JPH0145744B2 - - Google Patents

Info

Publication number
JPH0145744B2
JPH0145744B2 JP891382A JP891382A JPH0145744B2 JP H0145744 B2 JPH0145744 B2 JP H0145744B2 JP 891382 A JP891382 A JP 891382A JP 891382 A JP891382 A JP 891382A JP H0145744 B2 JPH0145744 B2 JP H0145744B2
Authority
JP
Japan
Prior art keywords
joint
area
circuit
output
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP891382A
Other languages
Japanese (ja)
Other versions
JPS58127337A (en
Inventor
Shuzo Kato
Tsutomu Takahashi
Hiroshi Ishimura
Sotoji Hiramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57008913A priority Critical patent/JPS58127337A/en
Priority to DE8383100598T priority patent/DE3377526D1/en
Priority to US06/460,657 priority patent/US4581706A/en
Priority to EP83100598A priority patent/EP0085380B1/en
Publication of JPS58127337A publication Critical patent/JPS58127337A/en
Publication of JPH0145744B2 publication Critical patent/JPH0145744B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To realize inspection for junction part without giving any external force and any contact thereto and to improve inspection accuracy by selecting the inspection object to the area of junction part. CONSTITUTION:A register control signal RCS is not generated from a register control circuit and a register 72 holds ''Ax''. Thereafter, the data as many as one line is read up to mth bit by operation of a read circuit R, but ''lx'' output from a selector 53 and ''Ax'' output from the register 72 do not change. Therefore, the central processing unit CPU can read accurately the junction area data lx and junction area end data Ax in the step B7. The processing data generating path LC is capable of accurately counting only the junction areas 5 without miscounting patterns or damages of semiconductor integrated circuit element 2 even in case they are projected in black in addition to junction area 5 on the picture taken by a TV camera 20.

Description

【発明の詳现な説明】 本発明は接合手段により接合した接合郚の匷床
等を怜査する接合郚の怜査方法および装眮に関す
るものであり、特に半導䜓集積回路の玠子間、あ
るいは圓該玠子ずポスト間を、各皮のワむダ・ボ
ンデむング装眮を利甚しお、リヌド線で接続する
堎合における、前蚘玠子ず前蚘リヌド線、あるい
は前蚘ポストず前蚘リヌド線ずの接合郚の怜査に
利甚しお奜適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a joint inspection method and apparatus for inspecting the strength, etc. of a joint joined by a joining means, and particularly relates to a joint inspection method and apparatus for inspecting the strength, etc. of a joint joined by a joining means, and particularly for inspecting the strength of a joint between elements of a semiconductor integrated circuit or between the element and a post. The present invention is suitable for use in inspecting joints between the element and the lead wires, or between the posts and the lead wires when connecting with lead wires using various wire bonding devices.

基板䞊に塔茉した半導䜓集積回路玠子間、ある
いは圓該半導䜓集積回路玠子ず前蚘基板䞊に圢成
したポストずの接続は、アルミニナヌム線より成
るリヌド線を䜿甚し、これを半導䜓集積回路ある
いはポストに超音波接合を利甚しお行なうのが広
く利甚されおいる。第図は基板䞊に塔茉した半
導䜓集積回路玠子ずポストを接続した状態を瀺し
たものであり、は基板、は基板に塔茉した
半導䜓集積回路玠子、はポスト、は半導䜓集
積回路玠子ずポストずを電気的に接続するリ
ヌド線である。䞀般に、リヌド線ずしおはアル
ミニナヌム線が䜿甚される。このように構成した
ものにおいお、半導䜓集積回路玠子あるいはポ
ストずリヌド線ずの接合郚の怜査は、リヌ
ド線を匕匵り具により予め定めた力で匕匵り
この状態でリヌド線が接続状態を維持するか吊
かによ぀お行なわれる。すなわち、予め定めた力
で匕匵るこずによ぀お、接合郚の接合が倖れれ
ば䞍良、接合状態を維持しおいれば合栌ずなるも
のである。なお、この匕匵り力の倧きさは実隓等
によ぀お決定される。
For connections between semiconductor integrated circuit elements mounted on a substrate, or between the semiconductor integrated circuit elements and posts formed on the substrate, lead wires made of aluminum wire are used, and these are connected to the semiconductor integrated circuit or posts. It is widely used to perform sonic bonding. Figure 1 shows a state in which a semiconductor integrated circuit element mounted on a substrate is connected to a post, where 1 is a substrate, 2 is a semiconductor integrated circuit element mounted on the substrate 1, 3 is a post, and 4 is a post. This is a lead wire that electrically connects the semiconductor integrated circuit element 2 and the post 3. Generally, an aluminum wire is used as the lead wire 4. In this structure, the joint 5 between the semiconductor integrated circuit element 2 or the post 3 and the lead wire 4 is inspected by pulling the lead wire 4 with a predetermined force using a tensioning tool 6, and in this state, the lead wire 4 is This is done depending on whether or not to maintain the connection state. That is, by pulling with a predetermined force, if the joint of the joint portion 5 is separated, the test piece is judged as defective, and if the joint state is maintained, the test piece is passed. Note that the magnitude of this tensile force is determined through experiments and the like.

このようにしお、接合郚の怜査を行なうよう
にしたものは、リヌド線に倖力を䞎え、これを
物理的に倉化させるこずによ぀お、結果的に接合
郚に力を加えるものであるため、リヌド線の倉
圢、これによる損傷等、あるいは接合郚ぞの悪圱
響等があり、最終的に歩留りの䜎䞋ずいう結果を
招いおいた。
In this way, the joint 5 is inspected by applying an external force to the lead wire 4 and physically changing it, thereby applying force to the joint. As a result, the lead wire 4 may be deformed, this may cause damage, or there may be an adverse effect on the joint, which ultimately results in a decrease in yield.

第図、第図は超音波ワむダ・ボンデむング
装眮によるリヌド線の接合郚の平面図、偎面
図である。これらの図に瀺すように超音波法によ
り接合を行なうずリヌド線は塑性倉圢を生ず
る。この塑性倉圢郚が、すなわち接合郚であ
る。この接合郚の最倧倉圢幅は接合䜜業ごず
に倉化する。ここで、埓来、接合郚の最倧倉圢
幅ず匕匵り匷さ倀ずは盞関関係を有するこずが
知られおいる。そこで、接合郚の最倧倉圢幅
を枬定し、これが所定の幅を有するか吊かによ぀
お、間接的に接合郚の匷床を刀定するようにす
れば、非接觊でリヌド線に党く倖力を加えるこ
ずなく、接合郚の怜査ができるこずが考えられ
る。これによれば、前蚘した埓来のものの欠点は
解消可胜である。ずころが、第図、第図にお
瀺した接合郚は理想的な接合状態を瀺したもの
であり、実際の接合郚は皮々の圢状を成す。䟋
えば、第図に瀺すように、接合郚がその䞭倮
郚で突出郚を有した圢状である堎合、最倧倉圢
幅が所定の幅を有しおいたずしおも、匕匵り怜
査をしおみるず、所定の匕匵り匷床を有せず、接
合が倖れおしたう。
FIGS. 2 and 3 are a plan view and a side view of the bonding portion 5 of the lead wire 4 by the ultrasonic wire bonding apparatus. As shown in these figures, when joining is performed by the ultrasonic method, the lead wire 4 undergoes plastic deformation. This plastically deformed portion is the joint portion 5. The maximum deformation width W of this joint portion 5 changes for each joining operation. Here, it is conventionally known that the maximum deformation width W of the joint portion 5 and the tensile strength value have a correlation. Therefore, the maximum deformation width W of the joint 5
If the strength of the joint 5 can be determined indirectly based on whether it has a predetermined width or not, the strength of the joint 5 can be determined without contact and without applying any external force to the lead wire 4. It is conceivable that the following tests can be performed. According to this, the drawbacks of the conventional ones described above can be overcome. However, the bonded portion 5 shown in FIGS. 2 and 3 shows an ideal bonded state, and the actual bonded portion 5 has various shapes. For example, as shown in FIG. 4, when the joint 5 has a shape with a protrusion 7 at its center, even if the maximum deformation width W has a predetermined width, the tensile test is not performed. When you look at it, it does not have the required tensile strength and the bond comes off.

本発明は䞊蚘の点に鑑みお成されたものであ
り、その目的ずするずころは、接合郚に倖力を䜜
甚させるこずなく、非接觊で圓該接合郚の怜査が
可胜であり、しかも怜査粟床を向䞊するこずので
きる接合郚の怜査方法および装眮を埗るこずにあ
る。
The present invention has been made in view of the above points, and its purpose is to enable non-contact inspection of the joint without applying external force to the joint, and to improve inspection accuracy. An object of the present invention is to obtain a method and apparatus for inspecting joints that can be improved.

䞊蚘の目的を達成するため、本発明の特城ずす
るずころは、怜査察象を塑性倉圢した接合郚の面
積ずしたこずにある。
In order to achieve the above object, the present invention is characterized in that the inspection target is the area of a plastically deformed joint.

本発明者等は接合郚の数倚くのサンプルを䜜成
し、それらの各々を匕匵り詊隓し、デヌタを収集
した。これによれば、接合郚が第図に瀺すよう
な圢状のものに぀いおは、その最倧倉圢幅ず匕
匵り匷床ずは盞関関係を有する。しかし、他の特
異な圢状、䟋えば第図に代衚されるような圢状
のものにおいおは、前蚘した盞関関係が極端に匱
たるか、あるいは党くなくな぀おしたうこずが明
らかずな぀た。このこずから、本発明者等は、䟋
えば第図のものにおいお、接合郚のうち極端
に突出する突出郚は、接合郚の最倧倉圢幅に
倧きく圱響するが、その接合力すなわち匕匵り匷
床の向䞊にはほずんど寄䞎しないものであるずの
結論を埗た。そこで、倉圢幅ず匕匵匷床ずの盞
関関係が匱いもの、あるいは党くない、極端に突
出した突出郚を有する接合郚に぀き、皮々の
怜蚎を行な぀た。その結果、このような突出郚
は接合郚の党䜓の面積に比范するず、その面積
比率は極めお小さいものであるこずが結論付けら
れた。そこで、数倚くのサンプルの各々に぀き、
接合郚の面積ず匕匵匷床を枬定した。これらの枬
定結果を敎理したのが第図である。サンプルは
超音波接合法により䜜成したものであり、条件等
は次の通りである。すなわち、䜿甚したワむダ・
ボンデむング装眮は超音波匏で、発振最氎出力20
〔〕、米囜のオヌ゜ダむン・゚レクトロニクス
ORTHODYNE ELECTRONICS瀟補、倪線
甚で、り゚ツヂは超硬合金補、みぞありのもので
ある。接合面はアルミニナヌム蒞着膜、リヌド線
にはアルミニナヌム99.99〔〕、倪さ300〔〕、
匕匵匷床350〔〕のアルミニナヌム線を甚いた。
第図においお、瞊軞は基板に察し、垂盎方向
にリヌド線を匕匵぀た堎合の匕匵匷床〔〕を
瀺す。暪軞は面積増加率〔〕を瀺す。この面積
増加率〔〕は次のようにしお算定した。すなわ
ち、第図においお、リヌド線の線埄をlmini、
接合郚のうち、その幅がリヌド線の線埄
lminiの1.2倍以䞊ずなる郚分の長さをlt、その面
積、すなわち図の斜線郚の面積をΣlxずした堎
合、面積増加率Waは次の匏によ぀お算出する。
The inventors made numerous samples of joints, tensile tested each of them, and collected data. According to this, for a joint having a shape as shown in FIG. 2, there is a correlation between the maximum deformation width W and the tensile strength. However, it has become clear that for other unique shapes, such as the shape represented by FIG. 4, the above-mentioned correlation becomes extremely weak or disappears altogether. From this, the present inventors have found that, for example, in the one shown in FIG. It was concluded that it hardly contributes to the improvement of strength. Therefore, various studies were conducted on the joint portion 5 having an extremely protruding portion 7 in which the correlation between the deformation width W and the tensile strength is weak or not at all. As a result, such a protrusion 7
It was concluded that the area ratio is extremely small when compared to the entire area of the joint portion 5. Therefore, for each of the many samples,
The area and tensile strength of the joint were measured. Figure 5 summarizes these measurement results. The samples were prepared by ultrasonic bonding, and the conditions were as follows. In other words, the wire used
The bonding device is an ultrasonic type with a maximum oscillation output of 20
[W], made by ORTHODYNE ELECTRONICS in the United States, is for thick wire, and the wedge is made of cemented carbide and has grooves. The bonding surface is aluminum vapor-deposited film, the lead wire is aluminum 99.99 [%], thickness 300 [um],
An aluminum wire with a tensile strength of 350 [g] was used.
In FIG. 5, the vertical axis indicates the tensile strength [g] when the lead wire 4 is pulled in a direction perpendicular to the substrate 1. The horizontal axis shows the area increase rate [%]. This area increase rate [%] was calculated as follows. That is, in FIG. 6, the wire diameter of the lead wire 4 is lmini,
The width of the joint 5 is the wire diameter of the lead wire 4.
If the length of the part that is 1.2 times or more lmini is lt, and its area, that is, the area of the shaded part in the figure, is Σlx, then the area increase rate Wa is calculated by the following formula.

WaΣlx−lmini・ltlmini・lt×100〔〕  (1) この(1)匏においお、lmini・ltは長さlt圓りのリ
ヌド線の面積であり、芁するに面積増加率Wa
はリヌド線の長さlt郚分における接合埌の面積
増加の床合を瀺すものである。長さltを1.2lmini
ずしたのは、接合郚の特城がその䞭倮郚に集䞭
するものずの前提に基づいたものである。
Wa=Σlx−lmini・lt/lmini・lt×100 [%]

(1) In this equation (1), lmini・lt is the area of the lead wire 4 per length lt, and in short, the area increase rate Wa
represents the degree of area increase after bonding in the length lt portion of the lead wire 4. length lt 1.2lmini
This is based on the premise that the characteristics of the joint 5 are concentrated in the center.

枬定結果を敎理した第図から明らかなよう
に、匕匵匷床ず面積増加率Waずは盞関関係があ
る。そしお、枬定結果によれば、面積増加率Wa
が30〔〕未満のものに、接合郚がはく離する
ものが倚い。たた、面積増加率Waが30〔〕以
䞊のものでは、ほずんどが切断される。この切断
域においお、匕匵匷床は接合郚の匷さではな
く、塑性倉圢したリヌド線自䜓の匷さに䟝存す
る。曎に面積増加率Waの倧きい領域においお
は、面積増加率Waの増加に埓぀お、匕匵匷床は
ゆるやかに䜎䞋しおいく。
As is clear from FIG. 5, which summarizes the measurement results, there is a correlation between the tensile strength and the area increase rate Wa. According to the measurement results, the area increase rate Wa
In many cases, the bonded portion 5 peels off when the bonding area is less than 30%. In addition, when the area increase rate Wa is 30 [%] or more, most of the parts are cut off. In this cutting region, the tensile strength depends not on the strength of the joint 5 but on the strength of the plastically deformed lead wire 4 itself. Further, in a region where the area increase rate Wa is large, the tensile strength gradually decreases as the area increase rate Wa increases.

