JPH0146244B2 - - Google Patents

Info

Publication number
JPH0146244B2
JPH0146244B2 JP57045766A JP4576682A JPH0146244B2 JP H0146244 B2 JPH0146244 B2 JP H0146244B2 JP 57045766 A JP57045766 A JP 57045766A JP 4576682 A JP4576682 A JP 4576682A JP H0146244 B2 JPH0146244 B2 JP H0146244B2
Authority
JP
Japan
Prior art keywords
cutting
cutter
blade
edge
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57045766A
Other languages
Japanese (ja)
Other versions
JPS5859712A (en
Inventor
Dagurasu Hoogen Ebaretsuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS5859712A publication Critical patent/JPS5859712A/en
Publication of JPH0146244B2 publication Critical patent/JPH0146244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/04Drills for trepanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/408Spiral grooves

Description

【発明の詳細な説明】 本発明は環状穴アケ刃物に関する。[Detailed description of the invention] The present invention relates to an annular hole cutting tool.

本発明者の米国再発行特許第28416号に先端
(下端)周囲に複数の相離間した歯を具えた環状
刃物が開示されている。それら各歯には円周方向
で互違いの複数の刃部が形成されており、各刃部
により別個の切屑を生じる構成となつている。半
径方向で最内方の刃部は、隣接歯間のウエブに形
成された浅い開口(gullet)を半径方向に横切つ
て延び、最外方の刃部は、隣接歯間で刃物を上方
に螺旋状に延びた外部螺旋溝を半径方向に横切つ
て延びている。これによれば、螺旋溝の半径方向
の深さを刃物の環状壁の厚さの約1/2とし、ウエ
ブの厚さを上記環状壁の厚さの約1/2としている。
従つて、各歯における半径方向で内方の刃部の半
径方向の寸法は上記環状壁の厚さの約1/2となる。
このように、螺旋溝の半径方向の深さは、両刃部
により生じる切屑を排出するに十分なものとされ
ている。
No. 28,416, issued by the present inventor, discloses an annular cutter having a plurality of spaced apart teeth around its tip (lower end). Each tooth is formed with a plurality of blade portions that alternate in the circumferential direction, and each blade portion is configured to produce separate chips. The radially innermost cutting edge extends radially across a shallow gullet formed in the interproximal web, and the outermost cutting edge extends the gullet upwardly between the interproximal teeth. It extends radially across a spirally extending outer helical groove. According to this, the radial depth of the spiral groove is approximately 1/2 of the thickness of the annular wall of the cutter, and the thickness of the web is approximately 1/2 of the thickness of the annular wall.
Therefore, the radial dimension of the radially inner cutting edge of each tooth is approximately 1/2 the thickness of the annular wall.
Thus, the radial depth of the helical groove is sufficient to discharge chips generated by the double-edged portions.

この先行特許は同時に、各歯が2本ではなく3
本の切屑を生じるように、3個の刃部を円周方向
でずらして設けたい場合には、螺旋溝の半径方向
の深さ及びウエブの厚さは2段刃刃物と同様に維
持し、螺旋溝の深さに対応する刃物の壁部分を、
単一の刃部ではなく円周方向にずれた2個の刃部
とすることを示している。半径方向で最外方の刃
部は、軸線方向の寸法が比較的短くて螺旋溝内に
開放された外方開口(outer gullet)により画定
される。それにも拘らず、螺旋溝の半径方向の寸
法は略々刃物の壁厚の1/2に等しく、最内方の刃
部により生じる切屑を容易に収容し得る。加え
て、壁のウエブ部にはそれでも、幅が刃物の壁厚
の約1/2の1個の刃部があり、この刃部により生
じる切屑は、半径方向に螺旋溝内に移動させねば
ならない。
This prior patent also states that each tooth has three teeth instead of two.
If the three blades are to be staggered in the circumferential direction to produce book chips, the radial depth of the helical groove and the thickness of the web should be kept the same as in the two-stage blade; The wall part of the knife corresponding to the depth of the spiral groove,
This indicates that there are not a single blade, but two blades that are offset in the circumferential direction. The radially outermost cutting portion is defined by an outer gullet of relatively short axial dimension and opening into a helical groove. Nevertheless, the radial dimension of the helical groove is approximately equal to 1/2 of the wall thickness of the blade and can easily accommodate chips produced by the innermost blade. In addition, the web part of the wall still has one cutting edge whose width is approximately 1/2 the wall thickness of the cutting tool, and the chips produced by this cutting edge must be transferred radially into the helical groove. .

このような先行特許に開示された刃物は、それ
迄の環状刃物より遥かに優る切削動作を行うもの
であるが、刃物が産業規模での穴開けに使用した
場合、切屑が内方開口(inner gullet)から螺旋
溝に自由に移動しない傾向がある。その場合に
は、切削動作が著しく減速されるとともに、仕上
げが粗くテーパ状の過大寸法の穴となる。また、
刃部の寿命も実質的に短縮される。本発明者は、
環状刃物の開口と螺旋溝からの切屑の流れに関す
るこの問題を解決する最も実際的な方法は、切屑
を薄く且細く形成して、切出されると直ちに容易
に螺旋溝に向けられるように環状刃物を構成する
ことであることを見出した。
The blades disclosed in such prior patents perform a cutting action far superior to that of previous annular blades, but when the blades are used for drilling holes on an industrial scale, the chips may form in the inner opening (inner opening). gullet) tend not to move freely into the spiral groove. In that case, the cutting action is significantly slowed down and results in an oversized hole with a rough finish and a tapered shape. Also,
The life of the blade is also substantially reduced. The inventor is
The most practical way to solve this problem of chip flow from the annular cutter opening and the helical groove is to form the chips thin and narrow so that they can be easily directed into the helical groove as soon as they are cut. We found that it is possible to compose the following.

通常、切屑は切出されると同時に螺旋形にカー
ルし始める。螺旋形の切屑の体積と剛性は、その
幅と厚さにより決定され、広ければ容易に撓ま
ず、比較的体積が大きくなる。螺旋状切屑の体積
が大きいと、螺旋溝が画定する通路を一定時間内
に上昇し得る切屑の量が減少する。他方、細い切
屑は障害物、例えば螺旋溝や穴の壁面に遭遇する
と容易に撓み、螺旋溝を上昇する際に要する該螺
旋溝の深さが遥かに小さくなる。細い切屑は螺旋
溝内に移動し易く、螺旋溝を詰まらせる傾向も少
い。細い切屑はまた、その弾性限界以上まで容易
に変形でき、従つて容易に小片に破断できる。加
えて、細い切屑は半径方向に圧縮可能でバネ状の
螺旋を形成し、この螺旋が螺旋溝内での上昇に伴
つて他の螺旋と絡み合う。このように絡み合つた
螺旋状の切屑が加工中の穴の壁面に係合すると、
その結果生じる摩擦により上記切屑の刃物と一体
的な更なる回転に抵抗が作用し、螺旋溝の後方側
壁により強制的に上方に移動させられ、螺旋溝を
詰まらせることがない。即ち、切屑幅を減少させ
れば、螺旋溝の断面積が減少する。また、刃物側
壁の厚さを一定とすれば、螺旋溝のサイズを減少
させると、隣接歯間のウエブの厚さが増すことに
より刃物の強度が増す。ウエブが厚くなれば剛性
が増し、より精確に、より良い仕上げの穴を形成
することができる。更に、刃物の強度が増すこと
により、より厚い切屑の切出しが可能になつた
り、より多くの歯を使用できるようになつたり
し、切削動作が高速化される。
Typically, the chip begins to curl into a helical shape as soon as it is cut. The volume and stiffness of a helical chip are determined by its width and thickness; the wider it is, the less it will bend easily and the more volume it will have. A large volume of helical chips reduces the amount of chips that can move up the path defined by the helical groove in a given period of time. On the other hand, thin chips easily deflect when they encounter obstacles, such as the walls of a helical groove or a hole, and the depth of the helical groove required to ascend the helical groove is much smaller. Thin chips move more easily into the helical groove and have less tendency to clog the helical groove. Thin chips can also be easily deformed above their elastic limit and therefore easily broken into small pieces. In addition, the thin chips form radially compressible, spring-like helices that intertwine with other helices as they ascend within the helical groove. When these tangled spiral chips engage the wall of the hole being machined,
The resulting friction acts to resist further rotation of the chips integrally with the cutting tool, forcing them upwardly by the rear side wall of the helical groove, without clogging the helical groove. That is, if the chip width is reduced, the cross-sectional area of the spiral groove is reduced. Furthermore, if the thickness of the side wall of the blade is constant, decreasing the size of the helical groove increases the strength of the blade by increasing the thickness of the interproximal web. The thicker the web, the more rigid it is and the more precisely the holes can be formed with a better finish. Furthermore, the increased strength of the cutting tool allows thicker chips to be cut and more teeth to be used, resulting in faster cutting operations.

本発明の主目的は、従来より効率的、高速、そ
して精確に切削を行い、仕上げを向上させ、寿命
が長い環状穴アケ刃物を提供することにある。
The main object of the present invention is to provide an annular hole cutting tool that cuts more efficiently, faster, and more accurately than ever before, provides improved finishing, and has a longer life.

本発明の他の目的は、従来の同一寸法の刃物よ
り耐破壊性に富む、溝付環状刃物を提供すること
にある。
Another object of the present invention is to provide a grooved annular cutter that is more resistant to breakage than conventional cutters of the same size.

本発明は特に、各歯に少くとも3個の刃部を具
え、これら各刃部の半径方向の寸法を刃物の壁厚
の実質的に1/2より小さく設定することにより、
溝の半径方向の寸法を刃物の壁厚の約1/3程度に
小さくでき、にも拘らず最も広い刃部により生じ
た切屑を自由に収容するに十分な深さとし得る、
溝付環状穴アケ刃物を提供することを目的とす
る。
In particular, the present invention provides at least three cutting edges on each tooth, each of which has a radial dimension of substantially less than one half of the wall thickness of the cutting edge.
The radial dimension of the groove can be reduced to about 1/3 of the wall thickness of the blade, yet deep enough to freely accommodate chips generated by the widest blade part;
The purpose of the present invention is to provide a grooved annular hole cutting tool.

本発明はまた、同一サイズの従来の刃物に比
し、より効率的な環状穴アケ刃物を提供すること
を目的とする。この目的は、刃物の各歯に少くと
も3個の刃部を形成し、これら各刃部により別個
の切屑を生ぜしめるとともに、それら切屑のうち
の2本が、半径方向で溝の内方に位置する刃物側
壁部分、つまり隣接歯間のウエブ部で形成される
ように構成することにより達成される。
It is also an object of the present invention to provide an annular hole cutting tool that is more efficient than conventional tools of the same size. The purpose of this is to form at least three cutting edges on each tooth of the cutter, with each cutting edge producing a separate chip, two of which are directed radially inward into the groove. This is achieved by configuring the cutting tool to be formed by the side wall portion of the blade, that is, the web portion between adjacent teeth.

本発明はまた、軸線方向で相隣接して入れ子式
に結合される2個の部分として形成されるに極め
て適し、歯が形成される刃物先端部を高速度鋼等
の比較的高価な切削工具用の材料で形成する一
方、刃物本体部分を熱処理した比較的低合金鋼等
の安価な材料で形成することを可能とする環状穴
アケ刃物を提供することを目的とする。
The present invention is also very suitable for being formed as two parts that are axially adjacent and nested together, so that the tip of the blade where the teeth are formed can be made of a relatively expensive cutting tool such as high speed steel. It is an object of the present invention to provide an annular hole-edge cutter which can be made of a conventional material, while the cutter main body can be made of an inexpensive material such as heat-treated relatively low-alloy steel.

本発明はまた、小径で、溝の研削時或は熱処理
時にも毛割れの発生の傾向が実質的に減少するよ
うな環状穴アケ刃物の製造のための構成を提供す
ることを目的とする。
It is also an object of the present invention to provide an arrangement for the manufacture of annular slotted cutlery of small diameter, in which the tendency for hair cracking to occur during groove grinding or heat treatment is substantially reduced.

本発明はまた、標準サイズの刃物の直径を容易
に小さくして特殊サイズの刃物を製造し得る、環
状穴アケ刃物の構成を提供することを目的とす
る。
Another object of the present invention is to provide a structure for an annular-shaped cutter that can easily reduce the diameter of a standard-sized cutter to produce a special-sized cutter.

