JPH0145278Y2 - - Google Patents

Info

Publication number
JPH0145278Y2
JPH0145278Y2 JP1980097509U JP9750980U JPH0145278Y2 JP H0145278 Y2 JPH0145278 Y2 JP H0145278Y2 JP 1980097509 U JP1980097509 U JP 1980097509U JP 9750980 U JP9750980 U JP 9750980U JP H0145278 Y2 JPH0145278 Y2 JP H0145278Y2
Authority
JP
Japan
Prior art keywords
voltage
circuit
charging
detection
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980097509U
Other languages
Japanese (ja)
Other versions
JPS5721300U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980097509U priority Critical patent/JPH0145278Y2/ja
Publication of JPS5721300U publication Critical patent/JPS5721300U/ja
Application granted granted Critical
Publication of JPH0145278Y2 publication Critical patent/JPH0145278Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Description

【考案の詳細な説明】 本考案は非常用電源装置の励磁装置に係り、特
に大容量の負荷配電設備に給電する場合に際し
て、最も効果的な給電方法をとる事によつて非常
用電源装置の容量の軽減が可能となる励磁装置を
提供しようとするものである。
[Detailed description of the invention] The present invention relates to an excitation device for an emergency power supply, and is particularly suitable for supplying power to large-capacity load distribution equipment by adopting the most effective power supply method. The present invention aims to provide an excitation device that can reduce capacity.

一般に大規模ビルさらには大規模の製造事業所
等のような負荷設備に対して、エンジン発電機で
代表される非常用電源装置を計画する場合、負荷
設備の受電容量に比し非常用電源装置の容量を略
1/2〜1/5倍に制限して設備される事はよく知られ
ている所である。従つて非常用電源装置より負荷
としての配電設備側をみた場合、2倍〜5倍もの
大パワーの電力を供給しなければならないのが実
状である。この点を具体例を挙げて述べてみる
に、負荷設備の受電電源となる電力用変圧器を非
常用電源装置で充電する場合、よく知られている
ように大パワーの励磁突入電流が流れ、この励磁
突入電流は場合によつては全負荷電流の数倍にも
達する事があり、非常用電源装置はかかる大パワ
ーの励磁突入電流に充分に耐え得るような過電流
耐量を持たなければいけない。従来、かかる励磁
突入電流の如き事象はよく知られているものでは
あるが、非常用電源装置そのものが、商用電源の
停電等の如き不測の事態に対処するものであつ
て、しかも異常時に際して即座に良質の電力を負
荷設備に供給するという本来の目的に沿つて、従
来、非常用電源装置の容量そのものを変圧器の励
磁突入電流を充分に考慮した大容量のものを適用
しているのが実状である。このように不測の事態
に対処する非常用電源装置として、大容量のもの
を適用する事は非常に不経済であり、近時この点
の対策が早急に望まれている。
In general, when planning an emergency power supply system such as an engine generator for load equipment such as a large building or even a large manufacturing facility, the emergency power supply equipment will be larger than the receiving capacity of the load equipment. It is well known that equipment is installed with the capacity limited to approximately 1/2 to 1/5 times. Therefore, when looking at the power distribution equipment as a load, it is actually necessary to supply power that is twice to five times as large as that of the emergency power supply device. To illustrate this point with a specific example, when a power transformer that serves as a receiving power source for load equipment is charged by an emergency power supply device, as is well known, a large-power magnetizing inrush current flows. This magnetizing inrush current can reach several times the full load current in some cases, and the emergency power supply must have enough overcurrent capability to withstand such a high power magnetizing inrush current. . In the past, events such as magnetizing inrush current are well known, but the emergency power supply itself is designed to deal with unforeseen situations such as commercial power outages, and moreover, in the event of an abnormality, it is necessary to respond immediately. In line with the original purpose of supplying high-quality power to load equipment, conventionally, the capacity of the emergency power supply device itself has been large enough to take into account the excitation inrush current of the transformer. This is the actual situation. It is very uneconomical to use a large-capacity emergency power supply to deal with such unexpected situations, and there is an urgent need for countermeasures in this regard.