そこで、この関係を利甚し、接合郚の怜査察
象を接合郚の面積ずした。すなわち、前蚘ず同
条件にお接合された接合郚の怜査合栌範囲を、
接合郚の面積増加率Waが30〔〕〜55〔〕ず
した。この範囲は、接合郚の匕匵匷床をいく぀
にするか、歩留りを䜕〔〕にするかによ぀お異
なり、それぞれによ぀お皮々倉えるこずができ
る。そしお、リヌド線の接合完了埌、接合郚
の面積を枬定し、(1)匏により接合増加率Waを算
出する。その結果、この面積増加率Waが30〔〕
〜50〔〕内に収た぀おいれば、これず合栌ずし、
その他の堎合にはそれず䞍合栌ずする。
Therefore, by utilizing this relationship, the area of the joint 5 was set as the inspection target of the joint 5. In other words, the inspection passing range of the bonded portion 5 bonded under the same conditions as above is,
The area increase rate Wa of the joint portion 5 was set to 30 [%] to 55 [%]. This range differs depending on the tensile strength of the joint 5 and the yield [%], and can be varied depending on each. After the connection of the lead wire 4 is completed, the connection portion 5 is
Measure the area of , and calculate the junction increase rate Wa using equation (1). As a result, this area increase rate Wa is 30 [%]
If it falls within ~50 [%], it will be considered as passing.
In other cases, the test will be rejected.

このようにすれば、接合郚に䜕ら倖力を䜜甚
させるこずなく、非接觊で圓該接合郚の怜査が
可胜である。たた、これによれば、接合郚の圢
状が第図に瀺されたものに代衚されるような特
異な圢状で、しかも所定の匕匵匷床を有しないよ
うなものを䞍合栌ず刀定するこずができ、怜査粟
床を向䞊するこずができる。すなわち、前蚘した
ように、突出郚の面積は、接合郚の党䜓の面
積に比べれば、その比はわずかである。埓぀お、
(1)匏による面積増加率Waの算出に際し、この突
出郚の圱響は無芖し埗る皋床のものずなるため
である。
In this way, the joint 5 can be inspected in a non-contact manner without applying any external force to the joint 5. Furthermore, according to this, a joint 5 that has an unusual shape as typified by the shape shown in FIG. 4 and does not have a predetermined tensile strength is judged to be rejected. It is possible to improve inspection accuracy. That is, as described above, the area of the protrusion 7 is small compared to the entire area of the joint 5. Therefore,
This is because the influence of the protrusion 7 is negligible when calculating the area increase rate Wa using equation (1).

以䞊は、接合郚の怜査に圓り、(1)匏を䜿甚す
る堎合に぀いお説明したが、面積増加率Waの算
出に圓぀おは、接合郚の党䜓の面積をその察象
にしお怜査を行なうようにしおもよい。すなわ
ち、第図においお接合郚の党䜓の面積を
Σlx′、接合郚の長さをlt′ずし、面積増加率
Wa′を次匏のようにしお算出する。
The above describes the case where formula (1) is used to inspect the joint 5, but when calculating the area increase rate Wa, the entire area of the joint 5 is inspected. You can do it like this. That is, in Fig. 7, the entire area of the joint 5 is Σlx', the length of the joint 5 is lt', and the area increase rate is
Calculate Wa′ using the following formula.

Wa′Σlx′−lmini・lt′lmini・lt′×100〔
〕  (2) たた、 W′aΣlx′lmini・lt′×100〔〕 

(3) ずしおもよく、曎には、1.2lmini・ltたたは
lmini・ltに察する、第図の斜線郚の面積の比
率ずしおもよい。たた、曎に、以䞊のものの逆数
であ぀おもよい。
Wa′Σlx′−lmini・lt′lmini・lt′×100[%
]...(2) Also, W′aΣlx′lmini・lt′×100[%]

(3) Furthermore, 1.2lmini・lt or
It may also be taken as the ratio of the area of the shaded area in FIG. 8 to lmini·lt. Furthermore, it may be the reciprocal of the above.

たた、怜査の刀定に圓぀おは、接合郚の面積
の絶察倀で刀定するようにしおもよい。すなわ
ち、蚱容最倧面積ず蚱容最小面積を予め蚭定し、
接合郚の面積ずこれらを比范し、この範囲にある
か吊かによ぀お、その良吊を刀定するようにしお
もよい。
Further, when determining the inspection, the determination may be made based on the absolute value of the area of the joint portion 5. In other words, the maximum allowable area and the minimum allowable area are set in advance,
The area of the joint may be compared with these, and the quality may be determined based on whether or not the area is within this range.

芁するに、刀定条件は皮々のものが考えられる
が、本発明はこれら刀定法により限定されるもの
ではない。
In short, various judgment conditions can be considered, but the present invention is not limited to these judgment methods.

以䞊のようにすれば、接合郚の怜査粟床は著し
く向䞊する。尚、ここでより䞀局の粟床向䞊を望
む堎合には、接合郚の圢状を刀定するようにす
る。すなわち、第図によれば、面積増加率Wa
が所定の範囲に入぀おいるにもかかわらず、垂盎
匕匵匷床が160〔〕皋床ずいう特異な珟象が生じ
おいる。第図においお、はこれを瀺す。第
図はこのものの接合郚の圢状を瀺したものであ
る。この図から明らかなように、この接合郚は
リヌド線の䞭心線に察し、その巊右が極端に
アンバランスにな぀おいる。すなわち、䞭心線
に察し、その巊偎はほずんど塑性倉圢しおおら
ず、右偎が倧きく塑性倉圢しおいる。このような
圢状はリヌド線の接合時、リヌド線ず、この
リヌド線を被接合面ぞ抌し付けるツヌルずの接
觊具合により実際に起り埗るものである。接合郚
がこのような圢状にな぀おしたうず、その匕匵
匷床は䜎䞋しおしたう。
By doing the above, the inspection accuracy of the joint portion is significantly improved. Incidentally, if a further improvement in accuracy is desired, the shape of the joint is determined. That is, according to Figure 5, the area increase rate Wa
A peculiar phenomenon occurs in which the vertical tensile strength is about 160 [g] even though it is within the prescribed range. In FIG. 5, S indicates this. 9th
The figure shows the shape of the joint 5 of this product. As is clear from this figure, the left and right sides of the joint 5 are extremely unbalanced with respect to the center line C of the lead wire 4. That is, the center line C
On the other hand, the left side is hardly plastically deformed, and the right side is largely plastically deformed. Such a shape may actually occur when the lead wires 4 are joined, depending on the contact between the lead wires 4 and the tool that presses the lead wires 4 against the surface to be joined. If the joint portion 5 takes on such a shape, its tensile strength will decrease.

そこで、前蚘した接合郚の面積増加率に加
え、接合郚の圢状、すなわちリヌド線の䞭心
線に察する巊右の䞍均衡率以䞋、これを歪率
ずいう。をも刀定項目ずするようにする。第
図はリヌド線の䞭心線に察し、意識的に巊
右が䞍均衡ずなるよう䜜成したサンプルに぀き、
匕匵匷床〔〕を枬定し、これを敎理したもので
ある。尚、サンプルの䜜成に圓぀お、他の条件は
第図のものず同様であり、面積増加率は合栌の
範囲のものずした。第図においお、瞊軞は第
図のそれず同様であり、暪軞は歪率Wc〔〕で
ある。歪率Wcの算定は次のようにしお行な぀た。
すなわち、第図においお、接合郚のうち、そ
の幅がリヌド線の幅lminiの1.2倍以䞊である郚
分斜芖で瀺す郚分で、リヌド線の䞭心線
より巊偎の面積をΣA、右偎をΣBずし、次の匏よ
り算出する。ΣAΣBずする。 Wc−ΣAΣB×100〔〕 

(4) 第図から明らかなように、面積増加率が合
栌の範囲のものであ぀おも、歪率が25〔〕を越
えるようになるず、その匕匵匷床は陀々に䜎䞋す
る。そこで、この関係を利甚し、接合郚の歪率
が20〔〕以内のものを合栌ずするこずずした。
この範囲も、面積増加率ず同様、その匕匵匷床を
いく぀にするか、歩留りを䜕〔〕にするか等に
よ぀お異なり、たたそれぞれによ぀お皮々の範囲
に倉えるこずができる。そしお、リヌド線の接
合完了埌、接合郚の前蚘ΣA、ΣBを枬定、ある
いは算出し、(4)匏により歪率Wcを算出する。そ
の結果、この歪率Wcが20〔〕内に収た぀おいれ
ば、これを合栌ずし、その他の堎合はこれを䞍合
栌ずする。なお、この歪率による刀定は、面積増
加率の刀定埌に行なうようにしおもよく、たたそ
の前段階で行なうようにしおもよい。
Therefore, in addition to the area increase rate of the joint portion 5 described above, the shape of the joint portion 5, that is, the left-right imbalance ratio (hereinafter referred to as the distortion rate) with respect to the center line C of the lead wire 4 is also determined. Do it like this. 1st
Figure 0 is a sample that was intentionally created so that the left and right sides are unbalanced with respect to the center line C of the lead wire 4.
The tensile strength [g] was measured and organized. In preparing the sample, other conditions were the same as those in FIG. 5, and the area increase rate was within the acceptable range. In FIG. 10, the vertical axis is the same as that in FIG. 5, and the horizontal axis is the strain rate Wc [%]. The distortion factor Wc was calculated as follows.
That is, in FIG. 9, the center line C of the lead wire 4 is located at a portion of the joint portion 5 whose width is 1.2 times or more the width lmini of the lead wire 4 (portion shown in perspective).
Let the area on the left side be ΣA, and the area on the right side be ΣB, and calculate it using the following formula. (ΣA<ΣB.) Wc | (1-ΣA/ΣB) | × 100 [%] ...(4) As is clear from Figure 10, even if the area increase rate is within the acceptable range. When the strain rate exceeds 25%, the tensile strength gradually decreases. Therefore, by utilizing this relationship, it was decided that the strain rate of the joint portion 5 was within 20% to pass.
Like the area increase rate, this range also varies depending on the tensile strength, yield, etc., and can be changed to various ranges depending on each. After the lead wires 4 are joined, the ΣA and ΣB of the joint portion 5 are measured or calculated, and the distortion factor Wc is calculated using equation (4). As a result, if the distortion rate Wc is within 20%, the test is considered to be a pass; otherwise, the test is a fail. Note that this determination based on the distortion rate may be performed after the determination of the area increase rate, or may be performed at a prior stage.

このように、歪率を刀定条件に加えれば、より
䞀局の怜査粟床の向䞊が図れる。
In this way, by adding the distortion rate to the determination conditions, inspection accuracy can be further improved.

以䞊、歪率の算定に圓぀おは(4)匏を䜿甚する堎
合に぀いお述べたが、これも前蚘の面積増加率の
算定ず同様、皮々のものが考えられる。䟋えば、
リヌド線の面積を差匕いた埌の面積比等であ
り、本発明はこれらの算定法に限定されるもので
はない。
The case where equation (4) is used in calculating the distortion rate has been described above, but as with the calculation of the area increase rate described above, various methods can be considered. for example,
This is the area ratio after subtracting the area of the lead wire 4, and the present invention is not limited to these calculation methods.

装眮の構成に圓぀おは、撮像手段ず凊理手段ず
を備える。接合郚は撮像手段により撮像する。前
蚘の説明からも明らかなように、接合郚は極めお
埮现である。そこで、接合郚を撮像するに圓぀お
は、レンズ等の拡倧手段を通しお行なうようにす
るのが粟床の向䞊等の点で望たしい。なお、拡倧
手段は撮像手段ず別のものであ぀おもよく、望た
しくは拡倧手段を備えた撮像手段を䜿甚するのが
装眮の構成䞊有利ずなる。撮像手段ずしおは撮像
面に結像された映像を電気信号に倉換し、映像情
報ずしお出力するものがよく、䟋えば撮像面に結
像された映像を、電子銃より攟出された電子ビヌ
ムをコむルにより偏向、集束しお映像を電気信号
ずしお取り出す撮像管を䜿甚したテレビゞペン・
カメラ、あるいは圓該撮像管を固䜓撮像管玠子に
眮き換えた、いわゆる固䜓テレビゞペン・カメラ
等が䜿甚可胜である。この皮のものは、撮像面を
倚数の行に分け、各行を順次走査するこずにより
映像を電気信号に倉換しお出力する。
Regarding the configuration of the device, it includes an imaging means and a processing means. The joint portion is imaged by an imaging means. As is clear from the above description, the joints are extremely fine. Therefore, in order to improve accuracy, it is desirable to image the joint through a magnifying means such as a lens. Note that the enlarging means may be separate from the imaging means, and preferably, it is advantageous in terms of the configuration of the apparatus to use an imaging means equipped with an enlarging means. The imaging means is preferably one that converts the image formed on the imaging surface into an electrical signal and outputs it as video information.For example, the image formed on the imaging surface is converted to an electron beam emitted from an electron gun using a coil. Television, which uses an image pickup tube that deflects and focuses the image to extract the image as an electrical signal.
A camera or a so-called solid-state television camera in which the image pickup tube is replaced with a solid-state image pickup tube element can be used. This type of device divides the imaging surface into a large number of rows and sequentially scans each row to convert the image into an electrical signal and output it.

凊理手段は撮像手段からの映像情報を取り蟌
み、この情報から接合郚の面積を抜出し、この抜
出した接合郚面積に基づいお、接合郚の良吊刀定
を行なう。圓該凊理手段はその機胜䞊からデゞタ
ル凊理方匏を採甚するのが䟿利である。そのため
には、撮像手段からの映像情報を倀化するた
め、倀化手段を備え、以埌はこの倀化手段の
出力に基づいお凊理するのがよい。凊理に圓぀お
は、倀化手段の出力を盎接凊理するようにしお
も良いが、蚘憶手段を蚭け、倀化した映像情報
を圓該蚘憶手段に䞀時栌玍し、以埌の凊理は圓該
蚘憶手段の内容に基づいお行なうのが装眮の構成
䞊有利である。凊理手段の特に刀定を行なう䞻芁
郚は、いわゆるマむクロ・コンピナヌタがその機
胜䞊うたく適合する。しかし、他の同様な機胜を
有する挔算凊理手段の䜿甚も可胜である。刀定の
凊理に圓぀おは、前蚘の映像情報を䞀時蚘憶した
蚘憶手段、すなわち映像蚘憶手段から前蚘挔算凊
理手段が順次その蚘憶内容を読み出しお行なうよ
うにしおもよいが、映像蚘憶手段から刀定に必芁
な情報を䜜成する凊理デヌタ䜜成手段を蚭け、圓
該手段からの情報により挔算凊理手段が刀定を実
行するようにすれば凊理速床を向䞊できる意味に
おいお望たしい。
The processing means takes in video information from the imaging means, extracts the area of the joint from this information, and determines the quality of the joint based on the extracted joint area. It is convenient for the processing means to adopt a digital processing method from the viewpoint of its functionality. To this end, it is preferable to provide a binarizing means to binarize the video information from the imaging means, and to perform subsequent processing based on the output of this binarizing means. In processing, the output of the binarization means may be directly processed, but a storage means is provided, the binarized video information is temporarily stored in the storage means, and subsequent processing is carried out by the storage means. It is advantageous in terms of the configuration of the device to perform the process based on the contents of . A so-called microcomputer is well suited for the main part of the processing means, especially for making decisions. However, it is also possible to use other arithmetic processing means with similar functionality. In the determination processing, the arithmetic processing means may sequentially read out the stored contents from the storage means that temporarily stores the video information, that is, the video storage means. It is desirable to provide processing data creation means for creating necessary information, and to have the arithmetic processing means execute the determination based on the information from the means, in the sense that processing speed can be improved.