本発明は更に、複数の積重ねられた工作物を切
削するのに非常に適した環状穴アケ刃物を提供す
ることを目的とする。
A further object of the invention is to provide an annular boring tool which is very suitable for cutting multiple stacked workpieces.

本発明は加えて、溝や開口を詰まらせることな
く大量の切削を行なうのに非常に適した環状刃物
を提供することを目的とする。
It is an additional object of the invention to provide an annular cutter which is very suitable for making large volume cuts without clogging grooves or openings.

本発明の一実施例による環状穴アケ刃物は、円
周方向に間隔をおいた複数の切削歯を下端に有す
る環状側壁を具え、該側壁の外周面には上記切削
歯数に対応する本数の螺旋溝が形成されている。
各切削歯には円周方向、そして好適には上下方向
にも互違いとされた複数の刃部を設け、これら刃
部の少くとも2個を、隣接切削歯間のウエブの厚
さに対応する切削歯部分に位置させ、他の刃部は
螺旋溝の半径方向の深さに対応する切削歯部分に
位置させる。本発明による刃部の一実施例では、
半径方向で内側の上記した2個の刃部の全幅は、
他の刃部の全幅より大とするのが望ましく、その
場合にはウエブの厚さが螺旋溝の深さより大とな
る。いずれにせよ、螺旋溝の深さは、内側の上記
両刃部のうちの広いものの幅と少くとも同程度に
大きく設定するのが望ましい。また、刃物の壁厚
は、刃物を工作物内に送るに必要な動力を適当に
小さく抑えるために、比較的狭い切削路を形成す
るように設定する。
An annular hole cutting tool according to an embodiment of the present invention includes an annular side wall having a plurality of cutting teeth at a lower end thereof spaced apart in the circumferential direction, and the outer peripheral surface of the side wall has a number of cutting teeth corresponding to the number of cutting teeth. A spiral groove is formed.
Each cutting tooth is provided with a plurality of cutting edges staggered circumferentially and preferably also vertically, with at least two of these cutting teeth corresponding to the thickness of the web between adjacent cutting teeth. The other blade portion is located at a cutting tooth portion corresponding to the radial depth of the helical groove. In one embodiment of the blade part according to the invention,
The total width of the two inner blades mentioned above in the radial direction is:
It is desirable that the width be greater than the overall width of the other blades, in which case the thickness of the web will be greater than the depth of the helical groove. In any case, it is desirable that the depth of the spiral groove be set to be at least as large as the width of the wider one of the inner double-edged portions. The wall thickness of the knife is also set to form a relatively narrow cutting path in order to keep the power required to feed the knife into the workpiece reasonably low.

次に本発明の実施例を図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

図面において、符号10は本発明による環状穴
アケ刃物を示し、この刃物10は本体12と軸部
14を具えている。上記本体10は逆コツプ状に
形成され、側壁16及び上壁18を有する。20
は側壁16の下端に望ましくは等間隔に形成され
た複数の切削歯、22はこれら各切削歯20に近
接した本体12の外周部周囲を上方に延びる螺旋
溝、24は本体12の外周部において上記螺旋溝
22相互を分離するランドを示す。尚これら螺旋
溝並びにランドについては、刃物10の側壁16
の全長に亘つて形成するものとして図示している
が、場合によつては、実質的に側壁16より短く
するほうが刃物10の作用が更に効果的になるこ
ともある。26は側壁16の前記切削歯20間の
部分を構成するウエブで、各ウエブ26の半径方
向外方の面28が螺旋溝22の内壁を構成してい
る。30,32は夫々、各螺旋溝22の前方側
壁、後方側壁である。
In the drawings, reference numeral 10 designates a ring-shaped cutting tool according to the present invention, and this cutting tool 10 includes a main body 12 and a shaft portion 14. As shown in FIG. The main body 10 is formed into an inverted top shape and has a side wall 16 and a top wall 18. 20
22 is a spiral groove extending upward around the outer periphery of the main body 12 in proximity to each of the cutting teeth 20; 24 is a spiral groove formed on the outer periphery of the main body 12; A land separating the spiral grooves 22 from each other is shown. Note that these spiral grooves and lands are formed on the side wall 16 of the cutter 10.
Although shown as being formed over the entire length of the side wall 16, in some cases, the action of the cutter 10 may be more effective if it is substantially shorter than the side wall 16. Reference numeral 26 denotes a web forming a portion of the side wall 16 between the cutting teeth 20, and a radially outward surface 28 of each web 26 forms an inner wall of the spiral groove 22. 30 and 32 are the front side wall and rear side wall of each spiral groove 22, respectively.

第1図乃至第4図の実施例において、各切削歯
20には3個の刃部34,36,38が設けられ
ており、刃部34は回転方向に関して刃部36か
ら前方に離間し、また刃部36は同方向に関して
刃部38から前方に離間している。42は上端が
44で示すように半径方向で外方に且上方に傾斜
した内方開口(gullet)で、その後方面40の下
端に前記刃部34が位置している。48は上記内
方開口42の直近で前記ウエブ26に形成された
副開口で、その後方面46の下端に前記刃部36
が位置している。この副開口48の上端50は半
径方向で外方に且上方に湾曲している。刃部3
4,36は副開口48の半径方向で内方の面52
の下端で円周方向の肩部51により分離されてい
る。他の刃部38は螺旋溝22の後方側壁32の
下端に形成され、同螺旋溝22の下端で肩部54
により刃部36から後方に離間している。
In the embodiment of FIGS. 1-4, each cutting tooth 20 is provided with three blades 34, 36, 38, the blades 34 being spaced forward from the blade 36 in the direction of rotation; Further, the blade portion 36 is spaced forward from the blade portion 38 in the same direction. 42 is an inward opening (gullet) whose upper end slopes radially outwardly and upwardly as indicated by 44, and at the lower end of the rear face 40 the blade portion 34 is located. Reference numeral 48 denotes a sub-opening formed in the web 26 in the vicinity of the inner opening 42, and the blade portion 36 is located at the lower end of the rear surface 46.
is located. The upper end 50 of this secondary opening 48 is curved radially outwardly and upwardly. Blade part 3
4 and 36 are radially inner surfaces 52 of the sub-opening 48;
are separated by a circumferential shoulder 51 at their lower ends. The other blade part 38 is formed at the lower end of the rear side wall 32 of the spiral groove 22, and the shoulder part 54 is formed at the lower end of the spiral groove 22.
It is spaced backward from the blade part 36 by this.

56,58は各切削歯20の底面に形成された
2個の二番取り面乃至逃げ面で、刃物10の作用
状態では、一方の逃げ面56が軸線方向で上方に
且半径方向で内方に傾斜し、他方の逃げ面58が
軸線方向で上方に且半径方向で外方に傾斜する。
またこれら各逃げ面56,58は、円周方向に刃
部34,36,38から上方に若干、例えば8〜
10゜傾斜しており、刃部34,36,38に必要
な逃げを画定する。両逃げ面56,58は、前記
半径方向最外方の刃部38と交差する頂部60に
おいて相交わる。尚これら逃げ面56,58は、
上記頂部60が刃部34,36,38のいずれに
交差するように研削してもよいが、上述のように
最外方の刃部38と交差させるのが殆どの場合に
好適である。両逃げ面56,58を傾斜させた結
果、各切部34,36,38は軸線方向で傾斜
し、同時に上下方向及び円周方向でずらした構成
となつている。
Reference numerals 56 and 58 denote two counterfeit surfaces or flank surfaces formed on the bottom surface of each cutting tooth 20. When the cutter 10 is in operation, one of the flank surfaces 56 is upward in the axial direction and inward in the radial direction. and the other flank 58 slopes axially upwardly and radially outwardly.
Further, each of these flank surfaces 56, 58 is arranged slightly upwardly from the blade portions 34, 36, 38 in the circumferential direction, for example, from 8 to 8.
It is angled at 10° to define the necessary relief for the blades 34, 36, 38. The flanks 56, 58 intersect at the apex 60, which intersects the radially outermost blade 38. Note that these flank surfaces 56 and 58 are
Although the apex 60 may be ground to intersect any of the blades 34, 36, and 38, it is preferred in most cases to intersect the outermost blade 38 as described above. As a result of inclining both flanks 56, 58, each cut portion 34, 36, 38 is inclined in the axial direction and is also offset in the vertical and circumferential directions.

本発明による刃物10の重要な特徴のひとつ
は、各切削歯20の下端において、ウエブ26に
2個の刃部34,36を形成したことである。第
1図乃至第9図の刃物では、ウエブ26の半径方
向の寸法を、望ましくは隣接した螺旋溝22の半
径方向の深さより大きいものとする。刃部34,
36,38は図示のように円周方向で互違いとさ
れているため、刃物10を回転させて工作物内に
送ると、各刃部34,36,38は各別に切屑を
生じる。更に刃物10の相対的寸法は、螺旋溝2
2の半径方向の深さが2個の刃部34,36のう
ちの広いものより実質的に小さくなく、望ましく
は大きく設定している。従つて、刃部34により
切出された切屑は、該刃部34の半径方向の傾斜
と開口42,48の上端部44,50により直ち
に開口48、そして螺旋溝22内に向けられる。
同様に、刃部36により生じた切屑は、該刃部3
6の半径方向の傾斜と副開口48の湾曲壁50に
より直ちに直近の螺旋溝22内に向けられる。上
記副開口48の軸線方向の寸法は、望ましくは内
方開口42の軸方向寸法より大きくし、切屑を速
かに刃部34から副開口48、そして螺旋溝22
内に排出して内方開口42内に切屑が詰まろうと
するのを防止する。刃部34の傾斜により、該刃
部34により切出された切屑は上方外方、つまり
刃部34の半径方向と逃げ面56の面に直角に送
られようとするが、内方開口42の円周方向の寸
法は、刃部34により生じた上記切屑が直接内方
開口42内で大きくカールするのを阻止すべく、
十分小さく設定する必要がある。即ち内方開口4
2を円周方向に十分に小さく形成すると、刃部3
4が切出した切屑は比較的直線的に維持され、更
に容易に内方開口42から上方外方に螺旋溝22
内に向けられる。また内方開口42の円周方向の
幅は、前記ウエブ26の厚さの約1/2より大きく
ないのが望ましく、同ウエブ26の厚さの約1/3
程度が望ましい。そして内方開口42の円周方向
の寸法は、ウエブ26の厚さとは逆の関係で変化
させる。この構成によれば、刃部34,36によ
り生じた各切屑は直ちに、半径方向で外方に且軸
線方向で上方に螺旋溝22内に送られる。刃部3
8により形成された切屑も同様で、螺旋溝22内
に上方に送られる。
One of the important features of the knife 10 according to the invention is that at the lower end of each cutting tooth 20, the web 26 is formed with two cutting sections 34, 36. In the cutter of FIGS. 1-9, the radial dimension of the web 26 is desirably greater than the radial depth of the adjacent helical groove 22. Blade part 34,
Since the blades 36 and 38 are alternated in the circumferential direction as shown, when the blade 10 is rotated and fed into the workpiece, each of the blades 34, 36, 38 produces chips separately. Furthermore, the relative dimensions of the cutter 10 are as follows:
The radial depth of the two blades 34, 36 is not substantially smaller than the wider of the two blades 34, 36, and is preferably larger. Therefore, the chips cut by the blade 34 are immediately directed into the opening 48 and into the helical groove 22 by the radial slope of the blade 34 and the upper ends 44, 50 of the openings 42, 48.
Similarly, chips generated by the blade 36 are removed from the blade 36.
6 and the curved wall 50 of the secondary opening 48 directs it immediately into the immediately adjacent helical groove 22 . The axial dimension of the sub-opening 48 is desirably larger than the axial dimension of the inner opening 42, so that chips can be quickly transferred from the blade portion 34 to the sub-opening 48 and into the spiral groove 22.
This prevents chips from clogging the inner opening 42. Due to the inclination of the blade part 34, the chips cut by the blade part 34 tend to be sent upward and outward, that is, at right angles to the radial direction of the blade part 34 and the flank surface 56, but The circumferential dimension is determined to prevent the chips generated by the blade portion 34 from curling directly within the inner opening 42.
It needs to be set sufficiently small. That is, the inner opening 4
2 is formed sufficiently small in the circumferential direction, the blade part 3
The chips cut by 4 are maintained relatively straight, and more easily extend upward and outward from the inner opening 42 into the spiral groove 22.
turned inward. The width of the inner opening 42 in the circumferential direction is preferably no greater than about 1/2 of the thickness of the web 26, and about 1/3 of the thickness of the web 26.
degree is desirable. The circumferential dimension of the inner opening 42 is then varied in an inverse relationship to the thickness of the web 26. With this arrangement, each chip produced by the blades 34, 36 is immediately directed radially outwardly and axially upwardly into the helical groove 22. Blade part 3
Similarly, the chips formed by 8 are sent upward into the spiral groove 22.