本考案はこの点に鑑みて考案されたものであつ
て、特に本願は配電設備への給電に際して、配電
設備そのものの運転に支障がない範囲内で、過渡
期のみ発電機出力電圧を定常時より降圧した状態
で大容量の配電設備を充電した事を一大特徴と
し、以下実施例に基づき詳述する。
The present invention has been devised in view of this point, and in particular, when supplying power to power distribution equipment, the generator output voltage is increased from the normal state only during the transition period within a range that does not interfere with the operation of the power distribution equipment itself. The main feature is that large-capacity power distribution equipment is charged in a reduced voltage state, and will be described in detail below based on examples.

第1図は本願の原理に係る具体的な構成例を示
し、同図で1は発電機の電機子で2はその界磁巻
線を示し、3は主機の界磁巻線2を励磁する交流
励磁機の電機子で、4はその界磁巻線を示す。5
は負荷側の短絡事故等に対して所定の励磁源とな
る永久磁石発電機でこの永久磁石発電機より出力
される電圧信号を本願では制御上の一制御入力量
として利用しているが、何もこのように永久磁石
発電機のみに限定される事はなく、例えば制御電
源等に利用されるバツテリー、さらには速度検出
用小発電機等を用いてもよく、これら永久磁石発
電機、バツテリーさらには速度検出用小発電機等
を本願では擬似制御電圧発生回路と呼称するもの
とする。6は交流励磁機の電機子出力を整流して
界磁巻線2を励磁する為の回転整流器で、この回
転整流器はよく知られているようにサイリスタを
純ブリツジ接続して形成したもの、さらにはダイ
オードのみをブリツジ接続したもの、サイリスタ
とダイオードとを混合ブリツジ接続したものとが
適用され、界磁巻線2と交流励磁機の電機子3と
を同一軸上に配した回転部に設けられる。なお第
1図では回転整流器としてダイオードをブリツジ
接続した場合を示している。7は交流励磁機の界
磁巻線4を励磁する励磁電流を調整する事によつ
て発電機出力電圧を制御する自動電圧調整装置
で、8は所要の電圧を設定する為の電圧設定器
で、9は発電機出力母線より端子電圧に関連する
電圧成分を取出す為の電圧検出用変成器で、10
は配電設備を投入する為の交流遮断器である。以
上の原理構成図より明らかなように、本願は自動
電圧調整装置の制御入力量として、電圧設定器8
より与えられる電圧指令量と、擬似制御電圧発生
回路5より導びかれる電圧検出信号と、検出用変
成器9より導びかれる電圧検出信号との3量と
し、これら3信号の諸量を以つて、所定の負荷充
電時に際して交流励磁機の励磁を調整する事によ
つて発電機の出力を制御しようとするものであ
る。かかる発電機出力電圧制御法の具体的な回路
図を示したものが第2図であつて、同図で第1図
と同一のものは同一符号を附しており、11は電
圧検出用変成器9より導びかれる端子電圧成分を
整流する整流回路で、図では単に1個のダイオー
ドのみしか示していないがよく知られているよう
にダイオードをブリツジ接続して第1の電圧検出
回路そのものが構成される。121−122は所要
の電圧検出信号を取出す為の検出用抵抗で、電圧
合成回路を構成する。13は永久磁石発電機等を
代表とされる擬似電圧発生回路5より出力される
所要のパワーを一旦整流する整流回路で、第2の
電圧検出回路を構成する。14−15は電流制限
抵抗、16はコンデンサ、101は第1図の遮断
器が投入された事を条件に動作する図示しないリ
レーの常開接点である。電流制限抵抗14とコン
デンサ16で充電動作が、コンデンサ16と電流
制限抵抗15とリレー常開接点101で放電動作
が行なわれる充放電回路が構成される。
Figure 1 shows a specific configuration example according to the principle of the present application, in which 1 is the armature of the generator, 2 is its field winding, and 3 is the main engine's field winding 2 that is excited. In the armature of an AC exciter, 4 indicates its field winding. 5
is a permanent magnet generator that serves as a predetermined excitation source in case of a short circuit accident on the load side, and the voltage signal output from this permanent magnet generator is used as a control input quantity for control in this application. However, it is not limited to permanent magnet generators, for example, batteries used as control power sources, small generators for speed detection, etc. may be used, and these permanent magnet generators, batteries, and A small generator for speed detection, etc. shall be referred to as a pseudo control voltage generation circuit in this application. 