第図は本発明装眮の䞀実斜䟋を瀺したもの
であり、以䞋この図に぀いお説明する。IPは撮
像手段、PCは凊理手段である。撮像手段IPの䞻
芁郚はテレビゞペン・カメラ以䞋、TVカメラ
ずいう。で構成する。実斜䟋においおは、
TVカメラずしお固䜓撮像玠子を䜿甚した、
いわゆる固䜓テレビゞペン・カメラを䜿甚しおい
る。この動䜜原理の䞀䟋を瀺したのが第図で
ある。固䜓撮像玠子は瞊暪に配列した倚数、䟋え
ば瞊244個、暪320個のフオトセンサPSず、スむ
ツチング回路SWずからなる高集積回路玠子であ
り、撮像面に結像された映像をスむツチング走査
で電気信号ずしお取り出す。すなわち、撮像面は
244×320個の画玠に分割されるこずになる。
そしお、この信号は映像増幅噚IAを介しお、TV
カメラの信号ずしお出力される。超音波を採
甚したワむダ・ボンデむング装眮に䜿甚されおい
る、䟋えば第図に瀺すようなグルヌプ圢のツ
ヌルでリヌド線を接合するず、接合埌の塑性
倉圢した接合郚の断面圢状は第図に瀺すよう
になる。撮像手段IPは他に、照明源、この
照明源からの光を被撮像郚に集める集光レン
ズ、察物レンズ、および反射鏡を備
える。第図に瀺すような断面圢状の接合郚
に、照明源からの光を反射鏡によりその
垂盎䞊方より投射するず、接合郚に圓぀た光は
散乱し察物レンズに入射しないため、TVカ
メラには入射しない。被接合䜓である半導䜓
集積回路玠子あるいはポストの衚面は平面で
あるため、光は投射方向に反射し、察物レンズ
を通぀おTVカメラに入射する。このた
め、TVカメラの映像をモニタするず、第
図のようになる。この図は被接合䜓が半導䜓集
積回路玠子である堎合に぀いお瀺しおあり、斜
線郚の接合郚、およびリヌド線は黒く、半導
䜓集積回路玠子は癜くなる。半導䜓集積回路玠
子でも黒く映る箇所があるが、これは衚面の凹
凞、傷、あるいは配線パタヌンでである。
FIG. 11 shows an embodiment of the apparatus of the present invention, and this figure will be explained below. IP is an imaging means, and PC is a processing means. The main part of the imaging means IP is a television camera (hereinafter referred to as a TV camera). Consists of 20. In the example,
Using a solid-state image sensor as the TV camera 20,
It uses a so-called solid-state television camera. FIG. 12 shows an example of this operating principle. A solid-state image sensor is a highly integrated circuit device consisting of a large number of photo sensors PS arranged vertically and horizontally, for example, 244 photo sensors (vertical) and 320 photo sensors (horizontal), and a switching circuit SW. Take it out as That is, the imaging plane is divided into (244×320) pixels.
This signal is then sent to the TV via the video amplifier IA.
It is output as a signal from the camera 20. When the lead wires 4 are bonded using a group-shaped tool 8, for example, as shown in FIG. The result will be as shown in the figure. The imaging means IP also includes an illumination source 21, a condensing lens 22 that focuses light from the illumination source 21 onto the imaged area, an objective lens 23, and a reflecting mirror 24. Joint portion 5 having a cross-sectional shape as shown in FIG.
When the light from the illumination source 21 is projected from vertically above by the reflecting mirror 24, the light that hits the joint 5 is scattered and does not enter the objective lens 23, and therefore does not enter the TV camera 20. Since the surface of the semiconductor integrated circuit element 2 or the post 3 that is the object to be bonded is flat, the light is reflected in the projection direction and is reflected by the objective lens 2.
3 and enters the TV camera 20. Therefore, when monitoring the video of the TV camera 20, the first
It will look like Figure 5. This figure shows the case where the object to be bonded is a semiconductor integrated circuit element 2, in which the bonding portion 5 and the lead wire 4 in the shaded area are black, and the semiconductor integrated circuit element 2 is white. Even in semiconductor integrated circuit elements, there are parts that appear black, but these are 2P due to surface irregularities, scratches, or wiring patterns.

凊理手段PCは倀化回路BC、映像蚘憶郚
IPM、読出回路、凊理デヌタ䜜成回路LC、お
よび挔算凊理郚CPUずから成る。TVカメラ
からの出力信号はアナログ量であるため、倀化
回路BCはこれを倀化、すなわち“”、“”
の信号に倉換する。第図は倀化回路BCの
䞀具䜓䟋を瀺したものであり、挔算増幅噚OPを
䜿甚した比范回路で構成した堎合に぀いお瀺しお
ある。R1R2は分圧抵抗であり、電源の電圧
をこの抵抗R1R2で分圧するこずにより、TVカ
メラからの入力電圧のうちどの電䜍を境ずし
お、“”、“”に倉換するかずいう基準電圧を
䜜成する。したが぀お、TVカメラからの入
力電圧がこの基準電圧以䞊であれば挔算増幅噚
OPの出力、すなわち倀化回路BCの出力は
“”、基準電圧未満であれば“”ずなる。
The processing means PC includes a binarization circuit BC and a video storage unit.
It consists of an IPM, a readout circuit R, a processing data creation circuit LC, and an arithmetic processing unit CPU. TV camera 20
Since the output signal from is an analog quantity, the binarization circuit BC converts it into two values, that is, "1" and "0".
signal. FIG. 16 shows a specific example of the binarization circuit BC, and shows a case where it is constructed from a comparison circuit using an operational amplifier OP. R 1 and R 2 are voltage dividing resistors, and by dividing the voltage of the power supply V by these resistors R 1 and R 2 , which potential of the input voltage from the TV camera 20 is set as the boundary, "1", " Create a reference voltage for converting to 0''. Therefore, if the input voltage from the TV camera 20 is higher than this reference voltage, the operational amplifier
The output of the OP, that is, the output of the binarization circuit BC, is "1", and if it is less than the reference voltage, it is "0".

映像蚘憶郚IPMはTVカメラに備えた固䜓
撮像玠子の各々のフオトセンサPSに察応しお
ビツトの蚘憶郚を備えおいる。すなわち、固䜓撮
像玠子が瞊244個、暪320個ず仮定するず、この玠
子は総蚈78080個のフオトセンサPSを有するこず
になる。そこで映像蚘憶郚IPMは少なくずも
78080ビツトの蚘憶容量を有する蚘憶装眮を甚意
する。ただし、これはより粟床を高めようずした
堎合であり、時によ぀おは適圓に間匕くこずによ
぀お、映像蚘憶郚IPMの容量を䜎䞋するように
しおもよい。なお、図瀺しないが、映倀蚘憶郚
IPMは曞き蟌み回路を備えおおり、TVカメラ
がスむツチング回路SWの䜜甚によりある䜍眮
のフオトセンサPSの出力を発生するず、この時
点では圓該フオトセンサPSず察応させた蚘憶郚
アドレス指定される。そしお、TVカメラの
出力に応じ、指定されたアドレスの蚘憶郚に倀
化回路BCからの“”又は“”が曞き蟌たれ
る。このようにしお、TVカメラが映像のす
べおを電気信号ずしお出力するず、映像蚘憶郚
IPMには倀化された映像が䞀時蚘憶される。
第図はこの映像を蚘憶した映像蚘憶郚IPM
の䞀郚抂念図であり、第図のものず察応す
る。第図においお、぀の升目は぀の蚘憶
郚を瀺す。TVカメラは、第図においお
癜く映る郚分は比范的高い電圧を発生するため、
この郚分の倀化回路BCの出力は“”、逆に黒
く映る郚分は比范的䜎い電圧ずなるため、この郚
分の倀化回路BCの出力は“”ずなり、結果
的に映像蚘憶郚IPMの各々の蚘憶郚には第
図に瀺すように“”、“”が蚘憶される。ここ
で、䞭倮郚分で“”が集䞭しおいる郚分が接合
郚である。なお、映像蚘憶郚IPMは第図
ずの察応においお、×ビツトの蚘憶装眮
を䜿甚した堎合に぀いお瀺しおあり、アドレスは
最䞊䜍行の巊から順次右偎に連続しお付され、以
埌順次その䞋の行に移ように付される。
The image storage unit IPM has one image storage unit corresponding to each photo sensor PS of the solid-state image sensor provided in the TV camera 20.
It is equipped with a bit storage section. That is, assuming that there are 244 solid-state image sensors in the vertical direction and 320 in the horizontal direction, this device will have a total of 78,080 photo sensors PS. Therefore, the video storage unit IPM is at least
Prepare a storage device with a storage capacity of 78080 bits. However, this is a case where the accuracy is to be further increased, and the capacity of the video storage unit IPM may be reduced by appropriately thinning out the data from time to time. Although not shown, the video value storage unit
The IPM is equipped with a writing circuit, and the TV camera 2
0 generates an output from the photo sensor PS at a certain position by the action of the switching circuit SW, at this point the storage address associated with the photo sensor PS is specified. Then, in accordance with the output of the TV camera 20, "1" or "0" from the binarization circuit BC is written into the storage section at the designated address. In this way, when the TV camera 20 outputs all images as electrical signals, the image storage section
Binarized video is temporarily stored in IPM.
Figure 17 shows the video storage unit IPM that stores this video.
This is a partial conceptual diagram of , and corresponds to that of FIG. 15. In FIG. 17, one square indicates one storage section. The TV camera 20 generates a relatively high voltage in the white portion in FIG.
The output of the binarization circuit BC in this part is "1", and on the other hand, the black part has a relatively low voltage, so the output of the binarization circuit BC in this part is "0", resulting in video storage. The storage section of each IPM contains the 17th memory section.
As shown in the figure, "1" and "0" are stored. Here, the central portion where "0"s are concentrated is the joint portion 5. In addition, in correspondence with FIG. 17, the video storage unit IPM is shown for the case where an (m×n) bit storage device is used, and the addresses are sequentially assigned from the left to the right of the top row, Thereafter, they are added sequentially to the rows below.

読出回路は映像蚘憶郚IPMの蚘憶内容を順
次読み出すものであり、この読み出しに圓぀おは
埌述する挔算凊理郚CPUからのクロツク発生指
什信号CLIに基づき、第図ずの察応においお
行単䜍に読み出す。そのため、この読出回路
は、行分クロツク発生回路ず読出アドレス
発生回路ずから構成しおある。行分クロツ
ク発生回路はクロツク発生指什信号CLIが入
力されるず、映像蚘憶郚IPMの映像の行に盞
圓する個のパルスを発生する。第図は、
行分クロツク発生回路の具䜓䟋を瀺したもの
であり、クロツク信号発生噚、RSフリツプ
フロツプ回路、アンドゲヌト、およびカ
りンタずで構成した堎合に぀いお瀺しおあ
る。クロツク信号発生噚は垞に䞀定呚期の連
続パルスを発生する。このクロツク信号発生噚
の出力であるパルスはアンドゲヌトを介し
おカりンタのカりント端子CKに入力するよ
うにする。RSフリツプフロツプ回路のセツ
ト端子には挔算凊理郚CPUからのクロツク発
生指什信号CLIを入力し、圓該信号CLIによりRS
フリツプフロツプ回路をセツトするようにす
る。そしお、圓該フリツプフロツプ回路の出
力端子からの出力をアンドゲヌトの制埡偎
入力ずし、フリツプフロツプ回路がセツトさ
れおいる堎合にはアンドゲヌトを開くように
する。カりンタは映像蚘憶郚IPMを行
ビツト構成ずしおある関係䞊、−進のカ
りンタで構成し、そのオバヌフロヌ端子OFLか
らの出力をRSフリツプフロツプ回路のリセ
ツト端子に入力するようにする。なお、アンド
ゲヌトの出力はカりンタのカりント端子
CKに入力するず共に読出クロツクパルスRCLず
しお読出アドレス発生回路に入力するように
する。このようにすれば、挔算凊理郚CPUから
クロツク発生指什信号CLIが入力されるず、RS
フリツプフロツプ回路がセツトされ、出力端
子からの“”の出力によりアンドゲヌト
が開かれる。したが぀お、クロツク発生噚か
らのクロツクパルスはアンドゲヌトを通り、
カりンタに加わるず共に読出アドレス発生回
路に加わる。このクロツクパルスによりカり
ンタは順次カりントアツプされる。そしお、
個目の信号が加わるずオヌバフロヌ端子OFL
から信号が出力され、RSフリツプフロツプ回路
をリセツトする。これにより、RSフリツプ
フロツプ回路の出力端子からの信号は
“”ずなり、これはアンドゲヌトを閉じる。
これにより、以埌のクロツク発生噚からのク
ロツクパルスはアンドゲヌトから出力される
こずはない。すなわち、この回路は挔算凊理
郚CPUからのクロツク発生指什信号CLIを受ける
ごずに個のクロツクパルス、すなわち読出クロ
ツクパルスRCLを出力し、その埌、読出クロツ
クパルスRCLの発生を停止する。
The readout circuit R sequentially reads out the stored contents of the video storage unit IPM, and in this readout, the clock generation command signal CLI from the arithmetic processing unit CPU, which will be described later, is performed in units of one line in correspondence with FIG. 17. Read out. Therefore, this readout circuit R
consists of a one-row clock generation circuit 30 and a read address generation circuit 31. When the clock generation command signal CLI is input, the one-line clock generation circuit 30 generates m pulses corresponding to one line of the image in the image storage unit IPM. Figure 18 shows 1
A specific example of the row clock generation circuit 30 is shown in which it is constructed from a clock signal generator 32, an RS flip-flop circuit 33, an AND gate 34, and a counter 35. The clock signal generator 32 always generates continuous pulses with a constant period. This clock signal generator 3
The pulse which is the output of 2 is inputted to the count terminal CK of the counter 35 via the AND gate 34. A clock generation command signal CLI from the arithmetic processing unit CPU is input to the set terminal S of the RS flip-flop circuit 33, and the RS
The flip-flop circuit 33 is set. Then, the output from the output terminal Q of the flip-flop circuit 33 is used as the control side input of the AND gate 34, and when the flip-flop circuit 33 is set, the AND gate 34 is opened. The counter 35 stores the video memory unit IPM in one line m.
Due to the bit structure, it is constructed of an (m-1) base counter, and the output from its overflow terminal OFL is input to the reset terminal R of the RS flip-flop circuit 33. Note that the output of the AND gate 34 is the count terminal of the counter 35.
It is input to the read address generation circuit 31 as the read clock pulse RCL as well as to the read clock pulse RCL. By doing this, when the clock generation command signal CLI is input from the arithmetic processing unit CPU, the RS
The flip-flop circuit 33 is set, and the AND gate 34 is set by the output of "1" from the output terminal Q.
will be held. Therefore, the clock pulse from clock generator 32 passes through AND gate 34;
It is added to the counter 35 and also to the read address generation circuit 31. The counter 35 is sequentially counted up by this clock pulse. and,
When m-th signal is added, overflow terminal OFL
A signal is output from the RS flip-flop circuit 33 to reset it. As a result, the signal from the output terminal Q of the RS flip-flop circuit 33 becomes "0", which closes the AND gate 34.
As a result, subsequent clock pulses from clock generator 32 will not be output from AND gate 34. That is, this circuit 30 outputs m clock pulses, ie, read clock pulse RCL, every time it receives the clock generation command signal CLI from the arithmetic processing unit CPU, and then stops generating the read clock pulse RCL.