これら切屑は夫々比較的細く、半径方向という
よりむしろ軸線方向の螺旋を成す傾向にあるから
開口42,48により効果的に外方に向けられ
る。各刃部34,36,38からの上記した螺旋
状の切屑は、軸線方向で上方に且半径方向で外方
に螺旋溝22内に移動する際、相互に絡み合う傾
向にある。このような絡み合つた螺旋状の切屑が
加工中の穴の壁に接触すると、その結果生じる摩
擦により刃物10と一体的な切屑の回転が直ちに
阻止されようとする。この時、上記切屑を内側に
受容した螺旋溝22の後方面32が絡み合つた切
屑に係合し、それらを螺旋溝22外に上方に移動
させる。これら螺旋状の切屑は細いものであり、
特にそれらが比較的薄いものであれば、螺旋溝2
2の内面28と加工中の穴の壁の間で容易に圧縮
される。そして各螺旋溝22の後方面32は連続
した螺旋状に形成されているため、溝内部におけ
る切屑の上方への流れが連続的であり、妨害を受
けることなく円滑に進行する。このように、内方
開口42と副開口48を刃部34,36からの切
屑が実質的に直ちに螺旋溝22内に送られるよう
な形状及び寸法にすれば、また螺旋溝22内部の
切屑の上方移動は妨害されないから、切屑の螺旋
溝外への自由な上方移動が保証される。螺旋溝2
2内の小さな切屑は、刃物10内部に加圧冷却水
を供給すれば、自由な上方への流れが更に容易に
行われる。加えて、切屑は細く本来弱いものであ
るから、加工中の穴を脱すると容易に破断し、従
つて穴を脱する際に刃物10やアーバ周囲に巻付
くことがなく、後続の切屑の脱出を妨害すること
がない。更に、内方開口42を円周方向で狭く形
成すれば、刃部34からの切屑は前述したように
カールする傾向がなくなるため、より直線的な状
態で螺旋溝22内に送られる。その結果、切屑が
内方開口42或は螺旋溝22に引掛つて詰まりを
生じる可能性が減少する。
These chips are each relatively thin and tend to spiral axially rather than radially, so that they are effectively directed outwardly by the openings 42,48. The aforementioned helical chips from each of the blades 34, 36, 38 tend to intertwine with each other as they move axially upwardly and radially outwardly into the helical groove 22. When such entangled spiral chips come into contact with the wall of the hole being machined, the resulting friction immediately tends to prevent the chips from rotating integrally with the cutter 10. At this time, the rear surface 32 of the helical groove 22, which has received the chips inside, engages the entangled chips and moves them upwardly out of the helical groove 22. These spiral chips are thin;
Spiral grooves 2, especially if they are relatively thin
2 and the walls of the hole being machined. Since the rear surface 32 of each spiral groove 22 is formed in a continuous spiral shape, the upward flow of chips inside the groove is continuous and proceeds smoothly without being disturbed. Thus, shaping and dimensioning the inner opening 42 and the secondary opening 48 so that chips from the blades 34 , 36 are directed substantially immediately into the helical groove 22 also reduces the flow of chips within the helical groove 22 . Since the upward movement is unobstructed, free upward movement of the chips out of the helical groove is ensured. spiral groove 2
If pressurized cooling water is supplied to the inside of the cutter 10, the small chips inside the cutter 2 can more easily flow freely upward. In addition, since the chips are thin and inherently weak, they break easily when they escape from the hole being machined, and therefore do not wrap around the blade 10 or the arbor when they exit the hole, making it difficult for subsequent chips to escape. without interfering with Furthermore, if the inner opening 42 is formed narrow in the circumferential direction, the chips from the blade portion 34 will not have the tendency to curl as described above, and will be fed into the helical groove 22 in a more linear state. As a result, the possibility of chips getting caught in the inner opening 42 or the spiral groove 22 and causing a blockage is reduced.

前記側壁16の内周面と切取られるべき工作物
の円板部分との間に若干の空隙を設けたい場合に
は、上記側壁16の内周面を下端から短い寸法、
例えば約1.27cm(1/2インチ)に亘つて、第3図
に符号62で示すように約1゜だけ外方にテーパ状
とすることができる。その場合、このテーパ部6
2より上方の内周面部分は円筒形としてよい。こ
の構成によれば、刃物10の内周面は刃部34,
36,38の僅か上方において、切取られるべき
工作物の円板部分の円筒状外周面との間に約0.02
cm(約0.008インチ)の空隙を得ることになる。
刃物10の側壁16の内周面と上記円板部分の空
隙は、円筒状内周面を刃物10の外周面に対して
若干偏心させることによつても得ることができ
る。同様に第3図に示すが、必要であれば螺旋溝
22の深さは、部分62までそれより上方の部分
より若干大きい率で内方にテーパ状となるように
内面28を研削することにより、上方に向けて漸
次深くすることもできる。その場合には、刃部3
8により切出された直後の切屑に対して半径方向
の空隙が画定される。要するに、螺旋溝22は全
体として、横断面積が上方に漸次増大するように
形成し、切屑の排出を更に容易にすることができ
る。更に各螺旋溝22は、円周方向の広さが下端
より上端で広くなるようにテーパ状としてもよ
い。
If it is desired to provide a slight gap between the inner circumferential surface of the side wall 16 and the disc portion of the workpiece to be cut, the inner circumferential surface of the side wall 16 is shortened from the lower end.
For example, it may taper outwardly by about 1 degree, as shown at 62 in FIG. 3, over about 1/2 inch. In that case, this tapered part 6
The inner circumferential surface portion above 2 may be cylindrical. According to this configuration, the inner circumferential surface of the cutter 10 includes the blade portion 34,
Slightly above points 36 and 38, approximately 0.02
You will get an air gap of cm (about 0.008 inch).
The gap between the inner circumferential surface of the side wall 16 of the cutter 10 and the disk portion can also be obtained by making the cylindrical inner circumferential surface slightly eccentric with respect to the outer circumferential surface of the cutter 10. Also shown in FIG. 3, the depth of the helical groove 22 can be increased, if desired, by grinding the inner surface 28 so that it tapers inwardly up to the portion 62 at a slightly greater rate than the portions above it. , it can also be gradually deepened upward. In that case, the blade part 3
8 defines a radial gap for the freshly cut chip. In short, the spiral groove 22 as a whole can be formed so that its cross-sectional area gradually increases upward, thereby making it easier to remove chips. Further, each spiral groove 22 may be tapered so that the width in the circumferential direction is wider at the upper end than at the lower end.

全ての切屑を極めて細く維持しつつウエブ部分
を厚く強固に形成すると、軸線方向の内方開口4
2の深さを更に深くできる。内方開口42を深く
すると、切削歯20を流れる冷却水量を増大させ
得るのみならず、内方開口42の再度の研削が必
要になるまで、切削歯20はより長期間、鋭利な
状態に保持される。
By making the web portion thick and strong while keeping all the chips extremely thin, the inner opening 4 in the axial direction
The depth of 2 can be made even deeper. Deepening the inner openings 42 not only allows for an increased amount of cooling water to flow through the cutting teeth 20, but also keeps the cutting teeth 20 sharp for a longer period of time before the inner openings 42 need to be ground again. be done.

一般に、環状穴アケ刃物を鋼等の工作物内に送
るに要する動力を減少するには、刃物が形成する
切削路、つまり溝を比較的狭くする必要がある。
鋼に例えば2.54cm(1インチ)までの直径の小さ
い穴や中位の穴を形成する目的で構成された刃物
については、実際的な壁厚は約0.40〜0.46cm(約
0.160〜0.180インチ)である。第1図乃至第4図
に示したように各切削歯20に3個の刃部34,
36,38を形成し、側壁16の厚さを約0.46cm
(約0.180インチ)とすれば、厚いウエブ26が望
まれるとき、螺旋溝22の半径方向の深さを約
0.20cm(約0.080インチ)程度、従つてウエブ2
6の厚さを約0.25cm(約0.100インチ)とするこ
とができる。また2個の内方の刃物34,36の
幅を約0.13cm(約0.050インチ)にでき、或は必
要であれば最内方の刃部34の幅を約0.11cm(約
0.045インチ)、中間の刃部36の幅を約0.14cm
(約0.055インチ)にできる。このようにウエブ2
6を比較的厚く、また側壁16を比較的薄く形成
すれば、3個の刃部34,36,38からの各切
屑を容易に螺旋溝22内に進入させ得る。尚好適
には、各螺旋溝22の円周方向の寸法を半径方向
の深さの数倍に設定する。但し、ウエブ26を厚
くする必要がなければ、ウエブ26の厚さが刃物
の壁厚より約0.03cm(約0.010インチ)だけ薄く
なるように、刃物の寸法を設定する。即ち、刃物
側壁16の厚さを約0.46cm(約0.180インチ)と
すれば、ウエブ26の厚さを約0.20cm(約0.080
インチ)、螺旋溝22の深さを約0.25cm(約0.100
インチ)とすることができる。その場合、各刃部
34,36の幅は、約0.10cm(約0.040インチ)
に設定し得る。いずれにせよ、螺旋溝22の深さ
は両刃部34,36の幅より大きい。供給し得る
動力が限られている場合、刃物の回転に要する馬
力を抑えるため、大径の刃物に、より薄い側壁を
形成してもよい。このように側壁を比較的薄くす
るときには、望ましくはウエブ26を螺旋溝22
の深さより厚くし、刃物に強度を与える。
Generally, to reduce the power required to feed an annular hole cutting tool into a workpiece such as steel, the cutting path or groove formed by the tool must be relatively narrow.
For knives constructed for the purpose of forming small or medium diameter holes, e.g. up to 2.54 cm (1 inch) in steel, practical wall thicknesses are approximately
0.160 to 0.180 inch). As shown in FIGS. 1 to 4, each cutting tooth 20 has three blade portions 34,
36 and 38, and the thickness of the side wall 16 is approximately 0.46 cm.
(approximately 0.180 inch), when a thick web 26 is desired, the radial depth of the helical groove 22 is approximately
Approximately 0.20cm (approximately 0.080 inch), therefore web 2
6 can be approximately 0.25 cm (approximately 0.100 inch) thick. Also, the width of the two inner blades 34, 36 can be approximately 0.13 cm (approximately 0.050 inch), or if desired, the width of the innermost blade 34 can be approximately 0.11 cm (approximately 0.11 cm).
0.045 inch), the width of the middle blade part 36 is approximately 0.14 cm
(approximately 0.055 inch). In this way, web 2
By forming the blade 6 relatively thick and the side wall 16 relatively thin, chips from the three blade portions 34, 36, and 38 can easily enter the spiral groove 22. Preferably, the circumferential dimension of each spiral groove 22 is several times the radial depth. However, if it is not necessary to make the web 26 thicker, the dimensions of the blade are set so that the thickness of the web 26 is approximately 0.03 cm (approximately 0.010 inch) thinner than the wall thickness of the blade. That is, if the thickness of the blade side wall 16 is approximately 0.46 cm (approximately 0.180 inch), the thickness of the web 26 is approximately 0.20 cm (approximately 0.080 inch).
inch), and set the depth of the spiral groove 22 to approximately 0.25 cm (approximately 0.100 cm).
inches). In that case, the width of each blade part 34, 36 is approximately 0.10 cm (approximately 0.040 inch)
Can be set to . In any case, the depth of the spiral groove 22 is greater than the width of the double-edged portions 34, 36. If available power is limited, larger diameter knives may be formed with thinner sidewalls to reduce the horsepower required to rotate the knife. When the sidewalls are made relatively thin in this manner, the web 26 is preferably formed into a spiral groove 22.
It is thicker than the depth of the blade and gives strength to the knife.