6 is a rotary rectifier for rectifying the armature output of the AC exciter to excite the field winding 2; this rotary rectifier is, as is well known, formed by connecting thyristors in a pure bridge; A type in which only diodes are bridge-connected, and a type in which a thyristor and a diode are connected in a mixed bridge are applied, and the field winding 2 and the armature 3 of the AC exciter are arranged on the same axis in a rotating part. . Note that FIG. 1 shows a case where diodes are bridge-connected as a rotary rectifier. 7 is an automatic voltage regulator that controls the generator output voltage by adjusting the excitation current that excites the field winding 4 of the AC exciter, and 8 is a voltage setting device for setting the required voltage. , 9 is a voltage detection transformer for extracting a voltage component related to the terminal voltage from the generator output bus;
is an AC circuit breaker for turning on power distribution equipment. As is clear from the above principle configuration diagram, the present application uses the voltage setting device 8 as the control input amount of the automatic voltage regulator.
The voltage command amount given by the above, the voltage detection signal derived from the pseudo control voltage generation circuit 5, and the voltage detection signal derived from the detection transformer 9 are three quantities, and with the various quantities of these three signals, , attempts to control the output of the generator by adjusting the excitation of the AC exciter when charging a predetermined load. A specific circuit diagram of such a generator output voltage control method is shown in FIG. 2, in which the same parts as in FIG. 1 are given the same symbols, and 11 is a voltage detection transformer. This is a rectifier circuit that rectifies the terminal voltage component led from the voltage detector 9. Although only one diode is shown in the figure, as is well known, the first voltage detection circuit itself can be constructed by bridge-connecting diodes. configured. 12 1 -12 2 are detection resistors for extracting a required voltage detection signal, and constitute a voltage synthesis circuit. Reference numeral 13 denotes a rectifier circuit that once rectifies the required power output from the pseudo voltage generation circuit 5, typically a permanent magnet generator, and constitutes a second voltage detection circuit. 14-15 are current limiting resistors, 16 is a capacitor, and 101 is a normally open contact of a relay (not shown) which operates on the condition that the circuit breaker shown in FIG. 1 is closed. A charging/discharging circuit is constructed in which a charging operation is performed by the current limiting resistor 14 and the capacitor 16, and a discharging operation is performed by the capacitor 16, the current limiting resistor 15, and the normally open relay contact 101 .