読出アドレス発生回路は行分クロツク発
生回路からの読出クロツクパルスRCLを入
力し、このパルスRCLに基づいお映像蚘憶郚
IPMのアドレスを順次走査指定し、その蚘憶内
容を順次読み出す。これはアドレスカりンタ等で
構成する。すなわち、この回路は読出クロツ
クパルスRCLを぀入力するたびに、そのアド
レス内容をだけ増加するこずにより、䞊蚘機胜
を実珟する。ここで、行分クロツク発生回路
は挔算凊理郚CPUからクロツク発生指什信号
CLIを受ける床に、個のパルスを発生するた
め、たず最初に行分クロツク発生回路が信
号CLIを受けるず、読出アドレス発生噚は第
図においお、行目のビツトのそれぞれを
アドレス指定し、それぞれの蚘憶内容を読み出
す。次に、信号CLIが回路に加わるず、読出
アドレス回路は行目のビツトのそれぞれ
をアドレス指定し、圓該行のそれぞれの蚘憶内容
を読み出す。以䞋、同様にしお、挔算凊理郚
CPUからクロツク発生指什信号CLIが入力される
床に、各行の蚘憶内容が読み出され、最終行、す
なわち行目が読み出されるず、その読み出しの
終了により、次には行目を読み出し埗るよう蚭
定される。
The read address generation circuit 31 inputs the read clock pulse RCL from the clock generation circuit 30 for one row, and based on this pulse RCL, the image storage section
Sequentially scan and designate IPM addresses and sequentially read out the stored contents. This consists of an address counter, etc. That is, this circuit 31 realizes the above function by incrementing the address contents by 1 each time one read clock pulse RCL is input. Here, the clock generation circuit 3 for one row is
0 is a clock generation command signal from the arithmetic processing unit CPU
Since m pulses are generated each time CLI is received, when the clock generation circuit 30 for one row first receives the signal CLI, the read address generator 31 generates m bits of the first row in FIG. Address each and read the memory contents of each. Next, when signal CLI is applied to circuit 30, read address circuit 31 addresses each of the m bits of the second row and reads the respective stored contents of that row. Below, in the same way, the arithmetic processing section
Every time the clock generation command signal CLI is input from the CPU, the memory contents of each row are read out, and when the last row, that is, the nth row, is read out, the first row can be read out next. It is set as follows.

凊理デヌタ䜜成回路LCは、映像蚘憶郚IPMか
らの出力に基づき、接合郚の面積、および良吊
刀定に必芁なデヌタを、映像蚘憶郚IPMの第
図ずの察応においお、各行ごずに䜜成出力する
ものである。第図は第図の任意の行
の蚘憶内容を抜き取぀お瀺したものであり、凊理
デヌタ䜜成回路LCはこの図においお、接合郚
に察応するビツト数よりなる接合郚デヌタlxず、
最先桁から接合郚の終了たでのビツト数より成
る接合郚端デヌタAxを怜出し、これを埌述する
挔算凊理郚CPUに出力するものである。この図
からも明らかなように、この図はビツト数、すな
わち画玠数を面積ず察応させおいる。凊理デヌタ
䜜成回路LCは接合郚デヌタlxを怜出する接合郚
怜出回路LXず、接合郚端デヌタAxを怜出する接
合郚端怜出回路AXを䞻芁郚ずし、これら回路
LXAXにタむミング信号を䞎える立䞋り怜出
回路を備える。
Based on the output from the image storage unit IPM, the processing data creation circuit LC inputs the area of the joint 5 and the data necessary for quality determination to the first output of the image storage unit IPM.
In correspondence with Figure 7, it is created and output for each line. FIG. 19a shows the memory contents of an arbitrary row b in FIG.
Junction data lx consisting of the number of bits corresponding to
The junction end data Ax consisting of the number of bits from the first digit to the end of the junction 5 is detected and outputted to the arithmetic processing unit CPU, which will be described later. As is clear from this figure, in this figure, the number of bits, that is, the number of pixels, corresponds to the area. The main parts of the processing data creation circuit LC are a junction detection circuit LX that detects junction data lx and a junction end detection circuit AX that detects junction end data Ax.
A falling detection circuit 40 is provided to provide timing signals to LX and AX.

映像蚘憶郚IPMには第図に瀺すように、
映像においお癜い郚分には“”が、そしお黒い
郚分においおは“”が蚘憶される。凊理デヌタ
䜜成回路LCは回路構成の郜合䞊、映像蚘憶郚
IPMから読み出された信号を吊定しお取り蟌む
ようにするため、吊定回路NOTを備えおいる。
このようにすれば、映像においお癜い郚分は
“”、黒い郚分は“”ずしお取り蟌むこずがで
きる。第図は第図に察する吊定回路
NOTの出力を瀺す。
As shown in Figure 17, the video storage unit IPM has the following information:
"1" is stored in white parts of the video, and "0" is stored in black parts. Due to the circuit configuration, the processing data creation circuit LC is a video storage section.
In order to negate the signal read from the IPM before taking it in, it is equipped with a negate circuit NOT.
In this way, white parts of the video can be taken in as "0" and black parts as "1". Figure 19b is a negative circuit for Figure 19a.
Shows the output of NOT.

立䞋り怜出回路は映像が黒から癜、すなわ
ち第図においお“”から“”ぞの倉化
時点を怜出しお、信号を出力するものである。た
だし、圓該回路ぞは、埌述する吊定回路
NOTを介しお、映像蚘憶郚IPMからの信号が入
力されおいるため、圓該回路は“”から
“”ぞの立䞋りを怜出する。第図参照
第図は圓該立䞋り怜出回路の具䜓䟋を瀺
したものであり、その䞻芁郚は圢フリツプフロ
ツプ回路ずJKフリツプフロツプ回路ず
から成り、読出クロツクパルスRCLず吊定回路
NOTからの出力を入力するこずにより、この䞡
信号から立䞋り時点を怜出し、立䞋り信号
を䜜成出力する。吊定回路NOTの出力は圢フ
リツプフロツプ回路の入力端子に入力する
ようにする。すなわち、この端子には読出回路
の䜜甚により映像蚘憶郚IPMの各行の内容が
吊定された埌、順次入力される。すなわち、第
図を参照すれば、その巊偎からこれが吊定さ
れた信号、芁するに“”ならば“”が、“”
ならば“”が順次入力される。読出クロツクパ
ルスRCLは遅延回路、ワンシペツトパルス
発生回路を介しお、圢フリツプフロツプ回
路のクロツク端子CKに印加するようにする。
圢フリツプフロツプ回路はクロツク端子
CKぞのクロツク信号入力時、この時点に入力端
子に入力されおいる信号を䞀時蚘憶し、これを
出力端子から出力する。ずころで、映像蚘憶郚
IPMはアドレス指定し、圓蚘アドレスの蚘憶内
容が読み出されるたでに倚少の遅れ時間を芁す
る。したが぀お、読出クロツクパルスRCLをク
ロツク端子CKに盎接入力しおも圓該読出クロツ
クパルスRCLによ぀お読み出されるべきアドレ
スの蚘憶内容は圢フリツプフロツプ回路に
は蚘憶できない。そこで、遅延回路によ぀お
読出クロツクパルスRCLをこの分だけ遅らせ、
遅延埌の出力の立䞊りをワンシペツトパルス発生
回路で怜知し、クロツク信号を䜜成する。
圢フリツプフロツプ回路の出力は、入力端子
が電源、すなわち“”に、入力端子が接
地、すなわち“”に蚭定されたJKフリツプフ
ロツプ回路のクロツク端子CKに入力するよ
うにする。そしお、この回路の出力はワンシ
ペツトパルス発生回路を介し、立䞋り怜出回
路の出力ずしお出力する。同時に、ワンシペ
ツトパルス発生回路の出力は吊定回路を
介しおJKフリツプフロツプ回路のクリア端
子CLRに入力し、これをクリアする。第図
は、第図の各郚の動䜜状態を瀺したタむムチ
ダヌトであり、RCLは読出クロツクパルスRCL、
NOTSは吊定回路NOTの出力、はワンシ
ペツトパルス発生回路の出力、は圢
フリツプフロツプ回路の出力、はJK
フリツプフロツプ回路の出力を瀺す。
はワンシペツトパルス発生回路の出力であ
り、これはすなわち立䞋り怜出回路の出力、
すなわち立䞋り信号ずなる。この図から明らかな
ように、読出クロツクパルスRCLが䞀定呚期で
出力され、これに぀れお映像蚘憶郚IPMから順
次蚘憶内容が読み出され、この読み出された内容
が“”から“”に倉化した時点で、立䞋り信
号が出力される。
The fall detection circuit 40 detects the time when the image changes from black to white, that is, from "0" to "1" in FIG. 19a, and outputs a signal. However, the circuit 40 is connected to a negative circuit, which will be described later.
Since the signal from the video storage unit IPM is input via NOT, the circuit 40 detects a fall from "1" to "0". (See Figure 19b)
FIG. 20 shows a specific example of the fall detection circuit 40, the main parts of which consist of a D-type flip-flop circuit 41 and a JK flip-flop circuit 42, and a read clock pulse RCL and an inverting circuit.
By inputting the output from NOT, the falling point is detected from both signals, and the falling signal 40S is detected.
Create and output. The output of the NOT circuit NOT is input to the input terminal D of the D-type flip-flop circuit 41. That is, the contents of each row of the video storage unit IPM are negated by the action of the readout circuit R and then sequentially inputted to this terminal D. That is, the first
Referring to Figure 9a, from the left side, the signal that is negated, in short, if it is “0”, it is “1”, and “1”
If so, "0" is input sequentially. The read clock pulse RCL is applied to the clock terminal CK of the D-type flip-flop circuit 41 via a delay circuit 43 and a one-shot pulse generation circuit 44.
The D-type flip-flop circuit 41 is a clock terminal.
When a clock signal is input to CK, the signal currently being input to input terminal D is temporarily stored and output from output terminal Q. By the way, the video storage unit
IPM specifies an address and requires some delay time until the stored contents of the specified address are read. Therefore, even if the read clock pulse RCL is directly input to the clock terminal CK, the contents of the address to be read by the read clock pulse RCL cannot be stored in the D-type flip-flop circuit 41. Therefore, the read clock pulse RCL is delayed by this amount by the delay circuit 43.
The one-shot pulse generation circuit 14 detects the rise of the output after the delay and generates a clock signal. D
The output of the flip-flop circuit 41 is inputted to the clock terminal CK of a JK flip-flop circuit 42 whose input terminal J is set to the power supply V, ie, "1", and whose input terminal K is set to ground, ie, "0". The output of this circuit 42 is outputted as the output of the fall detection circuit 40 via a one-shot pulse generation circuit 45. At the same time, the output of the one-shot pulse generating circuit 45 is input to the clear terminal CLR of the JK flip-flop circuit 42 via the NOT circuit 46, and is cleared. FIG. 21 is a time chart showing the operating status of each part in FIG. 20, where RCL is the read clock pulse RCL,
NOTS is the output of the NOT circuit NOT, 44S is the output of the one-shot pulse generation circuit 44, 41S is the output of the D-type flip-flop circuit 41, 42S is JK
The output of flip-flop circuit 42 is shown. 40S
is the output of the one-shot pulse generation circuit 45, which means the output of the falling edge detection circuit 40,
In other words, it becomes a falling signal. As is clear from this figure, the read clock pulse RCL is output at a constant cycle, and as it does so, the stored contents are read out sequentially from the video storage unit IPM, and the read contents change from "1" to "0". At this point, a falling signal 40S is output.