第5図乃至第8図に示した環状穴アケ刃物は、
本質的に1点においてのみ前記第1図乃至第4図
の刃物と異る。即ち第5図乃至第8図において、
螺旋溝22の深さに対応した各切削歯20の部分
には、第1図乃至第4図に符号38で示したよう
な1個の刃部に代えて2個の刃部70,72を形
成している。この場合には、各刃部70,72の
幅を、開口の深さの約1/2にできる。各切削歯2
0の逃げ面56,58は第1図乃至第4図につい
て説明した通りの傾斜とし、望ましくは略々中心
部で最外方の刃部72と交差する頂部74におい
て相交わるものとする。
The annular hole cutting tool shown in Figs. 5 to 8 is
It differs from the cutter of FIGS. 1 to 4 in essentially only one respect. That is, in FIGS. 5 to 8,
In the portion of each cutting tooth 20 corresponding to the depth of the spiral groove 22, two blade portions 70, 72 are provided instead of one blade portion as shown by reference numeral 38 in FIGS. 1 to 4. is forming. In this case, the width of each blade portion 70, 72 can be made approximately 1/2 of the depth of the opening. Each cutting tooth 2
The 0 flanks 56, 58 are sloped as described with respect to FIGS. 1-4, and preferably intersect at the apex 74, which intersects the outermost blade 72 at approximately the center.

この第5図乃至第8図の刃物において、刃部7
2は極く僅かだけ円周方向で刃部70と互違いと
されており、これらの刃部70,72により、中
心に脆弱線を有する1本の切屑を切出すように構
成している。実際問題として、鋼に穴アケするた
めの刃物においては、刃部72のズレを他の刃部
のズレの約1/4に抑える必要があり、望ましくは
約0.02cm(0.15インチ)以上であつてはならな
い。このように刃部70,72により生じた1本
の変形した切屑は、障害物に遭遇すると直ちに破
断する傾向にある。しかし、この1本の脆弱な切
屑も直ちに大きい螺旋溝22内に送られるから、
細い切屑が肩部82(第8図)と加工中の穴の側
壁76との間の螺旋溝22部分に詰まる傾向が回
避される。
In the cutlery shown in FIGS. 5 to 8, the blade part 7
2 are slightly alternated with the blade portions 70 in the circumferential direction, and these blade portions 70, 72 are configured to cut out one chip having a line of weakness at the center. As a practical matter, in a knife for drilling holes in steel, it is necessary to suppress the misalignment of the blade 72 to about 1/4 of the misalignment of the other blades, preferably about 0.02 cm (0.15 inch) or more. must not. A single deformed chip thus produced by the blades 70, 72 tends to break immediately upon encountering an obstacle. However, since this single fragile chip is immediately sent into the large spiral groove 22,
The tendency for thin chips to become stuck in the portion of the helical groove 22 between the shoulder 82 (FIG. 8) and the sidewall 76 of the hole being machined is avoided.

もし刃部72を刃部70から後方に、これら各
刃部72,70が別個の切屑を切出すようにずら
せた構成であれば、刃部72が設けられた螺旋溝
22の部分を、上下方向の寸法が実質的に開口4
4,50に等しい開口84(第9図)として形成
するのが望ましい。このように、刃部72を別個
の切屑を切出すに十分な量だけずらすと、これに
より切出された切屑は直ちに開口84により螺旋
溝22内に送られ、開口84に詰まりを生じるこ
とがない。
If the blade part 72 is shifted backward from the blade part 70 so that each of these blade parts 72, 70 cuts out separate chips, the part of the helical groove 22 where the blade part 72 is provided can be moved upward and downward. The dimension in the direction is substantially the opening 4
It is preferably formed as an aperture 84 (FIG. 9) equal to 4.50 mm. In this way, when the blade 72 is displaced by an amount sufficient to cut out separate chips, the chips thus cut out are immediately sent into the spiral groove 22 by the opening 84, thereby preventing the opening 84 from becoming clogged. do not have.

第9図に示した刃物が回転して工作物内に送ら
れると、刃部34,36及び刃部70,72によ
り4本の独立した切屑を生じる。他方、第5図乃
至第8図の刃物によれば、刃部34,36が夫々
別個の切屑を切出すと同時に、刃部70,72が
前述の通り1本の容易に破断し得る切屑を生じ
る。いずれの場合にも、刃部34により生じた切
屑は実質的に直ちに螺旋溝22内に外方に送ら
れ、刃部36による切屑も同様に実質的に直ちに
螺旋溝22内に上方外方に送られる。刃部70,
72により生じた1本或は各別の切屑も同様で、
螺旋溝22内に上方に送られる。
When the cutter shown in FIG. 9 is rotated and fed into a workpiece, four independent chips are produced by the blades 34, 36 and 70, 72. On the other hand, according to the cutter shown in FIGS. 5 to 8, the blade parts 34 and 36 cut out separate chips, and at the same time, the blade parts 70 and 72 cut out a single easily breakable chip as described above. arise. In either case, the chips produced by the blade 34 are directed outwardly substantially immediately into the helical groove 22, and the chips produced by the blade 36 are likewise substantially immediately directed upwardly and outwardly into the helical groove 22. Sent. Blade part 70,
The same applies to one or each chip generated by 72.
It is fed upward into the spiral groove 22.

しかし、刃部34,46,70に切取られた切
屑は、螺旋溝22内に向けられた実質的に直後
に、加工中の穴の側壁76と摩擦接触する。未破
断状態の切屑は通常、幾分螺旋状の形状を呈する
から、それらが上記側壁76に接触する結果生じ
る摩擦抵抗により、上記した螺旋状の切屑の刃物
との一体回転が阻止されがちとなる。その結果、
これら切屑は実質的に直ちに螺旋溝22の後方側
壁部分78(第6図)と係合し、前述した態様
で、何等妨害を受けることなく螺旋溝22外に上
方に移動させられる。このように、第5図乃至第
8図に示した刃物の場合、肩部82の円周方向の
寸法を小さく設定したから、切屑が螺旋溝22の
後方側壁部分80に係合して捕捉されることがな
い。このことは、特に切屑が薄くて変形し易い場
合にそうであるが、刃物外周面と加工中の穴の側
壁との間に切屑が挾み込まれる傾向が実質的に減
少するので望ましい。加えて、切屑は細いため、
螺旋溝22を上方に流れる際にも穴の側壁を傷つ
ける可能性が少い。また、これら細い切屑は穴を
脱出すると容易に破断し、従つて刃物がアーバに
巻付くことがなく、後続の切屑の自由な流れを妨
害しない。
However, substantially immediately after the chips cut by the blades 34, 46, 70 are directed into the helical groove 22, they come into frictional contact with the sidewalls 76 of the hole being machined. Since unbroken chips usually have a somewhat spiral shape, the frictional resistance generated as a result of their contact with the side wall 76 tends to prevent the spiral chips from rotating together with the cutting tool. . the result,
These chips substantially immediately engage the rear side wall portion 78 (FIG. 6) of the helical groove 22 and are forced upwardly out of the helical groove 22 without any interference in the manner previously described. In this way, in the case of the cutter shown in FIGS. 5 to 8, since the circumferential dimension of the shoulder portion 82 is set small, the chips engage with the rear side wall portion 80 of the spiral groove 22 and are captured. Never. This is desirable because it substantially reduces the tendency for chips to become trapped between the outer circumferential surface of the tool and the sidewalls of the hole being machined, especially when the chips are thin and easily deformed. In addition, since the chips are thin,
Even when flowing upward through the spiral groove 22, there is little possibility of damaging the side wall of the hole. Also, these fine chips break easily once they escape the hole, so the cutter does not wrap around the arbor and do not interfere with the free flow of subsequent chips.

第5図乃至第8図及び第9図の構成では、螺旋
溝22の深さに対応する切削歯20の部分に1個
ではなく2個の刃部を形成しており、標準サイズ
の刃物より例えば約0.05cm(0.020インチ)外径
が小さい刃物が望まれる場合でも、標準サイズの
仕上げ後の刃物の外周面を約0.03cm(約0.010イ
ンチ)研削するだけでよいという他の利点があ
る。この場合でも、螺旋溝22の深さは約0.03cm
(約0.010インチ)減少するのみであり、依然とし
て他の3個の刃部により生じる切屑の幅に十分に
対応し得る大きさである。尚、形成される螺旋溝
22の半径方向の深さが最も幅広の切屑の幅と実
質的に同じ位であれば、第1図乃至第4図の刃物
にあつてもその外径を研削し、特殊サイズの刃物
を形成してもよい。
In the configurations shown in FIGS. 5 to 8 and 9, two blades are formed instead of one in the portion of the cutting tooth 20 that corresponds to the depth of the spiral groove 22, making it easier to use than a standard-sized blade. Even if a cutter with a smaller outer diameter, for example about 0.020 inch, is desired, there is another advantage in that the outer circumferential surface of the standard size finished cutter only needs to be ground by about 0.010 inch. Even in this case, the depth of the spiral groove 22 is approximately 0.03 cm.
(approximately 0.010 inch) and is still large enough to accommodate the width of the chips created by the other three blades. Note that if the radial depth of the spiral groove 22 to be formed is substantially the same as the width of the widest chip, the outer diameter of the cutter shown in FIGS. 1 to 4 can be ground. , special sized blades may be formed.

ウエブ部と螺旋溝22の深さに対応した切削歯
20の部分とに少くとも2個の刃部を設けること
の更に他の利点は、金属の切屑を切出した場合、
それが10%程も膨張する傾向を有するという事実
にある。つまり第5図乃至第8図及び第9図の刃
物においては、螺旋溝22の深さを最大刃部の幅
より10%以上大きく設定しているから、膨張しつ
つある切屑による螺旋溝22の結着或は詰まりの
傾向を更に減少させ得る。尚、第5図乃至第8図
の刃物の刃部70,72は1本の切屑を切出す
が、この切屑の中央には脆磁線が走つており、容
易に狭い小片に破断される。
A further advantage of providing at least two blades in the web portion and in the portion of the cutting tooth 20 corresponding to the depth of the helical groove 22 is that when cutting metal chips,
This lies in the fact that it has a tendency to expand by as much as 10%. In other words, in the cutters shown in FIGS. 5 to 8 and 9, the depth of the spiral groove 22 is set to be 10% or more larger than the width of the maximum blade portion, so that the spiral groove 22 is formed by the expanding chips. The tendency for binding or clogging may be further reduced. Note that the blade portions 70 and 72 of the cutlery shown in FIGS. 5 to 8 cut out a single chip, but this chip has a brittle magnetic wire running through its center and is easily broken into narrow pieces.

刃物のウエブ部に2個の刃部を設けることで得
られる他の利点は、所望であれば、より厚い壁と
より広い螺旋溝を形成できることである。従来、
ウエブの刃部の幅が約0.25cm(約0.100インチ)
以上であると、広い切屑を半径方向で外方に螺旋
溝内に移動させることが困難であつた。しかし本
発明によれば、ウエブ部の刃部により形成された
2本の細い切屑は、極めて容易に半径方向及び軸
線方向に外方の螺旋溝内に移動でき、幅が約0.51
cm(0.200インチ)以上の切削路を産業規模で容
易に得ることができる。
Another advantage of having two blades in the web portion of the knife is that thicker walls and wider helical grooves can be formed if desired. Conventionally,
The width of the web blade is approximately 0.25cm (approximately 0.100 inch)
In this case, it was difficult to move wide chips radially outward into the spiral groove. However, according to the invention, the two thin chips formed by the cutting edge of the web section can be moved very easily radially and axially into the outer helical groove and have a width of about 0.51 mm.
Cut paths larger than cm (0.200 inch) can be easily obtained on an industrial scale.

第10図乃至第15図に示す刃物は、第1図乃
至第4図に示した刃物に類似しているが、若干異
つている。第1図乃至第4図の刃物では、逃げ面
56が約20゜〜25゜の角度で半径方向で内方に、そ
して軸線方向で上方に傾斜しており、従つて刃部
34,36も同様に傾斜している。以下これを、
“正の内部傾斜角”と称する。この程度の傾斜角
は、刃物に対する切屑荷重が例えば約0.005〜
0.008cm(0.002〜0.003インチ)/回転以下であれ
ば、穴を形成するのに適当である。これにより生
じた薄い切屑は、非常に柔軟で捩れ易い。前述の
通り、切出された切屑は、逃げ面の面に直角で刃
部の半径方向の向きに直角の通路を上方に移動さ
せられる。従つて、正の内部傾斜角が比較的大き
いと、切屑は刃部34,36により半径方向で外
方に向けられて加工中の穴の側壁に係合する。こ
れらの切屑が薄ければ、それらは容易に捩られる
から、前述したように刃物の螺旋溝22を上方に
排出するのはさほど困難ではない。
The cutters shown in FIGS. 10-15 are similar to, but slightly different from, those shown in FIGS. 1-4. In the cutter of FIGS. 1-4, the flank face 56 slopes radially inwardly and axially upwardly at an angle of approximately 20° to 25°, so that the blade portions 34, 36 also slope. It is also sloping. Below, this is
Referred to as "positive internal tilt angle". This degree of inclination angle means that the chip load on the cutting tool is approximately 0.005~
A rotation of less than 0.008 cm (0.002 to 0.003 inch) per revolution is suitable for forming holes. The resulting thin chips are very flexible and twistable. As previously mentioned, the cut chips are moved upwardly in a path perpendicular to the plane of the flank and perpendicular to the radial orientation of the blade. Thus, when the positive internal inclination angle is relatively large, chips are directed radially outwardly by the blades 34, 36 to engage the sidewalls of the hole being machined. If these chips are thin, they are easily twisted, so it is not very difficult to eject them upward through the spiral groove 22 of the cutter as described above.

