JPH0146473B2 - - Google Patents

Info

Publication number
JPH0146473B2
JPH0146473B2 JP56089493A JP8949381A JPH0146473B2 JP H0146473 B2 JPH0146473 B2 JP H0146473B2 JP 56089493 A JP56089493 A JP 56089493A JP 8949381 A JP8949381 A JP 8949381A JP H0146473 B2 JPH0146473 B2 JP H0146473B2
Authority
JP
Japan
Prior art keywords
carbon
weight
refractory
less
organic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089493A
Other languages
Japanese (ja)
Other versions
JPS57205381A (en
Inventor
Shigeo Yoshino
Rengi Katayama
Hiroyuki Sugimoto
Mitsuteru Takemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP56089493A priority Critical patent/JPS57205381A/en
Publication of JPS57205381A publication Critical patent/JPS57205381A/en
Publication of JPH0146473B2 publication Critical patent/JPH0146473B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気炉、転炉、溶鋼鍋、溶銃樋、混銃
車、溶銃鍋等の製鋼用容器の内張りまたは補修に
用いられる不定形耐火物に関するものである。 最近の製鋼用容器は鋼の高級化に伴う操業条件
の苛酷化や製鋼法の変化等によりその耐用性が低
下してきている。この為、高耐用性の耐火材の開
発や熱間補修等が試みられている。 耐火骨材とカーボンとを組合せた耐火材は従来
からあるが、操業条件の苛酷化に伴いカーボンの
配合量、添加量を増加し耐用性が向上することが
判明している。例えば転炉、電気炉へのピツチ含
浸マグードロれんが、マグネシアーカーボンれん
が、カーボンボンド吹付材、溶銃樋のキヤスタブ
ルとしてはアルミナーカーボン系、アルミナ―カ
ーボランダム―カーボランダム系等の各種のカー
ボンを添加した耐火材が開発された効果をあげは
じめている。カーボンは酸化には弱いがスラグと
の濡れ性が悪く高熱伝導であるため、耐火材の中
へのスラグ浸透による構造的スポーリングを防止
し、かつ熱的スポーリングに対する抵抗性も著し
く強くなる利点がある為、カーボンの使用量は
年々増加してきている。 カーボンを含む耐火材の耐用性は結合組織の緻
密さと結合強度によつて決定されるといえる。従
つて、れんがの場合は組織も緻密であり、結合強
度も高いものが得られるが、不定形耐火物の場合
には高圧成形が不可能であり、この為、緻密さは
もちろん、結合強度の高いものが得られ難い点が
あり、十分な耐用性が得られない。 従来のカーボンを含む不定形耐火物は少量の粒
状もしくは粉状フエノール樹脂、フラン樹脂、石
炭ピツチ、石油ピツチ、アスフアルト等の樹脂と
鱗状黒鉛、土状黒鉛、電極屑、コークス等のカー
ボンを併用していた。このような形でカーボンを
添加すると通常水を使用する不定形耐火物ではカ
ーボンが軽い為に浮きあがり水との濡れ性が悪
く、多量の水分添加が必要となり、組織はゆる
み、かつ結合強度も低くなる。さらに有機樹脂が
加熱されて溶融し、カーボン化する過程でカーボ
ンとのなじみが悪く、カーボン結合の十分な発達
ができず、結合強度が十分得られない欠点があつ
た。 本発明はカーボン粉末と有機樹脂を造粒したカ
ーボンを含む不定形耐火物の充填密度を向上させ
耐用性を改善させたものである。 造粒物を使用することについては本出願人等が
既に提案したところで、例えば特公昭56―20329
号公報に耐火物粉末と溶融したタールとを混練造
粒して得たペレツトを添加した吹付材を使用した
転炉の熱間吹付補修法を提案したが、ペレツトの
残留炭素量が少なく、また樹脂分の揮発後に気孔
が多く、カーボンの効果が十分に得られない。 本発明は以下に述べる如く処理したカーボン造
粒物を使用することによつて充填密度を高め、耐
用性を向上させた不定形耐火組成物である。 すなわち、0.7mm以下のカーボン粉末65〜98重
量%と有機樹脂を2〜35重量%配合し、2mm以下
の粒に造粒したカーボン造粒物5〜30重量%と粒
度調整された耐火骨材70〜95重量%からなり、有
機樹脂の配合に際して熱硬化性樹脂は常温混練に
より非硬化状態のまま、熱可塑性有機樹脂は加熱
混練してなることを特徴とする不定形耐火組成物
である。 本発明においてカーボン造粒物に用いるカーボ
ン粉末としては、鱗状黒鉛、土状黒鉛、電極用人
造黒鉛、石炭系コークス、石油系コークス等の
0.7mm以下の粉末を必要に応じて1種または2種
以上併用することができる。 有機樹脂としてはフエノール樹脂、フラン樹
脂、石炭ピツチ、石油ピツチ、クレオソート油、
各種乾性油等を用いることができるが、残留炭素
量が40重量%以上の有機樹脂が好ましい。有機樹
脂配合量の設定範囲については、2重量%以下に
なるとカーボン造粒物を作りにくく、また35重量
%以上になると揮発分が多く多孔化するため、2
〜35重量%の範囲が望ましい。 これらカーボンに熱硬化性樹脂は常温混練また
熱可塑性有機樹脂は加熱混練し、0.1〜2mmのペ
レツトに既知の手段で造粒する。カーボン造粒物
の粒径は、2mm以上が多くあると耐火物中への分
散が悪く、また0.1mm以下が多くなると表面積が
増加し十分な充填性が得られないため好ましくな
い。 カーボン造粒物の配合の設定範囲については、
5重量%未満であるとカーボンによるスラグの浸
透抑制効果が少なく、また30重量%以上になると
カーボンを造粒し、嵩比重を高めたとはいえ緻密
な結合組織ができ難いため好ましくない。このた
め5〜30重量%の範囲が望ましい。 本発明に使用する耐火骨材としてはマグネシ
ア、ドロマイト、石灰スピネル、アルミナ、炭化
珪素、窒化珪素、珪石、ろう石、ジルコンなどを
必要に応じて1種または2種以上併用することが
でき、その添加量は70〜95重量%である。 このようにして得られたカーボン造粒物と粒度
調整した耐火骨材を混合することによつて流し込
み材、ラミング材、吹付材圧入材等の不定形耐火
物が得られる。不定形耐火物の保形性、接着性を
賦与するためにリン酸塩、珪酸塩、アルミナセメ
ント等の結合剤を15重量%以下使用することがで
きる。また液状フエノール樹脂、クレオソート等
の液状有機樹脂も結合剤として使用できる。 本発明のカーボン造粒物は表面積が小さく嵩比
重が高いので、不定形耐火物の添加水分が少なく
て充填性が上がるため、気孔率が低く、カーボン
の酸化損傷が少なく、耐食性が大幅に向上する。 以下に本発明品の実施例および参考例を示す。 参考例 1 本発明のカーボン造粒物の配合を第1表に示
す。
The present invention relates to a monolithic refractory used for lining or repairing steelmaking containers such as electric furnaces, converters, molten steel ladle, molten gun troughs, mixed gun cars, and molten gun ladle. The durability of recent steelmaking containers has been decreasing due to harsher operating conditions and changes in steelmaking methods as the quality of steel increases. For this reason, attempts are being made to develop highly durable fireproof materials and hot repairs. Refractory materials that combine refractory aggregate and carbon have been available for some time, but it has been found that durability can be improved by increasing the amount of carbon blended and added as operating conditions become more severe. For example, various carbons such as alumina carbon type, alumina-carborundum-carborundum type, etc. are added as castables for pitch-impregnated Maguro bricks, magnesia carbon bricks, carbon bond spray materials, and gutter for converters and electric furnaces. The developed refractory materials are beginning to show results. Although carbon is weak against oxidation, it has poor wettability with slag and has high thermal conductivity, so it prevents structural spalling due to slag penetration into the refractory material, and has the advantage of significantly increasing resistance to thermal spalling. As a result, the amount of carbon used is increasing year by year. It can be said that the durability of refractory materials containing carbon is determined by the density and bond strength of the connective tissue. Therefore, bricks have a dense structure and high bonding strength, but monolithic refractories cannot be molded under high pressure, so not only the density but also the bonding strength can be obtained. It is difficult to obtain high quality products, and sufficient durability cannot