さて以上のように構成される本実施例の動作を
第1図−第2図を参照し乍ら詳述すると、先ず負
荷設備に給電していた商用電源が何らかの原因で
停電し、この停電検出を不足電圧検出リレー等で
検出して、この検出信号を基に無瞬断で図示しな
いインバータ等の非常用電源設備が動作して予じ
め規定された負荷のみの電源を確保すると同時
に、第1図の非常用電源装置が始動を開始するよ
うになる。しかして第1図の非常用電源装置側で
はエンジンのアイドリング操作時にみられる発電
機の過励磁を防止する所定の操作、例えば定格出
力周波数の略20%〜30%の領域までは無励磁と
し、その後、徐々に励磁を高めて出力電圧を次第
に上昇させて行く所定の制御を行ない始動を完了
させる。かかる始動−定常状態への制御過程に於
て、本願では先ず電圧検出用変成器9→整流回路
11→検出用抵抗121の経路で導びかれる第1
の電圧検出信号値をVDとし、さらに整流回路1
3→抵抗14→検出用抵抗122の経路で導びか
れる第2の電圧検出信号値をVHとすると、これ
ら電圧検出信号値を合成した検出電圧と電圧設定
器8よりの電圧設定信号とを比較し、その偏差量
を以つて7の自動電圧調整装置を介して交流励磁
機の界磁巻線4に供給する励磁電流を調整するよ
うにする。始動に当り、検出用抵抗121の中性
点を調整し、第1の電圧検出信号VDを設定器8
よりの基準電圧値V0と等しくする。始動すると
擬似制御電圧発生回路5より充放電回路を介して
導かれる第2の電圧検出信号値VHは充電時定数
C16−R14に従い上昇し、この第2の電圧検出信
号値VHに相当する分だけ発電機出力電圧が低く
なるように所定の制御が行なわれる。従つて所定
の始動完了時点に於ては、第1図の非常用電源装
置より出力される電圧は定格電圧より、擬似制御
電圧発生回路5の出力電圧に相応する分だけ低め
の電圧が出力され、さらにかかる始動時に、第2
図のコンデンサ16は整流回路13→抵抗14の
経路を通して図示極性で所定値にチヤージされて
いる。この状態で第1図の非常用電源装置が始動
を完了した旨が検出されると、当該非常用電源装
置が所定の始動を完了するまで動作状態にあつた
インバータの如き無停電電源装置が主回路より開
路され、これと同時に第1図の交流遮断器10が
投入されて図示しない負荷設備に第1図の非常用
電源装置より所要の電力の給電が開始される。か
かる給電の開始に際して、本願では上記したよう
に発電機出力電圧は定格電圧に比し充分に降圧さ
れた値となつており、さらに交流遮断器10が投
入された事を検出されると、図示しない検出用リ
レーの常開接点101が閉路されると同時に整流
回路13の入力側の図示しないスイツチが開路さ
れ、16のコンデンサにチヤージされた電荷がコ
ンデンサ16→抵抗15→常開接点101の経路
を通してデスチヤージされる。従つて第2図より
明らかなように、コンデンサ16の充電電圧が
C16−R15の放電時定数でデスチヤージされて行く
のに応じて122の検出用抵抗の端子間電圧VH
次第に低下して行き、検出電圧VDとVHとを合成
した検出信号量、即ち自動電圧調整装置7の検出
入力量が相対的に小さくなつて行く。これは何を
意味するのかといえば、検出入力量が相対的に低
下して行く事は取りも直さず基準値そのものが等
価的に上昇して行く事を意味し、これにより等価
的に上昇して行く基準値に基づき所定の励磁調整
が行なわれ、発電機出力電圧を定格電圧まで次第
に昇圧させる。なおコンデンサ16の放電が終了
し検出用抵抗122の端子間電圧が零になると、
検出抵抗121の中性点調整により、第1の電圧
検出回路の出力を第1の電圧検出信号値VDとし、
以後この第1の電圧検出信号値VDと設定器8よ
りの基準電圧値とに基づき定常状態での所定の制
御が行なわれる事は申す迄もない。従つて本願に
よれば大容量の負荷設備、例えば電力用変圧器を
充電する場合、予じめ前以つて非常用電源装置の
出力電圧を定格電圧より充分低めの出力電圧を発
生する状態に待機しておき、この状態で変圧器を
充電し徐徐に出力電圧を昇圧して行く所定の制御
を行なうものであるから、励磁突入電流が流れた
としても全負荷電圧を印加する従来装置に比し充
分に抑制させた値で、これにより非常用電源装置
の容量そのものを軽減できる事は明らかである。
なお述上の説明では非常用電源装置が始動完了す
る迄、インバータの如き無停電電源装置を動作さ
せ所要の電源を確保する例を述べたが、例えば負
荷設備の状態によつては、場合によつて上記無停
電電源装置を設置せずにエンジン発電機の如き非
常用電源装置のみを設置するケースがあるので、
かかる負荷設備の場合でも、上記した方法で非常
用電源装置を半電圧状態(定格出力電圧の1/2を
指す)にある所定期間待機させておき、この状態
で負荷設備を充電すれば上記の効果を奏する事は
明らかであり、さらに第1図では交流励磁機の界
磁巻線に供給する励磁電流を調整する事によつ
て、間接的に発電機出力電圧を制御する場合を示
したが、例えば回転整流器を両アーム或は片アー
ムとして構成し、さらに交流励磁機の界磁は一定
励磁として、回転整流器のサイリスタを制御する
事によつて発電機出力電圧を制御するようなタイ
プにも本願を適用できる事は明らかであり、さら
にブラシを有した発電機にも本願を適用できる事
は明らかである。
Now, the operation of this embodiment configured as described above will be explained in detail with reference to Figs. is detected by an undervoltage detection relay, etc., and emergency power equipment such as an inverter (not shown) operates without momentary interruption based on this detection signal, securing power only for the pre-specified load, and at the same time The emergency power supply shown in FIG. 1 starts to start. However, on the emergency power supply side in Fig. 1, certain operations are performed to prevent overexcitation of the generator that occurs when the engine is idling, for example, it is de-energized up to approximately 20% to 30% of the rated output frequency. Thereafter, predetermined control is performed to gradually increase the excitation and the output voltage to complete the startup. In this starting-to-steady-state control process, in the present invention, first, the first
Let the voltage detection signal value of
3 → Resistor 14 → Detection Resistor 12 Let VH be the second voltage detection signal value led through the path 2 , then the detection voltage obtained by combining these voltage detection signal values and the voltage setting signal from the voltage setting device 8. are compared, and the excitation current supplied to the field winding 4 of the AC exciter is adjusted using the deviation amount through the automatic voltage regulator 7. Upon starting, adjust the neutral point of the detection resistor 12 1 and set the first voltage detection signal V D to the setting device 8.
equal to the reference voltage value V 0 . When starting, the second voltage detection signal value V H derived from the pseudo control voltage generation circuit 5 via the charging/discharging circuit is the charging time constant.
A predetermined control is performed so that the generator output voltage increases according to C16-R14 and decreases by an amount corresponding to this second voltage detection signal value VH . Therefore, at the completion of a predetermined start, the voltage output from the emergency power supply device shown in FIG. 1 is lower than the rated voltage by an amount corresponding to the output voltage of the pseudo control voltage generation circuit 5. , furthermore, during such start-up, the second