他方、切屑が比較的厚い場合、それらは加工中
の穴の側壁に係合した際に容易には曲がらず、産
業規模で多数の穴を形成するような場合には螺旋
溝22を詰まらせることもある。この理由で、第
1図乃至第4図に示したような刃部34,36の
傾斜角を大きくすることは、例えば切屑荷重が約
0.012cm(0.006インチ)となるような比較的高い
送り率で、多数の穴を産業規模で形成する目的に
刃物を使用する場合には好ましくない。切屑荷重
が大きくなるような条件下で刃物を使用すると、
2個の内方刃部34,36の半径方向の傾斜を実
質的に25゜以下にせねばならず、切屑が垂直方向
ではより上方に向けられ、左右方向では外方への
向きがより少くなる。大きい切屑荷重に対して
は、内方刃部34,36の半径方向の傾斜を、望
ましくは+10゜〜−3゜の範囲とする。
On the other hand, if the chips are relatively thick, they will not bend easily when engaged with the sidewalls of the hole being machined and may clog the helical groove 22 when forming multiple holes on an industrial scale. There is also. For this reason, increasing the angle of inclination of the blade sections 34, 36 as shown in FIGS.
Relatively high feed rates, such as 0.012 cm (0.006 inch), are not preferred when the cutter is used to form large numbers of holes on an industrial scale. If the cutter is used under conditions where the chip load becomes large,
The radial inclination of the two inner cutting edges 34, 36 must be substantially less than 25°, so that chips are directed more upwardly in the vertical direction and less outwardly in the left-right direction. . For high chip loads, the radial inclination of the inner cutting edges 34, 36 preferably ranges from +10 DEG to -3 DEG.

第10図の刃物では、刃部34,36の傾斜角
aを+10゜前後とし、第14図及び第15図の刃
物では、刃部34,36の傾斜角bを約−3゜とし
ている。この程度の傾斜角によれば、刃部34,
36が切出す切屑は、25゜の傾斜角の場合に比し、
より垂直の通路を移動する傾向を生じる。傾斜角
が比較的小さい場合にも、例えば第13図に示す
ように、刃部34,36に、刃物内周面に対して
正の半径方向のすくい角rを設けるのが望まし
い。これら刃部34,36の半径方向のすくい角
が僅かに正、例えば10゜までのとき、切出される
各切屑は、半径方向で若干外方に且上方に向けら
れる。傾斜角が約−3゜であつても(第14図)、
正の半径方向の小すくい角(10゜)により、切屑
は半径方向で僅かに外方で垂直方向で上方に向け
られ、開口42,48の傾斜上面44,50の直
近を通過するか、或は非常に小さい角度で接触
し、従つて殆ど捩じられずに螺旋溝22を上方に
反らさせる。傾斜角を小さくすれば、開口42,
51の上端または形成中の穴の側壁による必要な
捩り乃至曲げを最少限にできる。これにより、傾
斜角を+10゜〜−3゜の範囲とした場合には、切屑
が比較的厚くても、螺旋溝22を詰まらせる傾向
は減少する。
In the cutter shown in FIG. 10, the angle of inclination a of the blade portions 34, 36 is approximately +10°, and in the cutter shown in FIGS. 14 and 15, the angle of inclination b of the blade portions 34, 36 is approximately −3°. According to this degree of inclination angle, the blade portion 34,
The chips cut out by 36 are compared to the case with an inclination angle of 25°.
This results in a tendency to travel in more vertical paths. Even when the inclination angle is relatively small, it is desirable to provide the blade portions 34, 36 with a positive radial rake angle r relative to the inner peripheral surface of the blade, as shown in FIG. 13, for example. When the radial rake angle of these blades 34, 36 is slightly positive, for example up to 10 DEG, each chip cut is radially directed slightly outward and upward. Even if the inclination angle is about -3° (Fig. 14),
A small positive radial rake angle (10°) directs the chips slightly radially outward and vertically upward, passing directly adjacent to the sloped top surfaces 44, 50 of the openings 42, 48, or contact at a very small angle, thus causing the helical groove 22 to deflect upwardly with little twisting. If the inclination angle is made smaller, the opening 42,
Any twisting or bending required by the top of 51 or the side walls of the hole being formed can be minimized. This reduces the tendency for chips to clog the helical groove 22, even if the chips are relatively thick, when the angle of inclination is in the range of +10° to -3°.

内方の刃部34,36の傾斜角を小さく設定す
ると、以下のような他の利点も得られる。即ち、
傾斜角がゼロに近づくと、刃部が短くなり、切出
される切屑の幅が狭くなることは理解されよう。
このように切屑が狭くなると、広い切屑よりも螺
旋溝22での上方への排出が容易になり、そのた
め、詰まりを生じる傾向も減少する。切屑が螺旋
溝22内を自由に円滑に流れれば、切屑が螺旋溝
22内に詰まりがちな場合に比し、刃物を回転さ
せるための馬力が小さくて済む。そして、刃物の
トルクが小さければ、その側壁も薄いものでよ
く、加えて応力が減少するから、工具の寿命が長
くなる。
Setting the angle of inclination of the inner blades 34, 36 to be small also provides other advantages, such as: That is,
It will be appreciated that as the angle of inclination approaches zero, the blade becomes shorter and the width of the chips cut becomes narrower.
This narrower chip is easier to eject upwardly in the helical groove 22 than a wider chip, and is therefore less prone to jamming. If the chips flow freely and smoothly in the spiral groove 22, less horsepower is required to rotate the cutter than if the chips tend to clog the spiral groove 22. If the torque of the cutter is small, the side wall of the cutter can be made thinner, and the stress is reduced, so the life of the tool is extended.

更に、内部傾斜角を比較的小さくすることで、
刃物は積重ねられた材料にも穴を形成し得るとい
う利点も生じる。例えば第15図に、2枚の上下
に重ねられた板P1,P2に穴を開けつつある状態
の刃物を示す。この場合、工具の前縁は刃部34
の半径方向で内端で構成されるから、上記刃部3
4の内端が上方の板P1を貫通すると同時に刃物
内の円板部Sが板P1から切取られ、刃部34は
続いて下方の板P2に容易に進入できる。この刃
物は、内部傾斜角が10゜まで増大しても、積重ね
られた材料を容易に切削し得る。これは、頂部6
0(第10図)が上方の板P1を貫通するとき、
円板部Sの半径方向で外方に且上方に延びるフラ
ンジ部が非常に薄く、また、円板部Sが完全に切
取られても、刃物に作用する適度な下方への圧力
は、刃物が下方の板P2内に容易に進入し、板P1
から切取られた円板S周囲の薄い上記フランジ部
を曲げて切るのに十分であるという理由による。
実験によれば、内部傾斜角を約+3゜に設定すれ
ば、大きい切屑荷重並びに積重ねられた材料の切
削の両方に関し、良好な結果が得られることが判
明した。
Furthermore, by making the internal inclination angle relatively small,
The advantage also arises that the cutter can also form holes in stacked materials. For example, FIG. 15 shows a cutting tool in the state of making a hole in two plates P 1 and P 2 stacked one above the other. In this case, the leading edge of the tool is the cutting edge 34
Since the blade part 3 is formed at the inner end in the radial direction of
As soon as the inner end of the blade 4 penetrates the upper plate P 1 , the disc part S in the knife is cut off from the plate P 1 , and the blade part 34 can then easily enter the lower plate P 2 . This knife can easily cut stacked materials even when the internal inclination angle increases up to 10°. This is the top 6
0 (Fig. 10) passes through the upper plate P 1 ,
The flange portion extending outward and upward in the radial direction of the disk portion S is very thin, and even if the disk portion S is completely cut off, the moderate downward pressure acting on the blade will cause the blade to It easily enters the lower plate P 2 and the plate P 1
This is because it is sufficient to bend and cut the thin flange portion around the disk S cut from the disk.
Experiments have shown that an internal slope angle of about +3° gives good results both for high chip loads and for cutting stacked materials.

第1図乃至第4図に関して前述したが、頂部6
0は2個の逃げ面56,58の交差部をなし、望
ましくは刃部38に交差している。この刃部38
は、望ましくは刃物外周面に対して正の半径方向
のすくい角(10゜以下)をなす。第10図乃至第
15図の各実施例においては、外方刃部38の外
端近傍に、例えば水平面に対して40゜〜45゜の大き
い外部傾斜で、上方に且半径方向で外方に傾斜し
た他の逃げ面86を設けている。上記外部傾斜角
を第10図cで示し、逃げ面56の望ましくは
20゜〜25゜の外部傾斜角をdで示す。経験によれ
ば、外方刃部38の最外方部の傾斜角を、例えば
40゜〜45゜のように比較的大きくすると、次のよう
ないくつかの利点を生じることが確認されてい
る。即ち、この傾斜角度を大きく設定すれば、刃
部38が切出した切屑を形成中の穴の側壁から内
方に向ける補助となるばかりか、刃部38の外端
の内角e、つまり刃物側壁16と底部の逃げ面の
間の角度が比較的大きくなる結果、歯の削れが減
少して工具が長寿命になる。
As mentioned above with respect to FIGS. 1 to 4, the top 6
0 forms the intersection of the two flanks 56, 58, preferably intersecting the blade 38. This blade part 38
desirably forms a positive radial rake angle (10° or less) with respect to the outer peripheral surface of the cutter. In each of the embodiments shown in FIGS. 10 to 15, the outer cutting portion 38 is provided near its outer end with a large external slope of, for example, 40° to 45° with respect to the horizontal plane, upwardly and radially outwardly. Another sloped relief surface 86 is provided. The above external inclination angle is shown in FIG.
The external inclination angle between 20° and 25° is designated by d. According to experience, the angle of inclination of the outermost part of the outer blade part 38 is, for example,
It has been confirmed that a relatively large angle, such as 40° to 45°, provides several advantages, including: That is, if this angle of inclination is set large, it not only helps to direct the chips cut by the blade 38 inward from the side wall of the hole being formed, but also helps to direct the chips cut out by the blade 38 inward from the side wall of the hole being formed, and also to reduce the internal angle e of the outer end of the blade 38, that is, the side wall 16 of the blade 38. The relatively large angle between the bottom flank and the bottom flank results in reduced tooth wear and longer tool life.

第13図に示すように、頂部60は螺旋溝22
の深さの凡そ中間点で刃部38に接している。逃
げ面58,86間の交差線88は好適には、螺旋
溝22の深さの約1/4だけ、刃物外周面より内方
に位置している。また第13図に示すが、刃部3
8は比較的大きい半径90で肩部54に連続して
いる。この丸味づけされた肩部90は、刃部36
の少くとも約0.10cm(約0.040インチ)以内で前
方に延ばすのが望ましい。これら刃部36,38
の間の肩部90はこの程度に湾曲しているが、刃
部36,38の間隔を、垂直方向で刃物の送り率
より大きくしさえすれば、それらにより2本の別
個の切屑を生じる。本発明者は、刃部36,38
の間隔を約0.03cm(約0.010インチ)に保つ限り、
2本の切屑が切出されることを発見した。一方、
刃部36,38の上下方向の間隔は、それらの間
の肩部の長さと、各逃げ面の傾斜角により決定さ
れる。既に述べたが、切屑は、切出されると同時
に膨張する傾向にある。そして、比較的厚い切屑
は、薄い切屑より膨張量が大きい。前記肩部90
は、厚い切屑を、形成中の穴と肩部54の間で結
着効果を生じることなく、容易にカールさせ、膨
張させる。従つて、刃部38で生じたカールした
切屑は、螺旋溝22を自由に上昇する。
As shown in FIG.
It contacts the blade portion 38 at approximately the midpoint of the depth. The line of intersection 88 between the flanks 58, 86 is preferably located approximately one quarter of the depth of the helical groove 22 inwardly of the outer peripheral surface of the cutter. Also, as shown in FIG. 13, the blade portion 3
8 is continuous with the shoulder 54 at a relatively large radius 90. This rounded shoulder 90 is a part of the blade 36.
It is desirable to extend forward by at least approximately 0.10 cm (approximately 0.040 inch). These blade parts 36, 38
Although the shoulder 90 between them is curved to this extent, they produce two separate chips as long as the spacing between the blades 36, 38 is greater than the feed rate of the blade in the vertical direction. The inventor has discovered that the blade portions 36, 38
As long as you keep the spacing at about 0.03 cm (about 0.010 inch),
It was discovered that two chips were cut out. on the other hand,
The vertical spacing between the blades 36, 38 is determined by the length of the shoulder between them and the angle of inclination of each flank. As already mentioned, chips tend to expand as they are cut out. In addition, relatively thick chips have a larger expansion amount than thin chips. The shoulder portion 90
easily curls and expands thick chips without creating a binding effect between the hole being formed and the shoulder 54. Therefore, the curled chips generated by the blade portion 38 freely ascend the spiral groove 22.