be obtained. Conventional monolithic refractories containing carbon are made by combining a small amount of granular or powdered phenolic resin, furan resin, coal pitch, petroleum pitch, asphalt, etc., with carbon such as scaly graphite, earthy graphite, electrode scrap, coke, etc. was. When carbon is added in this way, in monolithic refractories that normally use water, the carbon is light and floats, making it difficult to wet with water, requiring the addition of large amounts of water, loosening the structure, and reducing bond strength. It gets lower. Furthermore, in the process where the organic resin is heated, melted, and carbonized, it is poorly compatible with carbon, and carbon bonds cannot be sufficiently developed, resulting in insufficient bond strength. The present invention improves the packing density of a monolithic refractory containing carbon, which is made by granulating carbon powder and an organic resin, and improves its durability. The applicant has already proposed the use of granules, for example, in Japanese Patent Publication No. 56-20329.
In the above publication, a method for hot spraying repair of converters using a spraying material containing pellets obtained by kneading and granulating refractory powder and molten tar was proposed, but the amount of residual carbon in the pellets was small, and There are many pores after the resin content volatilizes, and the effect of carbon cannot be obtained sufficiently. The present invention is an amorphous refractory composition that has increased packing density and improved durability by using carbon granules treated as described below. In other words, 65-98% by weight of carbon powder of 0.7 mm or less and 2-35% by weight of organic resin are mixed, 5-30% by weight of carbon granules granulated into particles of 2 mm or less, and refractory aggregate whose particle size is adjusted. It is an amorphous fireproof composition consisting of 70 to 95% by weight, characterized in that when blending the organic resin, the thermosetting resin is kept in an uncured state by kneading at room temperature, and the thermoplastic organic resin is kneaded by heating. In the present invention, the carbon powder used in the carbon granules includes scaly graphite, earthy graphite, artificial graphite for electrodes, coal-based coke, petroleum-based coke, etc.
Powders of 0.7 mm or less can be used alone or in combination of two or more, if necessary. Organic resins include phenolic resin, furan resin, coal pitch, petroleum pitch, creosote oil,
Various drying oils can be used, but organic resins with a residual carbon content of 40% by weight or more are preferred. Regarding the setting range of the organic resin content, if it is less than 2% by weight, it will be difficult to make carbon granules, and if it is more than 35% by weight, there will be a lot of volatile content and it will become porous.
A range of ~35% by weight is desirable. The thermosetting resin is kneaded with the carbon at room temperature, and the thermoplastic organic resin is kneaded with heating, and the mixture is granulated into pellets of 0.1 to 2 mm by known means. If the particle size of the carbon granules is 2 mm or more, dispersion into the refractory will be poor, and if the particle size is 0.1 mm or less, the surface area will increase and sufficient filling properties will not be obtained, which is not preferable. Regarding the setting range of carbon granules,
If it is less than 5% by weight, the effect of suppressing slag penetration by carbon is small, and if it is more than 30% by weight, carbon is granulated and, although the bulk specific gravity is increased, it is difficult to form a dense connective tissue, which is not preferable. For this reason, a range of 5 to 30% by weight is desirable. As the refractory aggregate used in the present invention, magnesia, dolomite, lime spinel, alumina, silicon carbide, silicon nitride, silica, waxite, zircon, etc. can be used singly or in combination as necessary. The amount added is 70-95% by weight. By mixing the carbon granules obtained in this way with a refractory aggregate whose particle size has been adjusted, monolithic refractories such as pouring materials, ramming materials, and injection materials can be obtained. In order to impart shape retention and adhesive properties to the monolithic refractory, a binder such as phosphate, silicate, alumina cement, etc. can be used in an amount of 15% by weight or less. Liquid organic resins such as liquid phenolic resin and creosote can also be used as binders. The carbon granules of the present invention have a small surface area and a high bulk specific gravity, so less water is added to the monolithic refractory and the filling properties are improved, resulting in lower porosity, less oxidation damage to carbon, and significantly improved corrosion resistance. do. Examples and reference examples of the products of the present invention are shown below. Reference Example 1 Table 1 shows the formulation of the carbon granules of the present invention.