接合郚怜出回路LXはカりンタ、デ
ヌタセレクタ、コンパレヌタ、アンドゲ
ヌト、およびフリツプフロツプ
回路を䞻な構成ずする。カりンタ
はカりント入力端子CKぞ入力されるパ
ルス信号の数を蚈数し、その蚈数倀を出力デヌタ
ずしお出力する。デヌタセレクタはカりンタ
からのそれぞれのデヌタを入力し、セ
レクト端子SLTぞの信号に応じ、その䞀方を遞
択出力する。すなわち、この堎合、セレクト端子
SLTぞ“”の信号が入力されおいれば、入力
端子偎に入力されおいるデヌタ、すなわちカり
ンタの蚈数倀を遞択出力し、逆にセレクト端
子SLTぞ“”の信号が入力されおいれば、入
力端子偎に入力されおいるデヌタ、すなわちカ
りンタの蚈数倀を遞択出力する。コンパレヌ
タは、入力端子偎に入力したデヌタ、すな
わちカりンタの蚈数倀ず、入力端子偎に入
力されたデヌタ、すなわちカりンタの蚈数倀
ずを比范し、これが同䞀であれば出力端子
から、入力端子偎の倀が倧きければ出力端子
から、たた入力端子偎の倀が倧きければ出
力端子からそれぞれ“”の信号を出力す
る。コンパレヌタの各出力端子、
、の出力は察応するアンドゲヌト
に入力し、各アンドゲヌト
のそれぞれには、立䞋り怜出回路か
らの立䞋り信号をそれぞれ入力する。した
が぀お、アンドゲヌトは立䞋り
信号が入力された時点においお、コンパレ
ヌタから“”の信号が入力されおいるもの
のみが“”の信号を出力する。フリツプフロツ
プ回路のセツト端子にはアンドゲヌト
の出力を、たたリセツト端子にはアンドゲヌト
の出力を入力するようにする。そしお、フリ
ツプフロツプ回路の出力端子からの出力は
コンパレヌタのセレクト端子SLTに入力す
るようにする。このようにすれば、立䞋り怜出信
号が出力された時点においお、カりンタ
の蚈数倀がカりンタのそれよりも倧きけれ
ばフリツプフロツプ回路がセツトされ、デヌ
タセレクタのセレクト端子SLTに“”が
印加されるこずから、デヌタセレクタは入力
端子に入力されたカりンタの蚈数倀を出力
する。逆に、立䞋り怜出信号が出力された
時点においお、カりンタの蚈数倀がカりンタ
にそれよりも倧きければフリツプフロツプ回
路がリセツトされ、デヌタセレクタのセ
レクト端子SLTに“”が印加されるこずから、
デヌタセレクタは入力端子に入力されたカ
りンタの蚈数倀を出力する。なお、カりンタ
の蚈数倀が同䞀である堎合、フリツプ
フロツプ回路の出力に倉化はなく、デヌタセ
レクタは前回遞択された偎のカりンタ
のいずれか䞀方の蚈数倀を出力する。
The junction detection circuit LX mainly includes counters 51, 52, a data selector 53, a comparator 54, AND gates 55, 56, 57, and flip-flop circuits 58, 59. counter 5
1 and 52 count the number of pulse signals input to the count input terminal CK, and output the counted value as output data. The data selector 53 inputs respective data from the counters 51 and 52, and selectively outputs one of them in response to a signal to the select terminal SLT. That is, in this case, the select terminal
If a “1” signal is input to the SLT, the data input to the input terminal A side, that is, the count value of the counter 51, is selected and output, and conversely, a “0” signal is input to the select terminal SLT. If so, the data input to the input terminal B side, that is, the count value of the counter 52 is selectively output. The comparator 54 compares the data input to the input terminal A side, that is, the count value of the counter 51, and the data input to the input terminal B side, that is, the count value of the counter 52, and if they are the same, the output terminal A =B
Therefore, if the value on the input terminal A side is large, the output terminal A
>B, and if the value on the input terminal B side is large, a signal of "1" is output from the output terminal A<B. Each output terminal A=B, A> of the comparator 54
B, the output of A<B is the corresponding AND gate 55,
56, 57, and each AND gate 55, 5
The falling signal 40S from the falling detection circuit 40 is input to each of 6 and 57, respectively. Therefore, at the time when the falling signal 40S is input to the AND gates 55, 56, and 57, only those to which the "1" signal is input from the comparator 54 output a "1" signal. An AND gate 56 is connected to the set terminal S of the flip-flop circuit 58.
The output of the AND gate 57 is input to the reset terminal R. The output from the output terminal Q of the flip-flop circuit 58 is input to the select terminal SLT of the comparator 53. By doing this, at the time when the falling detection signal 40S is output, the counter 5
If the count value of 1 is larger than that of the counter 52, the flip-flop circuit 58 is set and "1" is applied to the select terminal SLT of the data selector 53. Output the count value of 51. Conversely, when the falling detection signal 40S is output, if the count value of the counter 52 is larger than that of the counter 51, the flip-flop circuit 58 is reset and "0" is applied to the select terminal SLT of the data selector 53. Because of that,
The data selector 53 outputs the count value of the counter 52 input to the input terminal B. Note that if the count values of the counters 51 and 52 are the same, there is no change in the output of the flip-flop circuit 58, and the data selector 53 selects the previously selected counter 51,
The count value of one of 52 is output.

フリツプフロツプ回路はアンドゲヌト
の出力をオアゲヌトを介しセツト端
子に入力し、アンドゲヌトの出力をリセツ
ト端子に入力する。そしお、出力端子の出力
はアンドゲヌトANDを介しおワンシペツトパ
ルス発生回路に入力され、曎にこの回路
によ぀お䜜成されたパルス信号はオアゲヌト
を介しおカりンタのクリア端子CLRに印加
するようにする。フリツプフロツプ回路の吊
定出力端子の出力はアンドゲヌトANDを介
しおワンシペツトパルス発生回路に入力さ
れ、曎にこの回路によ぀お䜜成されたパルス
信号はオアゲヌトを介しおカりンタのク
リア端子CLRに印加するようにする。そしお、
アンドゲヌトANDANDには立䞋り信号
を入力するようにする。吊定回路NOTの出
力はアンドゲヌトを介しお、それぞれ
カりンタのカりント入力端子CKに入
力するようにする。そしお、フリツプフロツプ回
路の出力端子からの出力は遅延回路を
介しおアンドゲヌトぞ、出力端子の出力は
遅延回路を介しおアンドゲヌトぞ入力す
るようにする。このようにすれば、アンドゲヌト
のいずれか䞀方、あるいはその䞡方が
信号を出力すれば、すなわちカりンタの蚈数
倀がカりンタの蚈数倀よりも倧きいか、又は
同䞀ならば、フリツパフロツプ回路がセツト
され、出力端子の出力によ぀おカりンタが
クリアされる。逆に、カりンタの蚈数倀がカ
りンタの蚈数倀より倧きければ、アンドゲヌ
トの出力によりフリツプフロツプ回路が
リセツトされ、出力端子の出力により、カりン
タがクリアされる。すなわち、カりンタ
のいずれか䞀方には珟圚たでの最倧倀が
栌玍され、他方のこれよりも小さい蚈数倀はクリ
アされる。曎に、フリツプフロツプ回路がセ
ツトされるこずにより、遅延回路によ
る時間の経過埌、アンドゲヌトが開かれ、ア
ンドゲヌトが閉じる。逆に、フリツプフロツ
プ回路がリセツトされるず、遅延回路
による時間の経過埌、アンドゲヌトが閉
じられ、アンドゲヌトが開く。なお、遅延回
路はカりンタのクリアの
間、圓該クリアしおいるカりンタに信号が入力さ
れないようにするために蚭けおある。芁するに、
このような構成により、ある時点においおは、ア
ンドゲヌトのうち、そのいずれか䞀方
が開いおいお、これず察応したカりンタ
の䞀方が吊定回路NOTからの信号を蚈数する。
そしお、立䞋り信号の発生時点においおの
比范結果で、小さな蚈数倀を有する偎のカりンタ
の内容がクリアされ、ほが同時に圓該
カりンタず察応する偎のアンドゲヌト
が開かれ、次にはクリアされた偎のカ
りンタが蚈数を開始する。
The flip-flop circuit 59 is an AND gate 5
The outputs of the AND gates 5 and 56 are input to the set terminal S via the OR gate 60, and the output of the AND gate 57 is input to the reset terminal R. Then, the output of the output terminal Q is inputted to the one shot pulse generation circuit 61 via the AND gate AND2, and further this circuit 61
The pulse signal created by the OR gate 62
The signal is applied to the clear terminal CLR of the counter 52 via the counter 52. The output of the negative output terminal of the flip-flop circuit 59 is input to the one-shot pulse generation circuit 63 via the AND gate AND1, and the pulse signal generated by this circuit 63 is input to the clear terminal CLR of the counter 51 via the OR gate 64. so that it is applied to and,
Falling signal 4 for AND gates AND1 and AND2
Make sure to input 0S. The output of the NOT circuit NOT is input to the count input terminals CK of the counters 51 and 52 via AND gates 65 and 66, respectively. The output from the output terminal Q of the flip-flop circuit 59 is input to the AND gate 66 via the delay circuit 67, and the output from the output terminal is input to the AND gate 65 via the delay circuit 68. In this way, if one or both of the AND gates 55 and 56 outputs a signal, that is, if the count value of the counter 51 is greater than or equal to the count value of the counter 52, the flipflop circuit 59 is set, and the counter 52 is cleared by the output from the output terminal Q. Conversely, if the count value of the counter 52 is greater than the count value of the counter 51, the flip-flop circuit 59 is reset by the output of the AND gate 57, and the counter 51 is cleared by the output of the output terminal. That is, counter 5
The maximum value up to now is stored in either one of 1 and 52, and the other count value smaller than this is cleared. Further, by setting the flip-flop circuit 59, the AND gate 66 is opened and the AND gate 65 is closed after the time set by the delay circuits 67 and 68 has elapsed. Conversely, when the flip-flop circuit 59 is reset, the delay circuits 67,
After the time period 68 has elapsed, AND gate 66 is closed and AND gate 65 is opened. Note that the delay circuits 67 and 68 are provided to prevent signals from being input to the counters that are being cleared while the counters 51 and 52 are being cleared. in short,
With this configuration, at a certain point in time, one of the AND gates 65 and 66 is open, and the corresponding counters 51 and 5 are open.
One of the two counts the signal from the NOT circuit NOT.
Then, based on the comparison result at the time when the falling signal 40S is generated, the contents of the counters 51 and 52 having the smaller count value are cleared, and almost simultaneously, the AND gates 65 and 66 on the side corresponding to the counters 51 and 52 are cleared. The counters 51 and 52 on the opened and cleared side start counting.

接合郚端怜出回路AXはカりンタ、レゞス
タおよびレゞスタ制埡回路ずから成る。
カりンタはそのカりント入力端子CKぞの入
力パルス数をカりントし、その倀をレゞスタ
に入力する。レゞスタはそのロヌド端子ぞ
の信号の立䞋りでカりンタからの入力を䞀時
蚘憶し、その蚘憶内容を出力する。レゞスタ
ぞのロヌド端子ぞの信号の立䞋りは、コンパレ
ヌタの比范結果が、出力端子から出力
端子ぞ、又は出力端子から出力端子
ぞ移぀た時点で発生するようにする。䜆
し、初期状態での出力端子から出力端子
ぞ移぀た堎合も同様ずする。これらは、レゞ
スタ制埡回路によ぀お行なわれる。第図
は圓該レゞスタ制埡回路の具䜓䟋を瀺したも
のであり、圓該回路はコンパレヌタの出
力端子に察応するアンドゲヌトの出力
ず、出力端子に察応するアンドゲヌト
の出力ずを入力するこずによ぀お圓該機胜を実珟
する。このため、SRフリツプフロツプ出力
、圢フリツプフロツプ回路、ア
ンドゲヌト、およびワンシペツトパルス発生
回路ずを備えおいる。アンドゲヌトから
の出力はフリツプフロツプ回路のセツト端子
、およびフリツプフロツプ回路のリセツト
端子に入力するようにする。アンドゲヌト
からの出力はフリツプフロツプ回路のリセツ
ト端子、およびフリツプフロツプ回路のセ
ツト端子に入力するようにする。フリツプフロ
ツプ回路の入力端子は電源に接
続、すなわち圓該端端子には垞に“”の信号
を入力するようにする。そしお、フリツプフロツ
プ回路のクロツク端子CKにはフリツプフロ
ツプ回路の出力を入力し、フリツプフロツプ
回路のクロツク端子CKにはフリツプフロツ
プ回路の出力を入力するようにする。フリツ
プフロツプ回路の出力はオアゲヌト
を介し、曎にこのオアゲヌトの出力はワン
シペツトパルス発生回路を介しお、レゞスタ
制埡信号RCSずしおレゞスタのロヌド端子
に入力するようにする。なお、ワンシペツトパ
ルス発生回路の出力は同時にフリツプフロツ
プ回路のクリア端子CLRに印加する。
このようにすれば、アンドゲヌトのい
ずれか䞀方が信号を出力するず、フリツプフロツ
プ回路のうち圓該信号がセツト端子
に入力されおいる偎がセツトされ、他の䞀方はリ
セツトされる。これにより、セツトされた偎のフ
リツプフロツプ回路の䞀方が“”に
セツトされ、これに埓぀おオアゲヌトの出力
でワンシペツトパルス発生回路がレゞスタ制
埡信号RCSを䜜成する。曎に、この信号RCSに
よ぀おフリツプフロツプ回路は共にク
リアされ、初期状態に戻る。
The junction end detection circuit AX includes a counter 71, a register 72, and a register control circuit 70.
The counter 71 counts the number of input pulses to its count input terminal CK, and stores the value in the register 72.
Enter. The register 72 temporarily stores the input from the counter 71 at the fall of the signal to the load terminal L, and outputs the stored contents. register 72
The fall of the signal to the load terminal L occurs when the comparison result of the comparator 54 moves from the output terminal A>B to the output terminal A<B, or from the output terminal A<B to the output terminal A>B. Let it happen. However, in the initial state, output terminal A = B to output terminal A.
The same applies when moving to >B. These are performed by the register control circuit 70. FIG. 22 shows a specific example of the register control circuit 70. The circuit 70 outputs the output of the AND gate 56 corresponding to the output terminal A>B of the comparator 54 and the AND gate corresponding to the output terminal A<B. gate 57
The function is realized by inputting the output of Therefore, the SR flip-flop output 73,
74, D-type flip-flop circuits 75 and 76, an AND gate 77, and a one-shot pulse generation circuit 78. The output from the AND gate 56 is input to the set terminal S of the flip-flop circuit 73 and the reset terminal R of the flip-flop circuit 74. and gate 57
The output from the flip-flop circuit 73 is input to the reset terminal R of the flip-flop circuit 73 and the set terminal S of the flip-flop circuit 74. Input terminals D of the flip-flop circuits 75 and 76 are connected to the power supply V, that is, a signal of "1" is always input to the terminal D. The output of the flip-flop circuit 73 is input to the clock terminal CK of the flip-flop circuit 75, and the output of the flip-flop circuit 74 is input to the clock terminal CK of the flip-flop circuit 76. The outputs of the flip-flop circuits 75 and 76 are connected to the OR gate 7.
7, and the output of the OR gate 77 is inputted to the load terminal L of the register 72 as a register control signal RCS via a one-shot pulse generation circuit 78. Note that the output of the one-shot pulse generating circuit 78 is simultaneously applied to the clear terminals CLR of the flip-flop circuits 75 and 76.
With this arrangement, when either one of the AND gates 56, 57 outputs a signal, the signal is sent to the set terminal S of the flip-flop circuits 73, 74.
The side that is input to is set, and the other side is reset. As a result, one of the flip-flop circuits 75 and 76 on the set side is set to "1", and accordingly, the one-shot pulse generating circuit 75 generates the register control signal RCS based on the output of the OR gate 77. Furthermore, both flip-flop circuits 75 and 76 are cleared by this signal RCS and return to their initial states.