本発明の環状穴アケ刃物によれば、刃物の強度
を犠牲にすることなく、切屑の容易な排出等々の
利点が得られる。これは、各切削歯に少くとも3
個で望ましくは4個またはそれ以上の刃部を設け
るとともに、螺旋溝の深さを隣接切削歯間のウエ
ブ部の幅つまり厚さより実質的に小さく設定し得
ることによる。溝付側壁を具えた環状刃物の強度
は、主としてウエブの厚さにより決定される。従
つて、特定の刃物について、そのウエブを所定の
最小厚さにする必要がある場合、本発明によれば
螺旋溝の深さをウエブの厚さ以下にでき、にも拘
らず刃部が切出す最大幅の切屑を収容するに十分
な深さにできるから、本発明の刃物の総壁厚は従
来の刃物より小さくすることができる。側壁を薄
く形成することは、コストの低減、及び切削路の
狭さの点で望ましい。但し、より厚いウエブでも
問題はない。上述の通り、ウエブには2個の刃部
が形成されているから、切屑は螺旋溝内に、より
容易に円滑に向けられる。このため、ウエブの応
力は、刃部が1個の場合より2個の場合の方が実
質的に小さく、従つて刃物の強度特性は、ウエブ
の厚さが螺旋溝の深さより小さくても向上する。
According to the annular hole cutting cutter of the present invention, advantages such as easy removal of chips can be obtained without sacrificing the strength of the cutter. This means that each cutting tooth has at least 3
This is because the depth of the helical groove can be set to be substantially smaller than the width or thickness of the web between adjacent cutting teeth while providing four or more cutting edges. The strength of an annular cutter with grooved sidewalls is determined primarily by the thickness of the web. Therefore, if it is necessary to make the web of a particular cutter a predetermined minimum thickness, according to the present invention, the depth of the spiral groove can be made equal to or less than the thickness of the web, and the blade portion nevertheless cuts. The total wall thickness of the knife of the present invention can be smaller than that of conventional knives because it can be deep enough to accommodate the widest chips to be ejected. It is desirable to form the side wall thinly in terms of cost reduction and narrow cutting path. However, thicker webs are also acceptable. As mentioned above, since the web is formed with two cutting edges, the chips are more easily and smoothly directed into the helical groove. Therefore, the stress in the web is substantially lower with two blades than with one, and the strength properties of the blade are therefore improved even if the web thickness is less than the depth of the helical groove. do.

本発明による環状穴アケ刃物の他の利点が第3
図から明らかとなる。即ち前述の通り、必要であ
れば、ウエブ26の厚さは各切削歯20近傍にお
いて、実質的に螺旋溝22の深さより大きくする
ことができる。これは、ウエブ厚さに対応する切
削歯20の部分に少くとも2個の刃部を形成し、
これら各刃部の幅を望ましくは実質的に螺旋溝2
2の深さより小さく設定した事実に基く。従つ
て、螺旋溝22の内壁28を下端直近を略々第3
図に62で示す部分まで半径方向で内方に上方
に、そして比較的急峻にテーパ状とすれば、刃部
38により生じた切屑は螺旋溝22の直近でそれ
に対して空隙を画定する。同様に、刃物の下端近
傍の内周面を半径方向で外方に上方にテーパ状と
すると、ウエブ26の厚さは、刃物側壁16の上
端近傍で第3図に86で示す部位で最少となる。
すると、この部分86が刃物の強度に関して問題
のある部分となる。従つて、刃物の切削歯近傍で
螺旋溝の深さをウエブの厚さと同程度に大きくし
た従来の刃物においては、上方に漸次深くなる螺
旋溝を形成すると同時に内周面周囲に空隙を画定
するとすれば、刃物の総壁厚を実質的により大き
くする必要がある。一方、本発明の刃物によれ
ば、総壁厚の実質的な増大を必要とせずに刃物内
周面周囲に実質的により大きな空隙を得ることが
できる。このようにより大きな空隙は、切削刃へ
の冷却水の流れを増大させる能力に関しても望ま
しい。
Another advantage of the ring-shaped cutter according to the present invention is the third one.
It becomes clear from the figure. That is, as previously discussed, the thickness of the web 26 can be substantially greater than the depth of the helical groove 22 in the vicinity of each cutting tooth 20, if desired. This forms at least two blade portions in the portion of the cutting tooth 20 corresponding to the web thickness,
The width of each of these blade portions is desirably substantially the same as the spiral groove 2.
This is based on the fact that the depth is set smaller than 2. Therefore, the inner wall 28 of the spiral groove 22 has a lower end proximate to the third point.
By tapering radially inwardly and upwardly and relatively steeply to the point indicated at 62 in the figure, the chips produced by the blade 38 define a gap in the immediate vicinity of the helical groove 22. Similarly, if the inner circumferential surface near the lower end of the cutter is tapered outward and upward in the radial direction, the thickness of the web 26 is at its minimum near the upper end of the side wall 16 of the cutter at a location indicated by 86 in FIG. Become.
Then, this portion 86 becomes a problem regarding the strength of the cutter. Therefore, in a conventional cutter in which the depth of the spiral groove near the cutting teeth of the cutter is increased to the same extent as the thickness of the web, it is difficult to form a spiral groove that gradually deepens upward and at the same time define a void around the inner peripheral surface. The total wall thickness of the cutter then needs to be substantially greater. On the other hand, with the knife of the present invention, a substantially larger void can be obtained around the inner peripheral surface of the knife without requiring a substantial increase in the total wall thickness. This larger air gap is also desirable for its ability to increase the flow of cooling water to the cutting blade.

ウエブを比較的厚く、そして螺旋溝を比較的浅
く形成することは、環状刃物の製造面でも極めて
重要である。つまり、一定の壁厚と仮定し、側壁
に比較的深い螺旋溝を研削しようとすれば、ウエ
ブに細い毛割れを生じる可能性が非常に大きく、
刃物の寿命を短縮することになる。深い螺旋溝は
また、熱処理時にも毛割れを生じさせがちであ
る。しかし、螺旋溝を比較的浅く、ウエブを比較
的厚くすると、ウエブ部分が実質的により大量の
熱を吸収し、これにより熱処理時や溝の研削時の
毛割れの発生傾向を実質的に減少させる。螺旋溝
を浅く形成することは、製造コストの面でも望ま
しく、短時間で加工乃至研削でき、浅さに応じて
刃物の寿命が延びることになる。
Forming the web relatively thick and the spiral groove relatively shallow is extremely important in the production of annular cutters. In other words, assuming a constant wall thickness, if you try to grind a relatively deep spiral groove on the side wall, there is a very high possibility that fine hair cracks will occur in the web.
This will shorten the life of the knife. Deep spiral grooves are also prone to cracking during heat treatment. However, by making the helical groove relatively shallow and the web relatively thick, the web portion absorbs a substantially greater amount of heat, thereby substantially reducing the tendency for hair cracking to occur during heat treatment or grinding of the groove. . Forming the spiral groove shallowly is desirable from the viewpoint of manufacturing costs, and it can be processed or ground in a short time, and the life of the cutter will be extended depending on the shallowness.

図示しないが、大部分の環状刃物は中心のパイ
ロツトピン乃至パイロツトドリルを必要とする。
実際上、パイロツトピン乃至パイロツトドリルを
保持する軸部14の空洞88は、少くとも一定サ
イズとする必要がある。従つて、刃物の内径は少
くともパイロツトピン乃至パイロツトドリルの直
径に等しくせねばならない。本発明の刃物におい
てはウエブを螺旋溝の深さより厚く形成できるか
ら、一定サイズのパイロツト穴とすれば、本発明
の刃物の外径は従来刃物の実際上の最小外径より
小さくできる。
Although not shown, most annular cutters require a central pilot pin or drill.
In practice, the cavity 88 in the shaft 14 that holds the pilot pin or pilot drill must be at least a certain size. Therefore, the inner diameter of the cutter must be at least equal to the diameter of the pilot pin or pilot drill. In the cutter of the present invention, the web can be formed to be thicker than the depth of the spiral groove, so if the pilot hole is of a constant size, the outer diameter of the cutter of the present invention can be smaller than the actual minimum outer diameter of conventional cutters.

更に、本発明の刃物は従来に比して厚いウエブ
部を具えることから、ウエブ部において軸線方向
に入れ子式とされ、ネジ込み、溶接等により相結
合される2部分、つまり歯部分と本体部分により
構成し得るという他の利点が導き出される。この
ような入れ子式結合は、ウエブが厚いことによ
り、刃物の強度に何等実質的な影響を与えること
なく達成できる。この種の2部分からなる刃物
は、歯部分のみを高価な鋼で形成すればよく、歯
の摩耗時にも歯部分だけを交換すればよいことか
ら、コスト面で明らかに有利である。
Furthermore, since the cutter of the present invention has a thicker web part than conventional ones, the two parts, that is, the tooth part and the main body, are nested in the axial direction in the web part and are connected to each other by screwing, welding, etc. Another advantage is that it can be configured in parts. Such a nested connection can be achieved without any substantial effect on the strength of the cutter due to the thickness of the web. A two-part knife of this type has clear cost advantages, since only the teeth need to be made of expensive steel, and only the teeth need to be replaced when the teeth wear out.

ウエブ部を厚くすれば、それが耐え得るトルク
並びにスラストが増大するため、刃物周囲により
多数の切削歯を形成できる。切削歯の数を増大さ
せれば刃部の数が増大し、切削作用が高速化され
る。
A thicker web portion increases the torque and thrust it can withstand, allowing for a greater number of cutting teeth around the blade. Increasing the number of cutting teeth increases the number of cutting edges and speeds up the cutting action.

各切削歯に4個の刃部を形成した第5図乃至第
8図及び第9図に示した種類の刃物に関しては、
特殊の考慮を払わない限り、内側の2個の刃部を
略々同じ幅とし、外側の2個の刃部を略々同じ幅
とするのが望ましい。しかし、特殊な考慮を払う
場合にはそうではない。例えば中央の円板部分に
極めて滑かな表面を形成したい場合には、最も内
側の刃部34を実質的に次の刃部36より狭くす
る必要がある。いずれにせよ、これら刃部34,
36のうちの広いものでも螺旋溝22の深さより
広くあつてはならない。また、工作物に非常に滑
かな穴を穿設したければ、最も外側の刃部72を
次の刃部70より大幅に狭くせねばならない。更
に、滑かな壁面の穴と滑から側面の円板を同時に
形成したい場合には、最も内側の刃部34と最も
外側の刃部72を中間の刃部36,70より狭く
すべきである。いずれにせよ、刃物を鋼材に穴ア
ケするために構成し、少くとも4個の刃部を設け
るとすれば、最も広い刃部の幅を約0.16cm(約
0.0625インチ)以下とした場合に、通常は最も良
好な結果が得られる。但し、より大なる強度を必
要とする場合には、前記した刃部の幅を2〜3倍
にまで広くしてもよい。
Regarding the type of cutter shown in FIGS. 5 to 8 and 9 in which each cutting tooth has four blades,
Unless special considerations are taken, it is desirable that the two inner blades have approximately the same width and the two outer blades have approximately the same width. However, this is not the case when special considerations are taken. For example, if it is desired to create a very smooth surface on the central disk portion, the innermost blade 34 should be substantially narrower than the next blade 36. In any case, these blade parts 34,
Even the widest one of the grooves 36 must not be wider than the depth of the spiral groove 22. Also, if it is desired to drill a very smooth hole in a workpiece, the outermost cutting edge 72 must be significantly narrower than the next cutting edge 70. Additionally, if it is desired to simultaneously form a smooth wall hole and a smooth side disc, the innermost blade 34 and outermost blade 72 should be narrower than the intermediate blades 36,70. In any case, if the knife is configured to drill holes in steel and has at least four blades, the width of the widest blade should be approximately 0.16 cm (approx.
0.0625 inch) or less will usually give the best results. However, if greater strength is required, the width of the blade portion may be increased to 2 to 3 times.