The illustrated capacitor 16 is charged to a predetermined value through a path from the rectifier circuit 13 to the resistor 14 with the illustrated polarity. In this state, when it is detected that the emergency power supply shown in Figure 1 has completed its start, the uninterruptible power supply, such as an inverter, which has been in operation until the emergency power supply completes the specified start, is activated as the main power supply. The circuit is opened, and at the same time, the AC circuit breaker 10 shown in FIG. 1 is turned on, and the necessary power supply from the emergency power supply device shown in FIG. 1 to the load equipment (not shown) is started. At the start of such power supply, in the present application, as described above, the generator output voltage is a value that is sufficiently reduced compared to the rated voltage, and when it is detected that the AC breaker 10 is closed, the voltage as shown in the figure is set. At the same time as the normally open contact 10 1 of the detection relay is closed, a switch (not shown) on the input side of the rectifier circuit 13 is opened, and the charge charged in the capacitor 16 is transferred from the capacitor 16 to the resistor 15 to the normally open contact 10 1 is descharged through the path of Therefore, as is clear from FIG. 2, the charging voltage of the capacitor 16 is
As C 16 −R 15 is discharged with a discharge time constant, the voltage V H between the terminals of the detection resistor 12 2 gradually decreases, and a detection signal is obtained by combining the detection voltages V D and V H. The amount, that is, the detected input amount of the automatic voltage regulator 7 becomes relatively smaller. What this means is that a relative decrease in the amount of detected input means that the reference value itself will equivalently increase; A predetermined excitation adjustment is performed based on the reference value, and the generator output voltage is gradually increased to the rated voltage. Note that when the capacitor 16 finishes discharging and the voltage across the terminals of the detection resistor 122 becomes zero,
By adjusting the neutral point of the detection resistor 12 1 , the output of the first voltage detection circuit is set to the first voltage detection signal value V D ,
Needless to say, a predetermined control in a steady state is thereafter performed based on this first voltage detection signal value V D and the reference voltage value from the setter 8. Therefore, according to the present application, when charging large-capacity load equipment, such as a power transformer, the output voltage of the emergency power supply device is set in advance to a standby state that generates an output voltage sufficiently lower than the rated voltage. In this state, the transformer is charged and the output voltage is gradually boosted under a predetermined control, so even if an excitation inrush current flows, it is faster than conventional devices that apply full load voltage. It is clear that the capacity of the emergency power supply device itself can be reduced by sufficiently suppressing the value.
In the above explanation, an example was given in which an uninterruptible power supply such as an inverter is operated to secure the required power until the emergency power supply completes startup, but depending on the condition of the load equipment, for example, Therefore, there are cases where only an emergency power supply such as an engine generator is installed without installing the above-mentioned uninterruptible power supply.
Even in the case of such load equipment, if the emergency power supply device is kept on standby at half voltage (referring to 1/2 of the rated output voltage) for a predetermined period of time using the method described above, and the load equipment is charged in this state, the above will be achieved. It is clear that this is effective, and Fig. 1 shows the case where the generator output voltage is indirectly controlled by adjusting the excitation current supplied to the field winding of the AC exciter. For example, there is a type in which the rotary rectifier is configured as both arms or one arm, and the field of the AC exciter is constant excitation, and the generator output voltage is controlled by controlling the thyristor of the rotary rectifier. It is obvious that the present application can be applied, and it is also obvious that the present application can be applied to a generator having brushes.