【表】 上記のカーボン造粒物を用いた不定形耐火物の
実施例を以下に示す。 実施例 1 本発明のカーボン造粒物をマグネシアーカーボ
ン系流し込み用キヤスタブルに用いてスラグテス
トを行なつた。配合とスラグテストの結果を示
す。本発明のマグネシア・カーボン系キヤスタブ
ルは添加水分量が従来のものに比べ非常に少な
く、この為、組織も緻密となり耐食性が大幅に向
上した。 スラグテストは転炉スラグで1650℃―4時間実
施した結果である。
[Table] Examples of monolithic refractories using the above carbon granules are shown below. Example 1 A slag test was conducted using the carbon granules of the present invention in a magnesia carbon casting caster. The formulation and slag test results are shown. The magnesia-carbon castable of the present invention has a much smaller amount of added water than conventional castables, and therefore has a dense structure and greatly improved corrosion resistance. The slag test was conducted using converter slag at 1650℃ for 4 hours.

【表】 実施例 2 本発明のカーボン造粒物をアルミナ流し込み用
キヤスタブルに用いてスラグテストを行なつた。
アルミナ系キヤスタブルにおいても添加水分量の
減少で耐食性は向上した。 スラグテストは1550℃―4時間とし高炉スラグ
を用いた。
[Table] Example 2 A slag test was conducted using the carbon granules of the present invention in a castable for pouring alumina.
Corrosion resistance was also improved in alumina castables by reducing the amount of added water. The slag test was conducted at 1550℃ for 4 hours using blast furnace slag.

【表】【table】

【表】 実施例 3 本発明のカーボン造粒物を塩基性ドライスタン
プ材に用いた。この結果嵩比重も向上し、耐食性
も向上した。スラグテスト条件は1700℃―4時間
電気炉スラグを用いた。
[Table] Example 3 The carbon granules of the present invention were used as a basic dry stamp material. As a result, the bulk specific gravity and corrosion resistance were also improved. The slag test conditions were electric furnace slag at 1700°C for 4 hours.

