin composition
CN100404605C (en) Ionomer/high density polyethylene blends with improved flow
AU653478B2 (en) A process for melt blending high molecular weight ethylene polymer and low molecular weight ethylene polymer
KR100842162B1 (en) A polypropylene resin composition having excellent transparency and impact resistance and a resin product manufactured therefrom
JPH0146535B2 (en)
US4319005A (en) Ternary thermoplastic molding composition containing polypropylene copolymers
EP0412534B1 (en) Propylene polymer composition
JPS6364465B2 (en)
US4319001A (en) Ternary thermoplastic molding composition containing ethylene-propylene copolymer
KR20170084466A (en) Propylene ethylene block copolymer resin composition with excellent impact strength at low temperature
KR20000045582A (en) Polypropylene resin composition having good rigidity and high impact property
KR20040110113A (en) Linear low density polyethylene resin composition with high impact strength
JP2690775B2 (en) Polyamide resin composition
EP3753982A1 (en) Polyethylene resin composition
KR20100058227A (en) High melt flow polypropylene resin composition for bumper of automobile
KR100745319B1 (en) Linear low density polyethylene resin composition with high impact strength
KR100533542B1 (en) Polyphenylene Sulfide Resin Composition
KR100633791B1 (en) Stiffness polypropylene resin composition having excellent flowability and heat resistance
JP3028700B2 (en) Polyethylene polymer alloy
JP3414526B2 (en) Manufacturing method of hollow container
JP2000103916A (en) Composition of high density polyethylene and polyethylene naphthalate