挔算凊理郚CPUは読出回路を経由し、曎に
凊理デヌタ䜜成回路LCを経由しお、映像蚘憶郚
IPMから刀定に必芁な各積デヌタを取り蟌み、
接合郚の良吊刀定を行なうものであり、マむク
ロ・コンピナヌタを䜿甚した堎合に぀いお瀺しお
ある。マむクロ・コンピナヌタはプログラム蚘憶
装眮に予め蚘憶されたプログラムに埓぀お、凊
理、挔算等を実行する。第図はそのプログラ
ムの抂略を瀺したフロヌチダヌトである。この図
においお、挔算凊理郚CPUはたずステツプに
おいお、各郚の初期蚭定を行なう。䟋えば、凊理
デヌタ䜜成回路LCから取り蟌むデヌタを䞀時栌
玍するデヌタ蚘憶郚のクリア、あるいは挔算等の
途䞭結果を蚘憶するデヌタ蚘憶郚のクリア等であ
る。次のステツプにおいお、映像蚘憶郚IPM
の各行における第図で瀺した接合郚デヌタ
lx、接合郚端デヌタAxを読出回路および凊理
デヌタ䜜成回路LCを経由しお読み取り、それを
デヌタ蚘憶郚の所定領域に栌玍する。次のステツ
プにおいお、接合郚の良吊刀定に必芁な各皮
のデヌタを、デヌタ蚘憶郚に蚘憶した各行の接合
郚デヌタlx、接合郚端デヌタAxずから算出する。
以埌の説明においお、各デヌタは次のように定矩
する。すなわち、第図に瀺すように、第
図ずの察応においお、接合郚デヌタlxは任意の行
における接合郚の長さ、すなわちビツト数を瀺
し、接合端デヌタAxは圓該行における巊端から
接合郚の右端たでの長さ、すなわちビツト数を
瀺す。Aminiは接合郚端デヌタAxのうち最小の
数倀、lminiは接合郚デヌタlxのうち最小の数倀
を瀺す。なお、lminiは結果的にリヌド線の埄
ず䞀臎する。lcの行は巊偎からリヌド線の䞭心
たでの長さ、すなわちビツト数を瀺す。ltは接
合郚の長さが1.2lmini以䞊ずなる郚分の長さ、
すなわちビツト数を瀺す。曎に、ltの範囲内にお
いお、接合郚のリヌド線の䞭心より巊偎の面
積、すなわちビツト数の合蚈をΣA、同様に右偎
をΣBずし、ltの範囲内における接合郚の面積、
すなわちビツト数をΣlxずする。なお、この図か
らも明らかなようにΣlxはΣAずΣBずの合蚈ずな
る。このこずより、前蚘したステツプにおいお
は、Amini、lmini、Σlxを算出する。そしお、匕
き続き、これらのデヌタを基に、ステツプにお
いお、接合郚の良吊を刀定する。
The arithmetic processing unit CPU is connected to the video storage unit via the reading circuit R and further via the processing data creation circuit LC.
Import each product data necessary for judgment from IPM,
This is for determining the quality of the joint 5, and the case where a microcomputer is used is shown. A microcomputer executes processing, calculations, etc. according to a program stored in advance in a program storage device. FIG. 23 is a flowchart showing an outline of the program. In this figure, the arithmetic processing section CPU first performs initial settings of each section in step A. For example, this may be to clear a data storage section that temporarily stores data taken in from the processing data creation circuit LC, or to clear a data storage section that stores intermediate results of calculations or the like. In the next step B, the video storage unit IPM
The joint data shown in Fig. 19 in each row of
lx and junction end data Ax are read via the reading circuit R and the processing data creation circuit LC, and stored in a predetermined area of the data storage section. In the next step C, various data necessary for determining the quality of the joint 5 are calculated from the joint data lx and joint end data Ax of each row stored in the data storage section.
In the following explanation, each data is defined as follows. That is, as shown in FIG.
In correspondence with the figure, the junction data lx indicates the length of the junction 5 in a given row, that is, the number of bits, and the junction data Ax indicates the length from the left end of the row to the right end of the junction 5, that is, the number of bits. Show the number. Amini indicates the smallest numerical value among the joint end data Ax, and lmini indicates the smallest numerical value among the joint data lx. Note that lmini eventually matches the diameter of the lead wire 4. The lc row indicates the length from the left side to the center C of the lead wire 4, that is, the number of bits. lt is the length of the part where the length of the joint part 5 is 1.2lmini or more,
In other words, it indicates the number of bits. Further, within the range of lt, the area to the left of the center of the lead wire 4 of the joint 5, that is, the total number of bits, is ΣA, and similarly, the right side is ΣB, and the area of the joint 5 within the range of lt,
That is, let the number of bits be Σlx. Note that, as is clear from this figure, Σlx is the sum of ΣA and ΣB. From this, in step C described above, Amini, lmini, and Σlx are calculated. Subsequently, based on these data, in step D, the quality of the joint portion 5 is determined.

挔算凊理郚CPUは以䞋に瀺す適圓なタむミン
グで初期クリア信号ICL、クロツク発生指什信号
CLIを出力し、曎に以䞋に瀺す適圓なタむミング
で䞀行分クロツク発生回路のオヌバフロヌ端
子OFLからの信号、および凊理デヌタ䜜成回路
LCからの接合郚デヌタlx、接合郚端デヌタAxを
入力するこずによ぀お、前蚘挔算、凊理等を実行
する。なお、挔算凊理郚CPUからの初期クリア
信号ICLは、凊理デヌタ䜜成回路LCのオアゲヌ
トおよびカりンタのクリア端子
CLRに入力する。
The arithmetic processing unit CPU outputs the initial clear signal ICL and clock generation command signal at the appropriate timing shown below.
CLI is output, and a signal from the overflow terminal OFL of the clock generation circuit 30 for one line and the processing data creation circuit are output at appropriate timings shown below.
By inputting the junction data lx and the junction end data Ax from the LC, the above calculations, processes, etc. are executed. Note that the initial clear signal ICL from the arithmetic processing unit CPU is the clear terminal of the OR gates 62 and 64 and the counter 71 of the processing data creation circuit LC.
Input to CLR.

第図、第図、第図は第図にお
けるステツプ、ステツプ、ステツプの詳现
フロヌチダヌトであり、以䞋この図を参照しお党
䜓の動䜜を説明する。第図においお、ステツ
プにおいおは、たず、ステツプB1においおカ
りンタCNTをにする。このカりンタCNTは゜
フトり゚ア䞊䜜成したものであり、デヌタ蚘憶郚
の予め定めたアドレスを察応させる。このカりン
タCNTは映像蚘憶郚IPMの各行を蚈数する行カ
りンタである。次にステツプB2においお、凊理
デヌタ䜜成回路LCを初期蚭定する。すなわち、
これは初期クリア信号ICLを、圓該回路LCのオ
アゲヌトおよびカりンタのクリア
端子CLRに印加する。これにより、カりンタ
はクリアされるこずになる。続い
おステツプB3で、読出回路にクロツク発生指
什信号CLIを印加し、次のステツプB4でカりンタ
CNTにを加える。ステツプB3においお、読出
回路にクロツク発生指什信号CLIを印加する
ず、圓該回路は映像蚘憶郚IPMの行目の蚘
憶内容を順次読み出す。そしお、ステツプB5に
おいおカりンタのオヌバフロヌ端子OFLの
出力読み取り、ステツプにおいお、オヌバフロ
ヌ端子OFLの出力が“”、すなわち読出回路
が映像蚘憶郚IPMの行分のクロツクパルスを
発生終了したか吊かを刀定する。ここで、オヌバ
フロヌ端子OFLからオヌバフロヌ信号が出力さ
れるたで、ステツプB5、B6が繰り返される。ス
テツプB6でオバヌフロヌ信号が確認されるず、
ステツプB7で凊理デヌタ䜜成回路LCからの接合
郚デヌタlx、接合郚端デヌタAxを読み取り、そ
れぞれをデヌタ蚘憶郚に蚘憶する。次にステツプ
B8においお、カりンタCNTが、すなわち映像
蚘憶郚IPMを最終行たで走査したか吊かを刀定
し、この条件が成立するたで以埌ステツプB2か
らステツプB8たで繰り返され、最終行たで走査
し、カりンタCNTの内容がになるず、ステツ
プに進む。
FIGS. 25, 26, and 27 are detailed flowcharts of steps B, C, and D in FIG. 23, and the overall operation will be explained below with reference to these figures. In FIG. 25, in step B, the counter CNT is first set to 0 in step B1. This counter CNT is created in software and is associated with a predetermined address in the data storage section. This counter CNT is a row counter that counts each row of the video storage unit IPM. Next, in step B2, the processing data creation circuit LC is initialized. That is,
This applies the initial clear signal ICL to the OR gates 62 and 64 of the circuit LC and the clear terminal CLR of the counter 71. As a result, counter 5
1, 52, and 71 will be cleared. Next, in step B3, the clock generation command signal CLI is applied to the readout circuit R, and in the next step B4, the clock generation command signal CLI is applied to the readout circuit R.
Add 1 to CNT. In step B3, when the clock generation command signal CLI is applied to the reading circuit R, the circuit R sequentially reads out the stored contents of the first row of the video storage unit IPM. Then, in step B5, the output of the overflow terminal OFL of the counter 35 is read, and in step 6, the output of the overflow terminal OFL is "1", that is, the readout circuit R
It is determined whether or not the clock pulses for one line of the video storage unit IPM have been generated. Here, steps B5 and B6 are repeated until an overflow signal is output from the overflow terminal OFL. If the overflow signal is confirmed in step B6,
In step B7, the joint part data lx and joint part end data Ax from the processing data creation circuit LC are read and stored in the data storage section. Next step
At B8, it is determined whether the counter CNT has scanned n, that is, the image storage unit IPM, to the last line, and the process is repeated from step B2 to step B8 until this condition is satisfied. When the content of is n, the process proceeds to step C.

ステツプB3においお、クロツク発生指什信号
CLIが読出回路に入力されるず、圓該読出回路
は映像蚘憶郚IPMの行分を巊から順次読み
出し、これを凊理デヌタ䜜成回路LCに入力する。
圓該回路LCのフリツプフロツプ回路は電源
の投入時、セツトあるいはリセツトのいずれかの
状態ずなる。いた、ここで、フリツプフロツプ回
路がセツト状態にあり、映像蚘憶郚IPMか
ら第図に瀺す䞀連のデヌタが巊から順次、
行分クロツク発生回路のクロツクに埓぀お読
み出されたずする。フリツプフロツプ回路が
セツト状態にあるため、アンドゲヌトが開
き、アンドゲヌトは閉じる。したが぀お、カ
りンタは吊定回路NOTを通぀お入力される
“”の数を順次蚈数する。第図参照同
時に、カりンタは行分クロツク発生回路
からの読出しクロツクパルスRCLを順次蚈数
する。ビツト目からビツト目で、デヌタは
“”から“”に立䞋る。そうするず、立䞋り
怜出回路がこれを怜出し、立䞋り信号
を出力する。この時点で、カりンタの蚈数倀
は「」、カりンタの蚈数倀は「」、カりン
タの蚈数倀は「」ずな぀おいる。したが぀
お、アンドゲヌトが信号を出力し、セレクタ
はカりンタの蚈数倀「」を出力する。
そしお、フリツプフロツプ回路がセツトされ
るこずにより、アンドゲヌトが閉じ、アンド
ゲヌトが閉じる。たた、レゞスタ制埡回路
がレゞスタ制埡信号RCSを出力し、レゞスタ
にはカりンタの蚈数倀「」がセツトさ
れる。曎に、映像蚘憶郚IPMからは連続しお信
号が出力されおいるため、以埌の“”はカりン
タが蚈数する。そしお、ビツト目でデヌタ
が“”から“”に立䞋がるず、立䞋り怜出回
路がこれを怜出し、立䞋り信号を出力
する。この時点で、カりンタの蚈数倀は
「」、カりンタの蚈数倀は「lx」、カりンタ
の蚈数倀は「Ax」ずなる。そしお、立䞋り
信号の発生により、カりンタの蚈数倀
「lx」がカりンタの蚈数倀「」よりも倧で
あるこずから、フリツプフロツプ回路がリセ
ツトされ、セレクタはカりンタの蚈数倀
「lx」を出力し、曎にフリツプフロツプ回路
がリセツトされるこずからアンドゲヌトが閉
じ、アンドゲヌトが開き、カりンタはク
リアされる。たた、レゞスタ制埡信号RCSが発
生し、レゞスタにはカりンタの蚈数倀
「Ax」がセツトされる。曎に匕き続き、今床はカ
りンタが吊定回路NOTからの“”の数を
蚈数する。その埌、ビツト目で再びデヌタが
“”から“”に立䞋るず、立䞋り怜出回路
がこれを怜出し、立䞋り信号を出力す
る。この時点で、カりンタの蚈数倀は「」、
カりンタの蚈数倀は「lx」、カりンタの
蚈数倀は「」ずなる。そしお、立䞋り信号
の発生により、カりンタの蚈数倀「lx」が
カりンタの蚈数倀「」よりも倧であるこず
からフリツプフロツプ回路は再びリセツトさ
れ、セレクタはカりンタの蚈数倀「lx」
を匕き続き出力する。曎に、フリツプフロツプ回
路も再びリセツトされるこずから、アンドゲ
ヌトが閉じ、アンドゲヌトが開き、カり
ンタはクリアされる。しかし、この状態にお
いお、レゞスタ制埡回路からはレゞスタ制埡
信号RCSは発生されず、レゞスタは「Ax」
を保持し続ける。以埌、ビツト目たで、読出回
路の䜜甚によ぀お行分のデヌタが読み出され
るが、セレクタから出力される「lx」、レゞ
スタから出力される「Ax」に倉化はない。
したが぀お、ステツプB7によ぀お、挔算凊理郚
CPUは正確に接合郚デヌタlx、接合郚端デヌタ
Axを読み取るこずができる。
At step B3, the clock generation command signal is
When CLI is input to the readout circuit R, the readout circuit R sequentially reads out one line of the video storage unit IPM from the left and inputs it to the processing data creation circuit LC.
The flip-flop circuit 59 of the circuit LC is in either the set or reset state when the power is turned on. Now, the flip-flop circuit 59 is in the set state, and the series of data shown in FIG.
It is assumed that the data is read out according to the clock of the row clock generation circuit 30. Since flip-flop circuit 59 is in the set state, AND gate 65 is open and AND gate 66 is closed. Therefore, the counter 51 sequentially counts the number of "1"s input through the NOT circuit NOT. (See FIG. 19b) At the same time, the counter 71 clocks the clock generator 3 for one row.
The read clock pulses RCL from 0 are sequentially counted. From the 5th bit to the 6th bit, the data falls from "1" to "0". Then, the falling detection circuit 40 detects this and the falling signal 40S
Output. At this point, the count value of the counter 51 is "2", the count value of the counter 52 is "0", and the count value of the counter 71 is "5". Therefore, the AND gate 56 outputs a signal, and the selector 53 outputs the count value of the counter 51 "2".
Then, by setting the flip-flop circuit 59, the AND gate 65 is closed and the AND gate 66 is closed. In addition, the register control circuit 7
3 outputs a register control signal RCS, and the count value "5" of the counter 71 is set in the register 72. Furthermore, since signals are continuously output from the video storage unit IPM, the counter 52 counts subsequent "1"s. Then, when the data falls from "1" to "0" at the Pth bit, the fall detection circuit 40 detects this and outputs a fall signal 40S. At this point, the count value of the counter 51 becomes "2," the count value of the counter 52 becomes "lx," and the count value of the counter 71 becomes "Ax." Then, due to the generation of the falling signal 40S, the count value "lx" of the counter 52 is larger than the count value "2" of the counter 51, so the flip-flop circuit 58 is reset, and the selector 53 resets the count value of the counter 52. "lx" is output, and the flip-flop circuit 59
is reset, AND gate 66 is closed, AND gate 65 is opened, and counter 51 is cleared. Further, a register control signal RCS is generated, and the count value "Ax" of the counter 71 is set in the register 72. Subsequently, the counter 51 counts the number of "1"s from the NOT circuit NOT. After that, when the data falls from "1" to "0" again at the g-th bit, the falling detection circuit 4
0 detects this and outputs a falling signal 40S. At this point, the count value of the counter 51 is "3",
The count value of the counter 52 is "lx", and the count value of the counter 71 is "g". Then, the falling signal 40
Due to the occurrence of S, the count value "lx" of the counter 52 is larger than the count value "3" of the counter 51, so the flip-flop circuit 58 is reset again, and the selector 53 selects the count value "lx" of the counter 52.
will continue to be output. Furthermore, since the flip-flop circuit 59 is reset again, the AND gate 66 is closed, the AND gate 65 is opened, and the counter 51 is cleared. However, in this state, the register control signal RCS is not generated from the register control circuit 73, and the register 72 is set to "Ax".
continue to hold. Thereafter, one row of data is read out by the action of the readout circuit R up to the m-th bit, but there is no change in "lx" output from the selector 53 and "Ax" output from the register 72.
Therefore, in step B7, the arithmetic processing section
CPU accurately displays junction data lx, junction end data
Ax can be read.