同様に、空隙面56,58間の頂部は最も外方
の刃部と交差するように形成するのが望ましい
が、目的によつては他の刃部の1個に交差するよ
うに逃げ面を研削してもよい。即ち、例えば積重
ねた2枚或はそれ以上の工作物に1個の穴を形成
する目的に刃物を使用し、最も内方の刃部34の
正の半径方向の傾斜角を25゜等、比較的大きくし
た場合、逃げ面56,58間の頂部が刃物側壁1
6の内周面の直近にあるように構成する。この頂
部、つまり刃物の高点を刃物側壁16の内周面直
近に位置させれば、積重ねられた工作物内に刃物
を送るに際しても困難は殆どない。しかし、第1
0図乃至第15図に示すように、最も内側の刃部
34が小さい、或は負の傾斜角を有するときに
は、逃げ面56,58を最も外側の刃部72に沿
つて交差させることができ、その場合でも刃物
は、積重ねた材料の穴アケに使用できる。
Similarly, the apex between the gap surfaces 56 and 58 is preferably formed to intersect with the outermost edge, but depending on the purpose, a flank may be formed to intersect with one of the other edges. May be ground. That is, for example, when a cutting tool is used for the purpose of forming a hole in two or more stacked workpieces, and the positive radial angle of inclination of the innermost cutting section 34 is 25 degrees, etc., the comparison is made. When the target is made larger, the top between the flanks 56 and 58 becomes the side wall 1 of the cutter.
6. It is configured so that it is located in the immediate vicinity of the inner circumferential surface of No. 6. If this apex, that is, the high point of the cutter, is located close to the inner peripheral surface of the cutter side wall 16, there will be little difficulty in feeding the cutter into the stacked workpieces. However, the first
As shown in FIGS. 0 to 15, when the innermost blade 34 has a small or negative angle of inclination, the flanks 56, 58 can intersect along the outermost blade 72. In that case, the knife can still be used to make holes in the stacked materials.

尚、切屑は切取られた直後に若干膨張しがちで
あるから、螺旋溝の半径方向の深さが面28,3
2の接続点で最大となるように面28を研削する
のが望ましい。そうすれば、刃部38に切出され
た切屑の螺旋溝内壁との摩擦抵抗が最小限に抑制
される。
Note that since chips tend to expand slightly immediately after being cut, the depth of the spiral groove in the radial direction is
Preferably, surface 28 is ground to a maximum at the two connection points. By doing so, the frictional resistance between the chips cut out by the blade portion 38 and the inner wall of the spiral groove is suppressed to a minimum.

刃物の高点は、頂部74の位置を変化させずに
内側の刃部34に移動させ得る。つまり、逃げ面
56は円周方向で上方に傾斜しているから、肩部
51,54を十分に長くすれば、頂部74は刃部
34の下方ではなく上方に離間することになる。
その場合には、刃部34により切削動作が開始さ
れ、頂部74以前に刃部34が最上部の加工物に
進入する。従つて、刃部34の幅を非常に狭くす
れば、切取られる円板部に残る小さい唇状部によ
り円板部の刃物内への上昇が阻止されることはな
く、刃物は自由に下方の加工物内に進入できる。
The high point of the knife can be moved to the inner blade 34 without changing the position of the top 74. In other words, since the flank 56 is inclined upward in the circumferential direction, if the shoulders 51 and 54 are made sufficiently long, the top 74 will be spaced above the blade 34 instead of below.
In that case, the cutting action is initiated by the blade 34 and the blade 34 enters the topmost workpiece before the apex 74. Therefore, if the width of the blade 34 is made very narrow, the small lip remaining on the disc being cut out will not prevent the disc from rising into the blade, and the blade will be free to move downwards. Can enter into the workpiece.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による環状穴アケ刃
物を示す斜視図、第2図は第1図に円2で示す部
分の要部拡大図、第3図は第1図3−3線の要部
断面図、第4図は同実施例の1個の切削歯を若干
斜視図的に示す要部断面図、第5図は本発明の他
の実施例を示す斜視図、第6図は第5図に円6で
示す部分の要部拡大図、第7図は同実施例の1個
の切削歯を若干斜視図的に示す断面図、第8図は
同実施例の刃物を工作物との関係において示す要
部拡大下面図、第9図は第5図乃至第8図の実施
例を僅かに変形した本発明の更に他の実施例を示
す要部斜視図、第10図は本発明の他の実施例に
よる刃物の要部垂直断面図、第11図は同刃物の
要部斜視図、第12図は同刃物の要部説明図、第
13図は同刃物の要部端面図、第14図は本発明
の更に他の実施例による刃物の要部垂直断面図、
第15図は第14図の刃物を積重ねた工作物の穴
アケに使用する態様を示す要部垂直断面図であ
る。 10……刃物、12……本体、14……軸部、
16……側壁、20……切削歯、22……螺旋
溝、24……ランド、26……ウエブ、34,3
6,38……刃部、42……内方開口、48……
副開口、70,72……刃部、86……逃げ面、
88……交差線、90……肩部。
Fig. 1 is a perspective view showing an annular hole cutting tool according to an embodiment of the present invention, Fig. 2 is an enlarged view of the main part of the part indicated by circle 2 in Fig. 1, and Fig. 3 is taken along the line 3-3 in Fig. 1. FIG. 4 is a cross-sectional view of a main part showing one cutting tooth of the same embodiment in a slightly perspective view, FIG. 5 is a perspective view showing another embodiment of the present invention, and FIG. Fig. 5 is an enlarged view of the main part of the part indicated by circle 6, Fig. 7 is a cross-sectional view showing one cutting tooth of the same embodiment in a slightly perspective view, and Fig. 8 is a machining of the cutter of the same embodiment. FIG. 9 is an enlarged bottom view of the main part shown in relation to objects, FIG. 9 is a perspective view of the main part showing still another embodiment of the present invention which is slightly modified from the embodiment shown in FIGS. FIG. 11 is a perspective view of the essential parts of a cutlery according to another embodiment of the present invention, FIG. 12 is an explanatory diagram of the essential parts of the same cutter, and FIG. 13 is an end view of the essential parts of the same cutter. FIG. 14 is a vertical sectional view of the main part of a cutter according to still another embodiment of the present invention,
FIG. 15 is a vertical sectional view of a main part showing a mode in which the cutter shown in FIG. 14 is used for drilling holes in stacked workpieces. 10...Knife, 12...Main body, 14...Shaft part,
16... Side wall, 20... Cutting tooth, 22... Spiral groove, 24... Land, 26... Web, 34,3
6, 38...blade portion, 42...inner opening, 48...
Sub-opening, 70, 72...blade portion, 86...flank surface,
88...Cross line, 90...Shoulder.

Claims (1)