以上のように本考案に於ては、定格電圧(全負
荷電圧)で大容量の負荷設備を充電するのではな
く、定格電圧に比し充分低い電圧で充電し且つ出
力電圧を徐々に昇圧させるようにしたものである
から、以下に示すように種々の効果を奏すもので
ある。
As described above, in the present invention, rather than charging large capacity load equipment at the rated voltage (full load voltage), it is charged at a sufficiently low voltage compared to the rated voltage, and the output voltage is gradually increased. Because of this, various effects can be achieved as shown below.

負荷設備として大容量の電力用変圧器であつ
ても、励磁突入電流をある所定の小さな範囲内
に止め置く所定の制御を行なうものであるの
で、非常用電源装置の容量を大幅に軽減する事
ができる。
Even if the load equipment is a large-capacity power transformer, the capacity of the emergency power supply device can be significantly reduced because the excitation inrush current is controlled to be kept within a small predetermined range. I can do it.

上記項に基づき非常に経済的な電源装置を
提供できる。
Based on the above items, a very economical power supply device can be provided.

等価的に電圧設定指令量を徐々に増大して行
く方法を取るものであるから、関数発生回路を
適用した場合に比し回路構成を比較的簡素化で
き、上記項の利点と相俟つて非常に信頼性の
高い装置を提供できる。
Since this method uses a method of gradually increasing the voltage setting command amount equivalently, the circuit configuration can be relatively simplified compared to the case where a function generation circuit is applied. can provide highly reliable equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の原理的な構成図を示し、第2
図はその要部たる電圧調整装置の具体的な回路構
成を示す回路図。 1は交流発電機の電機子、2はその界磁巻線、
3−4は交流励磁機の電機子およびその界磁巻
線、5は擬似制御電圧発生回路、6は回転整流
器、7は自動電圧調整装置。
Figure 1 shows the basic configuration diagram of the present invention, and Figure 2 shows the basic configuration diagram of the invention.
The figure is a circuit diagram showing a specific circuit configuration of the voltage regulator, which is the main part. 1 is the armature of the alternator, 2 is its field winding,
3-4 is an armature of an AC exciter and its field winding; 5 is a pseudo control voltage generating circuit; 6 is a rotary rectifier; 7 is an automatic voltage regulator.

Claims (1)