この説明から明らかなように、凊理デヌタ䜜成
回路LCは第図のように構成しおあるこずに
より、TVカメラにより撮映した映像に接合
郚以倖の半導䜓集積回路玠子のパタヌン、あ
るいは傷等が黒く映し出された堎合にも、これを
誀蚈数するこずなく、接合郚のみを有効に蚈数
する。これは、接合郚の幅が他のパタヌン、傷
等のそれに比べ倧きいものであるずいう思想に基
づく。
As is clear from this explanation, since the processing data creation circuit LC is configured as shown in FIG. To effectively count only the joint portion 5 without erroneously counting even when a scratch or the like appears black. This is based on the idea that the width of the joint 5 is larger than that of other patterns, scratches, etc.

以䞋、ステツプB2からステツプB8たでの繰り
返しにより、映像蚘憶郚IPMの行目たでの各
行に぀いおの接合郚デヌタlx、接合郚端デヌタ
Axが挔算凊理郚CPU内のデヌタ蚘憶郚に蚘憶さ
れる。
Thereafter, by repeating steps B2 to B8, the joint data lx and joint end data for each row up to the n-th row of the video storage unit IPM are
Ax is stored in the data storage unit in the arithmetic processing unit CPU.

以䞊の凊理が終了するず、デヌタ蚘憶郚内の蚘
憶内容に基づき、挔算凊理郚CPUは接合郚の
良吊刀定に必芁な皮々のデヌタの算出凊理を行な
う。すなわち、第図に瀺すように、ステツプ
C1においお、lminiずAminiの怜玢を行なう。こ
れは、デヌタ蚘憶郚から、各行のlxを順次読み出
しお、これら盞互を順次比范し、それらのうち最
も小さい倀をlminiずし、これず察応するAxを
Aminiずしおこの倀をデヌタ蚘憶郚の所定のアド
レスに栌玍する。続く、ステツプC2においおは
リヌド線の䞭心たでの長さlcを算出する。こ
れは第図からも明らかなように、Aminiから
lminiを枛算するこずによ぀お行なう。ステツ
プC3においおは、以䞋のステツプ実行のため、
接合郚面積Σlx、接合郚有効長さlt、面積ΣBã‚’æ Œ
玍するデヌタ蚘憶郚の各々のアドレスをクリアす
る。次のステツプC5においおは、各行の぀に
぀きそのlx、Axを読み出す。そしお、ステツプ
C6においお、圓該lxが1.2・lminiよりも倧きいか
吊かを刀定し、倧きければステツプC7においお
このlxの倀をΣlxずしお蚭定されたアドレスに加
算する。そしお、曎にAx−lcの倀をΣBずし
お蚭定されたアドレスに加算し、接合郚の長さ
の栌玍アドレスずしお蚭定されたltにを加算す
る。ステツプC6においお、lxが1.2・lmini以䞊で
ない堎合、この行の倀は無芖されステツプC8に
至る。ステツプC8では、各行に぀きステツプC5、
C6、C7が実行されたか吊かを刀定し、吊であれ
ば次の行に぀きステツプC5、C6、C7を実行す
る。すなわち、このステツプC5、C6、C7は各
行、すなわち第図からも明らかなように回
繰り返されるこずになる。ステツプC8においお、
各行の凊理が完了したが確認されるず、ステツプ
の凊理に進む。この時点においお、接合郚面積
が栌玍されるアドレスΣlxには接合郚lxに察応す
るビツト数、すなわち蚘憶郚の数倀が栌玍され
る。同様に、lt、ΣBにもこれに察応するビツト
数倀が栌玍される。
When the above processing is completed, the arithmetic processing unit CPU calculates various data necessary for determining the quality of the joint 5 based on the contents stored in the data storage unit. That is, as shown in FIG.
In C1 , search for lmini and Amini. This reads the lx of each row sequentially from the data storage unit, compares them sequentially, takes the smallest value among them as lmini, and sets the corresponding Ax.
This value is stored as Amini at a predetermined address in the data storage section. In the following step C2 , the length lc of the lead wire 4 to the center C is calculated. As is clear from FIG. 24, this is done by subtracting 1/2lmini from Amini. In step C3, in order to execute the following steps,
Each address of the data storage unit storing the junction area Σlx, the junction effective length lt, and the area ΣB is cleared. In the next step C5, lx and Ax are read out for each row. And the steps
At C6, it is determined whether the lx is larger than 1.2·lmini, and if it is, the value of lx is added to the address set as Σlx at step C7 . Then, the value of (Ax-lc) is further added to the address set as ΣB, and 1 is added to lt set as the storage address of the length of the joint portion 5. At step C6 , if lx is not greater than or equal to 1.2·lmini, the value in this line is ignored and the process proceeds to step C8. At step C8, for each row step C5,
It is determined whether steps C6 and C7 have been executed, and if not, steps C5, C6, and C7 are executed for the next line. That is, steps C5, C6, and C7 are repeated n times for each row, as is clear from FIG. 17. At step C8,
When it is confirmed that the processing for each row has been completed, the process proceeds to step D. At this point, the number of bits corresponding to the junction lx, that is, the numerical value in the storage section, is stored at the address Σlx where the junction area is stored. Similarly, the corresponding bit values are stored in lt and ΣB.

ステツプにおいおは、以䞊にお算出した各皮
のデヌタに基づき、刀定凊理を実行する。すなわ
ち、第図においお、ステツプD1で面積増加
率Waを算出する。これは(1)匏に基づいお行な
う。そしお、結果はデヌタ蚘憶郚のWaずしお予
め蚭定したアドレスに栌玍しおおく、ステツプ
D2においおは、前蚘ステツプで算出したΣlx、
ΣBずからΣAを算出し、これをデヌタ蚘憶郚に栌
玍する。以䞊の算出結果を基に、次には歪率Wc
を算出する。この算出に圓぀おは、たずステツプ
D3でΣAずΣBの倧きの比范を行ない、その倧小
に察し、ステツプD4かステツプD4′のいずれか䞀
方のステツプで歪率Wcを算出し、この倀をデヌ
タ蚘憶郚に栌玍する。以䞋は実際の刀定を行なう
ステツプであり、ステツプD5においおはデヌタ
蚘憶郚に栌玍した面積増加率Waを取り出し、圓
該面積増加率Waず、蚱容最小面積増加率、
および蚱容最倧面積増加率ずをそれぞれ比范
し、圓該面積増加率Waがこの範囲にあればステ
ツプD6に進み、この範囲倖であれば、ステツプ
D7′に進み䞍良品であるず刀定する。蚱容最小、
蚱容最倧面積増加率は䟋えば第図に
぀いお芋れば、30〔〕、55〔〕等がこれに圓る。
ステツプD6においおは、歪率Wcの刀定を行な
う。すなわち、デヌタ蚘憶郚に栌玍した歪率Wc
を取り出し、これず蚱容最倧歪率Wcずを比范し、
歪率がこの範囲内であれば、ステツプD7におい
お良品、たたこの範囲倖であればステツプD7′に
おいお䞍良品ず刀定する。蚱容最倧歪率wcずは、
䟋えば第図においお、20〔〕等がこれに圓
る。ステツプD7、D7′においお、挔算凊理装眮
CPUはその刀定結果に察応する信号を倖郚出力
し、䟋えばステツプD7′に凊理においおはその信
号で譊報等を発するか、あるいは圓該補品を䞍良
ずしおラむンから倖すか等の制埡䞊の凊理が成さ
れる等、有効に利甚される。たた、ステツプD7
による信号で、圓該補品が次段に送られ、曎に次
の補品の接合郚の怜査が実行される。以䞊のよう
にしお䞀連の怜査が終了する。
In step D, a determination process is executed based on the various data calculated above. That is, in FIG. 27, the area increase rate Wa is calculated in step D1 . This is done based on equation (1). Then, the result is stored in the preset address as Wa in the data storage section.
In D2, Σlx calculated in step C,
ΣA is calculated from ΣB and stored in the data storage unit. Based on the above calculation results, next we calculate the distortion factor Wc
Calculate. For this calculation, first
At D3, the magnitudes of ΣA and ΣB are compared, and based on the magnitude, a distortion factor Wc is calculated at either step D4 or step D4', and this value is stored in the data storage section. The following are steps for making an actual determination. In step D5, the area increase rate Wa stored in the data storage section is retrieved, and the area increase rate Wa, the allowable minimum area increase rate W1,
and the allowable maximum area increase rate W2, and if the area increase rate Wa is within this range, proceed to step D6; if it is outside this range, proceed to step D6.
Proceed to D7' and determine that the product is defective. minimum allowable,
For example, in FIG. 5, the allowable maximum area increase rates W1 and W2 are 30 [%], 55 [%], etc.
In step D6, the distortion factor Wc is determined. In other words, the distortion factor Wc stored in the data storage unit
and compare it with the maximum allowable distortion factor Wc,
If the distortion rate is within this range, it is determined to be a good product in step D7, and if it is outside this range, it is determined to be a defective product in step D7'. What is the maximum allowable distortion factor wc?
For example, in FIG. 10, this corresponds to 20 [%]. In steps D7 and D7', the arithmetic processing unit
The CPU outputs a signal corresponding to the judgment result to the outside, and for example, in step D7', control processing is performed such as issuing an alarm or removing the product from the line as defective. It will be used effectively. Also, step D7
In response to the signal, the product is sent to the next stage, and the joints of the next product are inspected. The series of tests is completed in the above manner.

以䞊、実斜䟋においおは、怜査速床を向䞊する
ため、挔算凊理郚CPUの呚蟺に読出回路、映
像蚘憶郚IPM、凊理デヌタ䜜成回路LCを配眮し
た堎合に぀いお説明したが、これは怜査装眮ずし
おの仕様が蚱されるものであれば、省略するこず
ができる。すなわち、TVカメラからの信号
を倀化回路BCにより倀化し、これを挔算凊
理郹CPUが盎接取り蟌み、これにより各凊理を
実行するようにしおもよい。曎に、これに映像蚘
憶郚IPMを远加し、映像蚘憶郚IPMず挔算凊理
装眮CPUずの察応で各凊理を実行するようにし
おもよい。
In the above embodiments, the case where the readout circuit R, the image storage unit IPM, and the processed data creation circuit LC are arranged around the arithmetic processing unit CPU in order to improve the inspection speed has been described. It can be omitted if the specifications allow it. That is, the signal from the TV camera 20 may be binarized by the binarization circuit BC, and this may be directly taken in by the arithmetic processing unit CPU, thereby executing each process. Furthermore, a video storage unit IPM may be added to this, and each process may be executed in correspondence with the video storage unit IPM and the arithmetic processing unit CPU.

たた、TVカメラの蚭眮䜍眮に぀いお特に
説明を行なわなか぀たが、これは接合郚が撮像
できる䜍眮であればよく、䟋えばボンデむング装
眮のアヌム等ぞの取り付けが考えられる。たた、
以䞊の実斜䟋においおは、接合郚が撮像面の端
ず平行、すなわち、リヌド線の䞭心線が撮像の
端ず平行になるよう接合郚の䜍眮に察しTVカ
メラを配眮する堎合に぀いお説明したが、本
発明はこれに限定されるものではない。すなわ
ち、接合郚が撮像面の端に察し傟いおも、これ
の怜出は可胜であり、埓぀おその補正も可胜であ
る。
Further, the installation position of the TV camera 20 has not been specifically explained, but it may be any position where the joint portion 5 can be imaged, and for example, it may be installed on an arm of a bonding device. Also,
In the above embodiment, the TV camera 20 is arranged relative to the joint 5 so that the joint 5 is parallel to the edge of the imaging surface, that is, the center line of the lead wire 4 is parallel to the end of the imaging surface. Although described, the present invention is not limited thereto. That is, even if the joint portion 5 is tilted with respect to the edge of the imaging plane, it is possible to detect this, and accordingly, it is also possible to correct it.

たた、以䞊の実斜䟋においおは、超音波法を採
甚したワむダ・ボンデむング装眮により接合され
た接合郚をその怜査の察象ずした堎合に぀いお説
明したが、本発明はこれに限らず、ボヌル法、ス
テツク法等によ぀お代衚される熱圧着法等を採甚
したワむダ・ボンデむング装眮によ぀お圢成され
る接合郚の怜査にもその応甚は可胜である。曎
に、本発明は䞊蚘の超音波接合、あるいは熱圧着
法に代衚される拡散接合等の圧接により圢成され
る接合郚に限るものでない。すなわち、融接、圧
接、ろう付等の溶接、あるいは他の接合手段によ
぀お圢成される接合郚の怜査に広く利甚可胜なも
のである。たた、実斜䟋においおは、リヌド線
ず半導䜓集積回路玠子あるいはポストずの接合
郚に぀き説明したが、本発明においお、郚材はこ
れらのものに限定されるものではなく、曎にはそ
れらの郚材の数にも限定はない。
Furthermore, in the above embodiments, a case has been described in which a bonded portion bonded by a wire bonding device employing an ultrasonic method is inspected, but the present invention is not limited to this, and the present invention is not limited to this. The present invention can also be applied to the inspection of joints formed by wire bonding equipment employing thermocompression bonding methods such as those typified by the method. Furthermore, the present invention is not limited to the bonded portion formed by pressure bonding such as the above-mentioned ultrasonic bonding or diffusion bonding typified by thermocompression bonding. That is, it can be widely used for inspecting joints formed by welding such as fusion welding, pressure welding, brazing, or other joining means. In addition, in the embodiment, the lead wire 4
Although the description has been made with respect to the joint between the semiconductor integrated circuit element and the post 3, the members in the present invention are not limited to these, and furthermore, there is no limit to the number of these members.