【特許請求の範囲】 1 複数の切削歯を下端周囲に円周方向に間隔を
おいて形成され、刃物を回転駆動部材に取付ける
手段を具えた全体的に円筒形の環状側壁を有し、
また、該環状側壁の外周面周囲で上記下端から上
方に延びた複数の溝を有し、隣接する前記切削歯
相互を環状側壁の内周面側で円周方向のウエブに
より結合し、これらウエブは半径方向で前記溝と
対置し、前記各溝には、円周方向で相離間し且
略々半径方向に延びた前方側壁及び後方側壁と、
円周方向に延び、前記ウエブの半径方向の外側を
画定する内壁とを設け各切削歯に半径方向で内方
の刃部と、半径方向で中間の刃部と、少くとも1
個の外方の刃部からなる少くとも3個の半径方向
の刃部を形成し、各切削歯の上記内方刃部及び中
間刃部を前記ウエブに、相互に対し、夫々、刃物
が回転して工作物内に送られると別個の切屑を切
出すように配設し、上記内方及び中間の刃部が切
出す切屑の合計の幅を、少くとも前記ウエブの厚
さに等しいものとし、これら内方及び中間の刃部
の夫々を、ウエブの厚さより小さい半径方向の寸
法とし、前記ウエブに、切削歯上の内方及び中間
の前記刃部から上方に延び、且上端で半径方向で
近接した前記溝内に半径方向で外方に開放された
開口手段を形成し、外方刃部により、少くとも部
分的に、隣接した溝の前記円周方向の後方側壁の
下端を画定し、各溝の半径方向の寸法を、内方刃
部及び中間刃部の半径方向の寸法より小さくない
寸法とし、円周方向の寸法を実質的にその半径方
向の寸法より大きくすることにより、刃物が回転
して軸線方向に工作物内に送られると、前記環状
側壁のウエブ部の内方刃部及び中間刃部により形
成された切屑は夫々、それらに対応する開口内を
経て半径方向で近接した溝内に上方に送られるよ
うにしたことを特徴とする環状穴アケ刃物。 2 各切削歯に、3個の前記刃部を設けたことを
特徴とする、特許請求の範囲第1項に記載の環状
穴アケ刃物。 3 各切削歯における刃部を、内方刃部の半径方
向で外端が刃物の回転方向に関して中間刃部の半
径方向で内端より前方に位置し、上記中間刃部の
半径方向で外端が外方刃部の半径方向で内端より
前方に位置するように、円周方向でずらしたこと
を特徴とする、特許請求の範囲第2項に記載の環
状穴アケ刃物。 4 ウエブの厚さを、溝の半径方向の深さより大
きく設定したことを特徴とする、特許請求の範囲
第2項に記載の環状穴アケ刃物。 5 各内方刃部及び中間刃部を、水平面に対して
約10゜より大きくない角度だけ、半径方向で外方
で軸線方向で上方に傾斜させたことを特徴とす
る、特許請求の範囲第1項に記載の環状穴アケ刃
物。 6 各内方刃部及び中間刃部を、水平面に対して
+10゜〜−3゜の角度で、半径方向で外方で軸線方
向に傾斜させたことを特徴とする、特許請求の範
囲第1項に記載の環状穴アケ刃物。 7 各内方刃部に、刃物側壁の内周面に対して正
のすくい角を設けたことを特徴とする、特許請求
の範囲第6項に記載の環状穴アケ刃物。 8 各外方刃部に、刃物側壁の外周面に対して正
の半径方向のすくい角を設けたことを特徴とす
る、特許請求の範囲第6項に記載の環状穴アケ刃
物。 9 各切削歯に、半径方向で相互に対して逆方向
に傾斜し、且軸線方向で上方に、円周方向で各刃
部から後方に傾斜した1対の逃げ面を形成し、こ
れら逃げ面の一方を、少くとも内方刃部と中間刃
部と半径方向で同延に形成すると同時に、水平面
に対して10゜より大きくない角度だけ、半径方向
で外方で軸線方向で上方に傾斜させたことを特徴
とする、特許請求の範囲第2項に記載の環状穴ア
ケ刃物。 10 各切削歯に、半径方向で相互に対して逆方
向に傾斜し、且軸線方向で上方に、円周方向で各
刃部から後方に傾斜した1対の逃げ面を形成し、
これら逃げ面の一方を、少くとも内方刃部と中間
刃部と半径方向で同延に形成すると同時に、水平
面に対して+10゜〜−3゜の角度だけ、軸線方向に
且半径方向で外方に傾斜させたことを特徴とす
る、特許請求の範囲第2項に記載の環状穴アケ刃
物。 11 他方の逃げ面を、外方刃部から後方に延
び、25゜より大きくない角度だけ、半径方向で外
方で軸線方向で上方に傾斜するものとしたことを
特徴とする、特許請求の範囲第10項に記載の環
状穴アケ刃物。 12 該他方の逃げ面を、約20゜〜25゜の角度だ
け、半径方向で外方で軸線方向で上方に傾斜させ
たことを特徴とする、特許請求の範囲第11項に
記載の環状穴アケ刃物。 13 各切削歯に、外方刃部から後方に延び、且
刃物側壁の外周面から半径方向で内方に延びる第
3逃げ面を設け、この逃げ面を、水平面に対して
約40゜〜45゜の角度だけ、半径方向で外方で軸線方
向で上方に傾斜させたことを特徴とする、特許請
求の範囲第12項に記載の環状穴アケ刃物。 14 第3逃げ面の半径方向の寸法を、外方刃部
において、隣接する溝の半径方向の深さの約1/4
に設定したことを特徴とする、特許請求の範囲第
13項に記載の環状穴アケ刃物。 15 各中間刃部を、円周方向の肩部により隣接
した外方刃部に接続し、この肩部の少くとも一部
を、中間刃部の外端近傍を終端とする湾曲面で構
成したことを特徴とする、特許請求の範囲第2項
に記載の環状穴アケ刃物。 16 肩部の円周方向の長さを中間刃部の半径方
向の寸法より大きくし、湾曲面を、中間刃部の半
径方向で外端の直後に位置する上記肩部の部分に
略々接する半径により画定したことを特徴とす
る、特許請求の範囲第15項に記載の環状穴アケ
刃物。 17 湾曲面をその他端で、外方刃部に実質的に
接するようにしたことを特徴とする、特許請求の
範囲第16項に記載の環状穴アケ刃物。 18 各切削歯に4個の半径方向の刃部を設け、
最外方の2個の刃部が、隣接した溝の後方側壁部
の下端を画定したことを特徴とする、特許請求の
範囲第2項に記載の環状穴アケ刃物。 19 各ウエブの厚さを、各溝の半径方向の深さ
より少くとも僅かに大きくしたことを特徴とす
る、特許請求の範囲第18項に記載の環状穴アケ
刃物。
Claims: 1. A generally cylindrical annular sidewall having a plurality of cutting teeth spaced circumferentially around its lower end and having means for attaching the cutter to a rotational drive member;
Further, the annular side wall has a plurality of grooves extending upward from the lower end around the outer peripheral surface thereof, and the adjacent cutting teeth are connected to each other by a circumferential web on the inner peripheral surface side of the annular side wall. are radially opposed to the grooves, and each groove has a front side wall and a rear side wall that are circumferentially spaced apart and extend substantially radially;
an inner wall extending circumferentially and defining a radially outer side of said web, each cutting tooth having a radially inner cutting edge, a radially intermediate cutting edge and at least one cutting tooth;
forming at least three radial cutting edges consisting of three outer cutting edges, the inner cutting edge and the middle cutting edge of each cutting tooth being attached to the web relative to each other, respectively, so that the cutting tool rotates; and arranged to cut a separate chip when fed into the workpiece, the inner and intermediate cutting edges cutting a total width of the chip at least equal to the thickness of the web. , each of the inner and intermediate blades having a radial dimension less than the thickness of the web, and having a radial dimension in the web extending upwardly from the inner and intermediate blades on the cutting teeth and at the upper end. forming a radially outwardly open opening means in said groove adjacent to said groove, said outer cutting edge defining, at least in part, a lower end of said circumferential rear side wall of said adjacent groove; , the radial dimension of each groove is not less than the radial dimension of the inner cutting edge and the intermediate cutting edge, and the circumferential dimension is substantially larger than the radial dimension of the cutter. is rotated and fed into the workpiece in the axial direction, the chips formed by the inner cutting edge and the intermediate cutting edge of the web portion of the annular side wall respectively pass through their corresponding openings and radially approach each other. An annular hole cutting tool characterized by being fed upward into the groove. 2. The annular hole cutting tool according to claim 1, wherein each cutting tooth is provided with three blade portions. 3 The blade portion of each cutting tooth is arranged so that the outer end in the radial direction of the inner blade portion is located forward of the inner end in the radial direction of the intermediate blade portion with respect to the rotational direction of the cutter, and the outer end in the radial direction of the intermediate blade portion 3. The annular hole-edge cutter according to claim 2, wherein the outer cutter is shifted in the circumferential direction so that it is located forward of the inner end in the radial direction of the outer cutter. 4. The annular hole cutting tool according to claim 2, wherein the thickness of the web is set to be larger than the radial depth of the groove. 5. Each of the inner and intermediate cutting portions is angled radially outwardly and axially upwardly by an angle not greater than about 10° with respect to the horizontal plane. The annular hole-marking knife according to item 1. 6. Claim 1, characterized in that each inner and intermediate cutting section is radially outwardly and axially inclined at an angle of +10° to -3° with respect to the horizontal plane. An annular hole cutter described in section. 7. The annular hole-edge cutter according to claim 6, wherein each inner cutter portion is provided with a positive rake angle with respect to the inner circumferential surface of the side wall of the cutter. 8. An annular hole-edge cutter according to claim 6, wherein each outer cutter portion is provided with a positive radial rake angle with respect to the outer peripheral surface of the side wall of the cutter. 9 Each cutting tooth is provided with a pair of flanks which are radially inclined in opposite directions relative to each other and which are axially upwardly inclined and circumferentially backwardly from each cutting edge; formed radially coextensive with at least the inner cutting edge and the intermediate cutting edge, and at the same time inclined radially outwardly and axially upwardly by an angle not greater than 10° with respect to the horizontal plane. An annular hole-edge cutter according to claim 2, characterized in that: 10 forming on each cutting tooth a pair of flanks that are radially inclined in opposite directions relative to each other, and axially upwardly and circumferentially backwardly from each cutting edge;
One of these flanks is formed to be coextensive in the radial direction with at least the inner cutting edge and the intermediate cutting edge, and at the same time axially and radially outward at an angle of +10° to -3° with respect to the horizontal plane. The annular hole-edge cutting tool according to claim 2, characterized in that the cutting tool is inclined in a direction. 11. Claims characterized in that the other flank extends rearwardly from the outer cutting edge and is inclined radially outwardly and axially upwardly by an angle not greater than 25°. The annular hole-edge cutter according to item 10. 12. An annular bore according to claim 11, characterized in that the other flank is sloped radially outwardly and axially upwardly by an angle of about 20° to 25°. Ake cutlery. 13 Each cutting tooth is provided with a third flank extending rearwardly from the outer cutting edge and radially inwardly from the outer peripheral surface of the blade side wall, the flank being set at an angle of approximately 40° to 45° with respect to the horizontal plane. 13. An annular hole cutting tool according to claim 12, characterized in that it is inclined radially outwardly and axially upwardly by an angle of .degree. 14 The radial dimension of the third flank is approximately 1/4 of the radial depth of the adjacent groove at the outer cutting edge.
14. The annular hole-edge cutter according to claim 13, wherein the cutter is set as follows. 15 Each intermediate blade portion is connected to an adjacent outer blade portion by a circumferential shoulder, and at least a portion of this shoulder portion is constituted by a curved surface terminating near the outer end of the intermediate blade portion. An annular hole-edge cutter according to claim 2, characterized in that: 16 The length of the shoulder in the circumferential direction is larger than the radial dimension of the intermediate blade, and the curved surface is approximately in contact with the portion of the shoulder located immediately after the outer end of the intermediate blade in the radial direction. 16. The annular hole cutting tool according to claim 15, characterized in that the cutting tool is defined by a radius. 17. The annular hole-edge cutter according to claim 16, wherein the other end of the curved surface is substantially in contact with the outer cutting edge. 18 Each cutting tooth has four radial cutting edges;
3. An annular hole cutting tool according to claim 2, wherein the two outermost cutting edges define the lower ends of the rear sidewalls of adjacent grooves. 19. An annular hole cutting tool according to claim 18, characterized in that the thickness of each web is at least slightly larger than the radial depth of each groove.
JP57045766A 1981-09-21 1982-03-24 Annular drilling edge tool Granted JPS5859712A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30385781A 1981-09-21 1981-09-21
US303857 1981-09-21

Publications (2)

Publication Number Publication Date
JPS5859712A JPS5859712A (en) 1983-04-08
JPH0146244B2 true JPH0146244B2 (en) 1989-10-06

Family

ID=23174017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045766A Granted JPS5859712A (en) 1981-09-21 1982-03-24 Annular drilling edge tool

Country Status (24)

Country Link
JP (1) JPS5859712A (en)
AR (1) AR227097A1 (en)
AU (1) AU546136B2 (en)
BG (1) BG47492A3 (en)
BR (1) BR8201938A (en)
CA (1) CA1176542A (en)
CS (1) CS241107B2 (en)
DE (1) DE3208889A1 (en)
ES (1) ES265798Y (en)
FR (1) FR2513157A2 (en)
GB (1) GB2106018B (en)
GR (1) GR77678B (en)
HU (1) HU188782B (en)
IT (1) IT1186680B (en)
MX (1) MX156023A (en)
NL (1) NL8200883A (en)
NO (1) NO820621L (en)
PL (1) PL138978B1 (en)
RO (1) RO83662B (en)
SE (1) SE8201209L (en)
SU (1) SU1454239A3 (en)
TR (1) TR22166A (en)
YU (1) YU44967B (en)
ZA (1) ZA822222B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI263552B (en) 2003-06-05 2006-10-11 Miyanaga Kk Core cutter
US6937531B2 (en) 2003-07-21 2005-08-30 Infineon Technologies Ag Memory device and method of storing fail addresses of a memory cell
GB0320105D0 (en) * 2003-08-28 2003-10-01 Cromwell Group Holdings Ltd Cutting tool
JP5059972B2 (en) * 2010-06-18 2012-10-31 日東工器株式会社 Annular hole cutter
RU2524464C2 (en) * 2012-01-12 2014-07-27 Константин Эдуардович Огоньков Cutting tool (versions)
WO2016205335A1 (en) * 2015-06-17 2016-12-22 Stryker European Holdings I, Llc Surgical instrument with ultrasonic tip for fibrous tissue removal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US28416A (en) * 1860-05-22 Improvement in plows
US3609056A (en) * 1969-06-05 1971-09-28 Everett D Hougen Hole cutter
BE788401A (en) * 1971-12-29 1973-03-05 Hougen Everett D ROTARY CUTTING TOOL
CA1150536A (en) * 1980-07-21 1983-07-26 Everett D. Hougen Annular hole cutter
IL63082A0 (en) * 1980-07-28 1981-09-13 Hougen Everett D Annular cutter for metal workpieces

Also Published As

Publication number Publication date
CA1176542A (en) 1984-10-23
PL138978B1 (en) 1986-11-29
YU75982A (en) 1986-10-31
GB2106018B (en) 1985-11-13
AR227097A1 (en) 1982-09-15
JPS5859712A (en) 1983-04-08
TR22166A (en) 1986-07-23
FR2513157A2 (en) 1983-03-25
CS241107B2 (en) 1986-03-13
SU1454239A3 (en) 1989-01-23
AU546136B2 (en) 1985-08-15
NO820621L (en) 1983-03-22
IT8248137A0 (en) 1982-03-31
GB2106018A (en) 1983-04-07
ES265798Y (en) 1983-07-01
IT1186680B (en) 1987-12-04
MX156023A (en) 1988-06-16
PL236239A1 (en) 1983-03-28
NL8200883A (en) 1983-04-18
ES265798U (en) 1983-01-16
BG47492A3 (en) 1990-07-16
RO83662A (en) 1984-07-17
ZA822222B (en) 1983-02-23
SE8201209L (en) 1983-03-22
YU44967B (en) 1991-06-30
HU188782B (en) 1986-05-28
AU8104082A (en) 1983-03-31
CS420482A2 (en) 1985-07-16
BR8201938A (en) 1983-11-16
RO83662B (en) 1984-09-30
GR77678B (en) 1984-09-25
DE3208889A1 (en) 1983-04-07

Similar Documents

Publication Publication Date Title
US4452554A (en) Annular hole cutter
US4871287A (en) Annular cutter having radial clearance
EP1807233B1 (en) Helical flute end mill with multi-section cutting edge
US3765789A (en) Annular hole cutter
US3860354A (en) Annular hole cutter
JPH04294915A (en) Cutting insert and drill tool
US4632610A (en) Annular hole cutter
US5281060A (en) Annular hole cutter
JPS5940570B2 (en) Annular hole ake knife
US4813819A (en) Method for cutting holes
US5145296A (en) Apparatus and method for cutting holes
US5240357A (en) Annular hole cutter
JPH0146244B2 (en)
US4952102A (en) Annular hole cutter
GB2080711A (en) Annular cutter
GB2128510A (en) Annular hole cutter
JP6902284B2 (en) Cutting tools
JPH0329526B2 (en)
JP2000107925A (en) High-performance end mill
JP4165041B2 (en) Throw-away tip for drilling
JPH07178612A (en) End mill
JPH0253164B2 (en)
JP2000288826A (en) End mill
JPS6190813A (en) Annular boring cutter