【表】【table】

【表】 以上の如く本発明の不定形耐火組成物は従来の
カーボン入不定形耐火物に比べ格段に耐食性が向
上する。
[Table] As described above, the monolithic refractory composition of the present invention has significantly improved corrosion resistance compared to conventional carbon-containing monolithic refractories.

Claims (1)

【特許請求の範囲】[Claims] 1 0.7mm以下のカーボン粉末65〜98重量%と有
機樹脂を2〜35重量%配合し、2mm以下の粒に造
粒したカーボン造粒物5〜30重量%と粒度調整さ
れた耐火骨材70〜95重量%からなり、有機樹脂の
配合に際して熱硬化性樹脂は常温混練により非硬
化状態のまま、熱可塑性有機樹脂は加熱混練して
なることを特徴とする不定形耐火組成物。
1 65-98% by weight of carbon powder of 0.7 mm or less and 2-35% by weight of organic resin, 5-30% by weight of carbon granules granulated into particles of 2 mm or less, and refractory aggregate 70 whose particle size is adjusted 95% by weight, and is characterized in that when blending the organic resin, the thermosetting resin is kept in an uncured state by kneading at room temperature, and the thermoplastic organic resin is kneaded by heating.
JP56089493A 1981-06-12 1981-06-12 Indefinite form refractory composition Granted JPS57205381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56089493A JPS57205381A (en) 1981-06-12 1981-06-12 Indefinite form refractory composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56089493A JPS57205381A (en) 1981-06-12 1981-06-12 Indefinite form refractory composition

Publications (2)

Publication Number Publication Date
JPS57205381A JPS57205381A (en) 1982-12-16
JPH0146473B2 true JPH0146473B2 (en) 1989-10-09

Family

ID=13972273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56089493A Granted JPS57205381A (en) 1981-06-12 1981-06-12 Indefinite form refractory composition

Country Status (1)

Country Link
JP (1) JPS57205381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246897A (en) * 1991-08-09 1993-09-21 Asahi Glass Company Ltd. Powder mixture for monolithic refractories containing graphite and a method of making thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203764A (en) * 1983-05-07 1984-11-17 リグナイト株式会社 Refractory brick and manufacture
JPH0388878A (en) * 1989-08-31 1991-04-15 Kansai Coke & Chem Co Ltd Graphite granulated product for amorphous refractory
JPH0412064A (en) * 1990-04-26 1992-01-16 Harima Ceramic Co Ltd Surface treated graphite for monolithic refractory and monolithic refractory for pretreating hot metal
CN108794020A (en) * 2017-04-26 2018-11-13 宝山钢铁股份有限公司 Repair repair materials and its application of blast furnace lining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246897A (en) * 1991-08-09 1993-09-21 Asahi Glass Company Ltd. Powder mixture for monolithic refractories containing graphite and a method of making thereof
DE4226211C2 (en) * 1991-08-09 2000-04-27 Asahi Glass Co Ltd Powder mixture for monolithic, graphite-containing refractory materials and process for the production thereof

Also Published As

Publication number Publication date
JPS57205381A (en) 1982-12-16

Similar Documents

Publication Publication Date Title
JP4394144B2 (en) Carbon-containing refractory, method for producing the same, and pitch-containing refractory material
CN101489956A (en) Fireproof casting insert made of fireproof raw materials and fireproof casting produced from the insert
US4292082A (en) Unshaped refractories
GB2088845A (en) Binder for refractory compositions
JPH0146473B2 (en)
US5024793A (en) Method for manufacturing refractory oxide-carbon bricks
KR0144771B1 (en) Refractory composition for sealing
JPS6156191B2 (en)
JPS6132378B2 (en)
JPH04280877A (en) Spraying material for hot-repairing furnace wall
JPS6215507B2 (en)
JP2517192B2 (en) Resin-bonded carbon-containing amorphous refractory
JPS5812226B2 (en) Refractories for hot spray repair
CA1046249A (en) Method for constructing a runner for metal melting furnace
KR100387596B1 (en) Spray refractory for repair of refining furnace
JPS6374973A (en) Kiln repairing material
US4582262A (en) Process for the preparation of granular refractory material
US3215546A (en) Refractory practices
KR101203630B1 (en) Improvement of oxidation resistance of pitch for castable refractories
JPH02267172A (en) Hot repairing material and hot repairing method
JP4470372B2 (en) Graphite-containing amorphous refractory material
JP3037625B2 (en) Baking repair material
JPH1095675A (en) Refractory containing carbon
JPS591235B2 (en) Amorphous refractory composition
JPS6212676A (en) Repairing material for basic carbon bond baking