【実用新案登録請求の範囲】 発電機出力電圧の検出信号を導びく第1の電圧
検出回路と、擬似制御電圧発生回路の出力電圧を
導びく第2の電圧検出回路と、 負荷投入前の所定時間に前記第2の電圧検出回
路より出力される電圧信号で充電され、負荷投入
時以後は前記第2の電圧検出回路を開路し前記充
電電荷を放電する充放電回路と、 前記第1の電圧検出回路より導かれる第1の電
圧検出信号と前記第2の電圧検出回路より前記充
放電回路を介して導びかれる第2の電圧検出信号
を合成する電圧合成回路と、 所要の発電機出力をうるための基準電圧を設定
する電圧設定器と、 前記電圧合成回路の出力である合成検出電圧と
前記基準電圧とを比較し、その偏差に基づき交流
励磁機の励磁電流を調整し発電機出力電圧を制御
する自動電圧調整装置とより構成され、 始動−定常状態への制御過程では前記合成検出
電圧のうちの第1の電圧検出信号を前記基準電圧
と同一値とし、 負荷投入前は前記充放電回路の充電電圧に基づ
き発電機出力電圧を定格電圧より低い所定値まで
昇圧させ、 負荷投入時以後は前記充放電回路の放電電圧に
基づき発電機出力電圧を所定の定格電圧まで昇圧
させることを特徴とした非常用電源装置の励磁装
置。
[Claims for Utility Model Registration] A first voltage detection circuit that guides the detection signal of the generator output voltage, a second voltage detection circuit that guides the output voltage of the pseudo control voltage generation circuit, and a predetermined voltage detection circuit before load application. a charging/discharging circuit that is charged with a voltage signal output from the second voltage detection circuit at a certain time, and that opens the second voltage detection circuit and discharges the charged charge after a load is applied; a voltage synthesis circuit that synthesizes a first voltage detection signal guided from the detection circuit and a second voltage detection signal guided from the second voltage detection circuit via the charging/discharging circuit; A voltage setting device that sets a reference voltage for generating a voltage, compares the composite detection voltage that is the output of the voltage synthesis circuit with the reference voltage, adjusts the excitation current of the AC exciter based on the deviation, and adjusts the generator output voltage. and an automatic voltage regulator that controls the voltage, and in the start-to-steady state control process, the first voltage detection signal of the composite detection voltage is set to the same value as the reference voltage, and before load application, the charging and discharging The generator output voltage is boosted to a predetermined value lower than the rated voltage based on the charging voltage of the circuit, and after load application, the generator output voltage is boosted to the predetermined rated voltage based on the discharge voltage of the charging/discharging circuit. Excitation device for emergency power supply.
JP1980097509U 1980-07-10 1980-07-10 Expired JPH0145278Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980097509U JPH0145278Y2 (en) 1980-07-10 1980-07-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980097509U JPH0145278Y2 (en) 1980-07-10 1980-07-10

Publications (2)

Publication Number Publication Date
JPS5721300U JPS5721300U (en) 1982-02-03
JPH0145278Y2 true JPH0145278Y2 (en) 1989-12-27

Family

ID=29459283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980097509U Expired JPH0145278Y2 (en) 1980-07-10 1980-07-10

Country Status (1)

Country Link
JP (1) JPH0145278Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109498A (en) * 1984-10-31 1986-05-27 Kawasaki Heavy Ind Ltd Controller of engine-driven generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156317A (en) * 1976-06-23 1977-12-26 Hitachi Ltd Generating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156317A (en) * 1976-06-23 1977-12-26 Hitachi Ltd Generating device

Also Published As

Publication number Publication date
JPS5721300U (en) 1982-02-03

Similar Documents

Publication Publication Date Title
US4465943A (en) Uninterrupted power system with frequency and phase control
US3665495A (en) No break power system
RU2185017C2 (en) Electronic release for circuit breaker
US5493202A (en) Voltage regulator device for vehicular AC generator
US4426613A (en) Control system for a self-excited alternating current generator
US5563497A (en) Control device for AC generator
JPH0145278Y2 (en)
US4549128A (en) Charging generator controlling device
JPS5959098A (en) Controlling method and device for diesel generator facility
EP0122310A1 (en) Control system for a self-excited alternating current generator
JP2530345B2 (en) Alternator control device
JP3517531B2 (en) Excitation control device for AC generator
JPS5812595A (en) Supplying method for exciting current
JPH0833342A (en) Starting method for power converter
JPS58159699A (en) Exciter for electric machine
EP1320186A1 (en) Output voltage regulating device for alternators
JPS5964000A (en) Exciter for synchronous generator
JPS59132724A (en) Controller for ac generator
JPS59165997A (en) Starting system of power system
JPS6011725Y2 (en) AC generator voltage control device
SU1525857A2 (en) Voltage regulator of synchronous generator of dynamoelectric converter
JPS635989B2 (en)
JPS6111830A (en) Controlling method of linkage inverter
JPH07245872A (en) Variable speed generator motor
JP2504993Y2 (en) Regulator adjustment voltage switching device