以䞊の説明から明らかなように、本発明は接合
郚の怜査に際し、その怜査察象を塑性倉圢した圓
該接合郚の面積ずしおいるため、圓該接合郚に䜕
ら倖力を䜜甚させるこずなく、非接觊で圓該接合
郚の怜査が可胜であり、しかも怜査粟床を向䞊す
るこずのできる接合郚の怜査方法および装眮を埗
るこずができる。
As is clear from the above description, when inspecting a joint, the present invention targets the area of the joint that has been plastically deformed. It is possible to obtain a method and apparatus for inspecting a bonded portion that can inspect the bonded portion and improve the inspection accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第図は埓来の怜査方法を説明するための説明
図、第図は接合郚の䞀䟋を瀺す平面図、第図
は同偎面図、第図は接合郚の他の䟋を瀺す平面
図、第図は本発明を説明するための図、第
図、第図、第図、第図は本発明を説明する
ための接合郚の平面図、第図は本発明を説明
するための図、第図は本発明装眮の䞀実斜䟋
を瀺すブロツク図、第図はテレビゞペン・カ
メラの原理を瀺す説明図、第図はボンデむン
グ装眮のグルヌブ圢状を瀺す図、第図は接合
郚の断面図、第図は撮像の䞀䟋を瀺す図、第
図は倀化回路の䞀䟋を瀺す回路図、第
図は倀化された撮像の䞀䟋を瀺す図、第図
は䞀行分クロツク発生回路の䞀䟋を瀺すブロツク
図、第図は映像蚘憶郚からの出力の䞀䟋を瀺
す図、第図は立䞋り怜出回路の䞀䟋を瀺すブ
ロツク図、第図は第図の各郚の動䜜波圢
を瀺すタむムチダヌト、第図はレゞスタ制埡
回路の䞀䟋を瀺すブロツク図、第図は挔算凊
理郚の制埡手順の䞀䟋を瀺すフロヌチダヌト、第
図は挔算凊理郚の動䜜を説明するための説明
図、第図、第図、第図は第図に
おける凊理を詳现に瀺すフロヌチダヌトである。 接合郚、IP撮像手段、テレビゞ
ペン・カメラ、PC凊理手段、BC倀化手
段、IPM映像蚘憶手段、読出手段、LC
凊理デヌタ䜜成回路、LX接合郚怜出手段、
AX接合郚端怜出回路、立䞋り怜出回
路、CPU挔算凊理郚。
Fig. 1 is an explanatory diagram for explaining the conventional inspection method, Fig. 2 is a plan view showing an example of a joint, Fig. 3 is a side view of the same, and Fig. 4 is a plan view showing another example of a joint. Figure 5 is a diagram for explaining the present invention, Figure 6 is a diagram for explaining the present invention.
7, 8, and 9 are plan views of joints for explaining the present invention, FIG. 10 is a diagram for explaining the present invention, and FIG. 11 is an embodiment of the apparatus of the present invention. A block diagram showing an example, FIG. 12 is an explanatory diagram showing the principle of a television camera, FIG. 13 is a diagram showing the groove shape of the bonding device, FIG. 14 is a cross-sectional view of the bonding part, and FIG. 15 is an illustration of the imaging FIG. 16 is a circuit diagram showing an example of a binarization circuit; FIG. 17 is a circuit diagram showing an example of a binarization circuit.
18 is a block diagram showing an example of a clock generation circuit for one line, FIG. 19 is a diagram showing an example of the output from the video storage section, and FIG. 20 is a diagram showing an example of the output from the video storage section. A block diagram showing an example of a fall detection circuit, FIG. 21 is a time chart showing operating waveforms of each part in FIG. 20, FIG. 22 is a block diagram showing an example of a register control circuit, and FIG. A flowchart showing an example of a control procedure, FIG. 24 is an explanatory diagram for explaining the operation of the arithmetic processing section, and FIGS. 25, 26, and 27 are flowcharts showing the process in FIG. 23 in detail. be. 5: Joint part, IP: Imaging means, 20: Television camera, PC: Processing means, BC: Binarization means, IPM: Image storage means, R: Reading means, LC:
Processing data creation circuit, LX: joint detection means,
AX: Junction end detection circuit, 40: Fall detection circuit, CPU: Arithmetic processing unit.

Claims (1)

【特蚱請求の範囲】  郚材を他の郚材に塑性倉圢接合したものにお
いお、 前蚘塑性倉圢した接合郚の面積を枬定し、 圓該枬定倀ず予め定めた基準面積ずを比范し、 圓該比范結果に基づいお前蚘接合郚の良吊を刀
定する 接合郚の怜査方法。  接合郚は、リヌド線を盞手郚材にワむダ・ボ
ンデむング装眮によ぀お接合した郚分に圢成され
たものであるこずを特城ずする特蚱請求の範囲第
項蚘茉の接合郚の怜査方法。  基準面積は蚱容最倧面積ず蚱容最小面積ずか
ら成り、接合郚の面積が前蚘各蚱容面積によ぀お
芏定される範囲内にあるか吊かによ぀お良吊刀定
を行なうこずを特城ずする特蚱請求の範囲第項
蚘茉の接合郚の怜査方法。  刀定は぀の基準面積に察する接合郚面積の
蚱容倉化率によ぀お行なうこずを特城ずする特蚱
請求の範囲第項蚘茉の接合郚の怜査方法。  基準面積は被接合郚材の接合前の面積ずした
こずを特城ずする特蚱請求の範囲第項蚘茉の接
合郚の怜査方法。  基準面積は接合郚の䞀郚ずしたこずを特城ず
する特蚱請求の範囲第項蚘茉の接合郚の怜査方
法。  基準面積は接合郚の䞭心から分したその䞀
偎方ずしたこずを特城ずする特蚱請求の範囲第
項蚘茉の接合郚の怜査方法。  撮像面に接合郚を映像し、この映像から実質
的に接合郚の面積を抜出し、圓該抜出面積によ぀
お接合郚の良吊を刀定するこずを特城ずする特蚱
請求の範囲第項蚘茉の接合郚の怜査方法。  映像を画玠ごずに倀化し、接合郚の面積は
画玠の数ず察応させたこずを特城ずする特蚱請求
の範囲第項蚘茉の接合郚の怜査方法。  郚材を他の郚材に塑性倉圢接合したものに
おいお、 前蚘塑性倉圢した接合郚を撮像し撮像面に結像
した映像を電気信号ずしお出力する撮像手段ず、 圓該撮像手段からの映像信号を入力し、圓該映
像信号から前蚘接合郚の面積を抜出し、圓該抜出
した面積ず予め定めた基準面積ずを察比しお前蚘
接合郚の良吊刀定を行なう凊理手段ず を具備しお成る接合郚の怜査装眮。  接合郚は、リヌド線を盞手郚材にワむダ・
ボンデむング装眮によ぀お接合した郚分に圢成さ
れたものであるこずを特城ずする特蚱請求の範囲
第項蚘茉の接合郚の怜査装眮。  撮像手段は固䜓撮像玠子を備えたものであ
るこずを特城ずする特蚱請求の範囲第項蚘茉
の接合郚の怜査装眮。  凊理手段は撮像手段からの映像信号を画玠
ごずに倀化しお出力する倀化手段を具備しお
成る特蚱請求の範囲第項蚘茉の接合郚の怜査
装眮。  凊理手段は、倀化手段の出力を画玠ごず
に䞀時蚘憶し、結果的に撮像手段の撮像面に結像
した映像を倀化しお蚘憶する映像蚘憶手段を備
えお成る特蚱請求の範囲第項蚘茉の接合郚の
怜査装眮。  凊理手段は、映像蚘憶手段の蚘憶内容に基
づいお接合郚の面積を抜出し、この面積に基づい
お前蚘接合郚の良吊刀定を行なう凊理郚を備えお
成る特蚱請求の範囲第項蚘茉の接合郚の怜査
装眮。  凊理郚は、映像蚘憶手段の蚘憶内容から刀
定に必芁なデヌタを䜜成する凊理デヌタ䜜成手段
ず、圓該凊理デヌタ䜜成手段からの出力デヌタに
基づいお良吊刀定を行なう挔算凊理手段ずを備え
お成る特蚱請求の範囲第項蚘茉の接合郚の怜
査装眮。  凊理郚は、挔算凊理手段からの指什信号に
よ぀お、映像蚘憶手段の蚘憶内容を順次読み出す
読出手段を備えお成る特蚱請求の範囲第項蚘
茉の接合郚の怜査装眮。  映像蚘憶手段に蚘憶された映像を耇数の画
玠で構成した耇数の行に区分けし、凊理デヌタ䜜
成手段は圓該行単䜍に凊理に必芁なデヌタを䜜成
するこずを特城ずする特蚱請求の範囲第項蚘
茉の接合郚の怜査装眮。  映像蚘憶手段に蚘憶された映像を耇数の画
玠で構成した耇数の行に区分けし、読出手段は圓
該行単䜍に蚘憶内容を読み出すこずを特城ずする
特蚱請求の範囲第項蚘茉の接合郚の怜査装
眮。  凊理デヌタ䜜成手段は行単䜍に接合郚デヌ
タを出力するこずを特城ずする特蚱請求の範囲第
項蚘茉の接合郚の怜査装眮。  凊理デヌタ䜜成手段は行単䜍に接合郚デヌ
タず、接合郚端デヌタを出力するこずを特城ずす
る特蚱請求の範囲第項蚘茉の接合郚の怜査装
眮。
[Scope of Claims] 1. In a product in which a member is plastically deformed and joined to another member, the area of the plastically deformed joint is measured, the measured value is compared with a predetermined reference area, and the comparison result is A joint inspection method for determining the quality of the joint based on the quality of the joint. 2. The method for inspecting a bonded portion according to claim 1, wherein the bonded portion is formed at a portion where the lead wire is bonded to a mating member using a wire bonding device. 3. A patent characterized in that the standard area consists of a maximum permissible area and a minimum permissible area, and the quality of the joint is judged based on whether or not the area of the joint is within the range defined by each of the permissible areas. A method for inspecting a joint according to claim 1. 4. The method for inspecting a joint according to claim 1, wherein the determination is made based on an allowable rate of change in the joint area with respect to one reference area. 5. The method for inspecting a joint according to claim 1, wherein the reference area is the area of the members to be joined before joining. 6. The method for inspecting a joint according to claim 1, wherein the reference area is a part of the joint. 7. Claim 1, characterized in that the reference area is one side divided into two from the center of the joint part.
Inspection method for joints described in Section 1. 8. Claim 1, characterized in that the joint is imaged on an imaging surface, the area of the joint is substantially extracted from this image, and the quality of the joint is determined based on the extracted area. Method for inspecting joints. 9. The joint inspection method according to claim 8, wherein the video is binarized for each pixel, and the area of the joint is made to correspond to the number of pixels. 10 In a product in which a member is plastically deformed and joined to another member, an imaging means for imaging the plastically deformed joint and outputting the image formed on an imaging surface as an electrical signal; and a video signal input from the imaging means; , processing means for extracting the area of the joint from the video signal and comparing the extracted area with a predetermined reference area to determine the quality of the joint. . 11 At the joint, wire the lead wire to the mating member.
11. The inspection device for a bonded portion according to claim 10, wherein the inspection device is formed on a portion bonded by a bonding device. 12. The joint inspection device according to claim 10, wherein the imaging means includes a solid-state imaging device. 13. The joint inspection device according to claim 10, wherein the processing means includes binarization means for binarizing the video signal from the imaging means for each pixel and outputting the binarized image signal. 14. Claims in which the processing means comprises an image storage means that temporarily stores the output of the binarization means pixel by pixel, and binarizes and stores the resulting image formed on the imaging surface of the imaging means. 14. The joint inspection device according to item 13. 15. The processing means according to claim 14, wherein the processing means includes a processing section that extracts the area of the joint based on the stored content of the video storage means and determines the quality of the joint based on this area. Joint inspection device. 16 The processing unit comprises a processing data creation means for creating data necessary for determination from the stored contents of the video storage means, and an arithmetic processing means for performing pass/fail determination based on the output data from the processing data creation means. A joint inspection device according to claim 15. 17. The joint inspection device according to claim 16, wherein the processing section comprises reading means for sequentially reading out the stored contents of the video storage means in response to a command signal from the arithmetic processing means. 18. Claim No. 1, characterized in that the video stored in the video storage means is divided into a plurality of lines each composed of a plurality of pixels, and the processing data creation means creates data necessary for processing for each row. 17. The joint inspection device according to item 16. 19. The joint unit according to claim 17, wherein the video stored in the video storage means is divided into a plurality of lines each composed of a plurality of pixels, and the reading means reads out the stored content in units of rows. inspection equipment. 20. The joint inspection device according to claim 18, wherein the processing data creation means outputs the joint data line by row. 21. The joint inspection device according to claim 18, wherein the processing data creation means outputs joint data and joint end data on a line-by-row basis.
JP57008913A 1982-01-25 1982-01-25 Inspection method for junction part and apparatus for the same Granted JPS58127337A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57008913A JPS58127337A (en) 1982-01-25 1982-01-25 Inspection method for junction part and apparatus for the same
DE8383100598T DE3377526D1 (en) 1982-01-25 1983-01-24 Method for testing a joint
US06/460,657 US4581706A (en) 1982-01-25 1983-01-24 Method and apparatus for testing a joint
EP83100598A EP0085380B1 (en) 1982-01-25 1983-01-24 Method for testing a joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008913A JPS58127337A (en) 1982-01-25 1982-01-25 Inspection method for junction part and apparatus for the same

Publications (2)

Publication Number Publication Date
JPS58127337A JPS58127337A (en) 1983-07-29
JPH0145744B2 true JPH0145744B2 (en) 1989-10-04

Family

ID=11705893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008913A Granted JPS58127337A (en) 1982-01-25 1982-01-25 Inspection method for junction part and apparatus for the same

Country Status (1)

Country Link
JP (1) JPS58127337A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154143A (en) * 1984-01-25 1985-08-13 Hitachi Denshi Ltd Inspecting method of glossy surface body

Also Published As

Publication number Publication date
JPS58127337A (en) 1983-07-29

Similar Documents

Publication Publication Date Title
JP4230880B2 (en) Defect inspection method
US6872949B2 (en) Connection inspecting apparatus, connection inspecting method, and recording medium for recording programs executing the method
JPH1123234A (en) Method and instrument for measuring height of solder ball of bga
EP0085380B1 (en) Method for testing a joint
JPH063123A (en) Method and equipment for visual inspection
JPH0145744B2 (en)
JPH0249016B2 (en)
JP3032616B2 (en) Appearance inspection method and device
JPS5966133A (en) Inspecting device for bonding part
JPH0982739A (en) Inspecting device of bonding wire
JP2843388B2 (en) Wire bonding condition inspection device
JPH02247510A (en) Appearance inspection device
JPH10247669A (en) Device and method for inspecting bonding wire
JPH0763530A (en) Bonding wire inspecting device
JPH01214743A (en) Optical apparatus for checking
JP2970860B2 (en) Soldering condition inspection equipment
JP3057830U (en) Detector for metal plating of solder points on integrated circuit boards
JP2843389B2 (en) Bonding ball inspection device
JPS5966134A (en) Inspecting method and device for bonding part
JPS58744A (en) Inspecting method of bottle or the like
JPH06174437A (en) Bonding wire inspection device
JPS5945108B2 (en) Two-dimensional characteristic inspection method
JPH0682226A (en) Inspection method of wire bonding
JPH07229842A (en) Method and equipment for inspecting dust particle in ic
JPH06180219A (en) Lead bending measuring device