JPH07245872A - Variable speed generator motor - Google Patents

Variable speed generator motor

Info

Publication number
JPH07245872A
JPH07245872A JP6034315A JP3431594A JPH07245872A JP H07245872 A JPH07245872 A JP H07245872A JP 6034315 A JP6034315 A JP 6034315A JP 3431594 A JP3431594 A JP 3431594A JP H07245872 A JPH07245872 A JP H07245872A
Authority
JP
Japan
Prior art keywords
voltage
secondary winding
power
current
generator motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6034315A
Other languages
Japanese (ja)
Inventor
Hideyuki Nakano
英幸 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6034315A priority Critical patent/JPH07245872A/en
Publication of JPH07245872A publication Critical patent/JPH07245872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prevent the flow of unnecessary current to a system and quickly recover an exciting system by detecting the recovery of a system accident on the basis of a voltage on the high voltage side of a main transformer and removing the accident point of the system and at the same time resetting the operation of converting into an alternating current. CONSTITUTION:A level comparator CP compares the output detected by a voltage detector S provided on the high voltage side of a main transformer 7M with a predetermined set value to output a signal when the detected output is larger than the set value. When a signal is outputted from the comparator CP, the function of a power converter 3 is stopped by a controller 55, and a d. c. current is supplied to a secondary winding through a switch 9 from a d.c. power supply 10 to perform the operation of converting into an alternating current, so that the a.c. component of the primary side of a generator motor is secured. When the accident point is removed from a transmission line by the release of a breaker 6, the system voltage is recovered in the case of two- network transmission line. Thereby, an unnecessary current can be prevented from flowing into the system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可変速発電電動機に係
り、電力系統にて故障が発生した時の発電電動機の一次
側に流れる故障電流の交流化動作において、発電電動機
の2次巻線を直流励磁することによる発電電動機の内部
電圧と系統電圧との位相のずれから生じる遮断器解放後
の発電電動機の端子電圧の回復遅れ時に交流化を速やか
に停止させ、遮断器解放後の交流化動作による系統保護
システムに与える影響を防止する可変速発電電動機に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable speed generator-motor, and a secondary winding of the generator-motor in an alternating operation of a fault current flowing through the primary side of the generator-motor when a fault occurs in a power system. AC current after the circuit breaker is released when the recovery of the generator motor terminal voltage after the circuit breaker is released due to the phase shift between the internal voltage of the generator motor and the system voltage due to DC excitation The present invention relates to a variable speed generator-motor that prevents the influence of operation on a system protection system.

【0002】[0002]

【従来の技術】従来から、可変速発電電動機の一つとし
て、例えば可変速揚水発電システムが用いられている。
以下に、従来の可変速発電電動機の構成を図4の構成図
を参照して説明する。
2. Description of the Related Art Conventionally, for example, a variable speed pumped storage power generation system has been used as one of variable speed generator motors.
Hereinafter, the configuration of the conventional variable speed generator-motor will be described with reference to the configuration diagram of FIG.

【0003】本システムは、回転子1に三相交流励磁電
流を供給される構成の可変速発電電動機(以下、発電電
動機と言う。)、発電電動機の2次側(2次巻線)に可
変交流励磁電流を供給する電力変換器3と、発電時には
発電電動機を駆動し、揚水時には発電電動機により駆動
される水車ポンプ4と、電力変換器3を制御する制御装
置5から構成される。
In this system, a variable speed generator-motor (hereinafter referred to as generator motor) having a structure in which a three-phase AC exciting current is supplied to a rotor 1, and a variable side generator (secondary winding) of the generator motor is variable. It is composed of a power converter 3 that supplies an alternating excitation current, a water turbine pump 4 that drives a generator motor during power generation, and is driven by the generator motor during pumping, and a control device 5 that controls the power converter 3.

【0004】発電電動機の1次側(1次巻線)は、遮断
器6、主変圧器7Mを介して系統2に接続されている。
電力変換器3は、制御装置5からの2次電流の位相・波
高値を制御する2次電流指令信号により電流変換を行こ
ない、主変圧器7Mの低圧側と接続された変換器変圧器
8を介して降圧された電圧から、所定の交流電流を発電
電動機の2次側(2次巻線)へ制御装置5から指令され
た電流を出力する。
The primary side (primary winding) of the generator motor is connected to the system 2 via a circuit breaker 6 and a main transformer 7M.
The power converter 3 does not perform current conversion by the secondary current command signal that controls the phase / peak value of the secondary current from the control device 5, and the converter transformer 8 connected to the low voltage side of the main transformer 7M. A predetermined AC current is output to the secondary side (secondary winding) of the generator motor from the voltage stepped down via the controller 5 to output a current.

【0005】制御装置5は、発電電動機の回転子1の回
転位相ωと系統Aの系統周波数fに基づき回転子1の回
転磁界が系統周波数fに同期するように電力変換器3か
ら出力される出力電流、すなわち発電電動機の2次巻線
に供給される2次電流の位相を制御する。図示していな
い検出器により検出された回転子の回転磁界の速度に基
づき、系統周波数fと回転子1のすべりsを求め、回転
子1の速度はf(1−s)であり、回転子1の2次巻線
をすべりsに相当する周波数の交流励磁電流を供給し位
相を系統周波数fの位相に対して一定の位相差を保つこ
とで回転子1により発生する回転磁界はすべり零(同期
速度)で回転し、固定子2の回転磁界の速度と同一にな
る。
The control device 5 outputs from the power converter 3 such that the rotating magnetic field of the rotor 1 is synchronized with the system frequency f based on the rotation phase ω of the rotor 1 of the generator motor and the system frequency f of the system A. It controls the output current, that is, the phase of the secondary current supplied to the secondary winding of the generator motor. The system frequency f and the slip s of the rotor 1 are obtained based on the speed of the rotating magnetic field of the rotor detected by a detector (not shown), and the speed of the rotor 1 is f (1-s). The secondary magnetic field of No. 1 is supplied with an AC exciting current having a frequency corresponding to the slip s to maintain a constant phase difference with respect to the phase of the system frequency f, so that the rotating magnetic field generated by the rotor 1 has zero slip ( It rotates at the synchronous speed) and becomes the same as the speed of the rotating magnetic field of the stator 2.

【0006】以上のように、本システムは、回転子1の
速度を同期速度に拘束されることなく効率が最高となる
回転数運転できるため、高効率発電運転や揚水時の電力
調整が可能となり夜間電力の調整に大いに貢献すること
ができる。
As described above, in the present system, since the speed of the rotor 1 can be operated at the rotational speed for which the efficiency is maximized without being restricted by the synchronous speed, highly efficient power generation operation and electric power adjustment during pumping are possible. It can greatly contribute to the adjustment of night power.

【0007】以上のようなシステムにおいて、発電電動
機が接続されている系統Aに三相地絡故障や三相短絡故
障が発生した場合、発電電動機に故障電流が流れること
で過渡的に2次巻線に直流電流が誘起され過電圧が生じ
る。この過電圧による電力変換器3に有する変換器素子
の破壊を防止するため2次巻線に接続された図示してい
ない過電圧保護装置を動作させ2次巻線側の回路を短絡
させ過電圧を防止する。 また、電力変換器3に入力さ
れる電圧も急激に降下するため機能を一次停止すること
になる。電力変換器3の機能停止にともない、2次巻線
への励磁電流の供給も停止するので、発電電動機の1次
巻線に流れる故障電流に含まれる交流分が小さくなり零
クロスしなくなるため故障電流を遮断する遮断器6が直
流遮断を起こす恐れがある。
In the system as described above, when a three-phase ground fault or a three-phase short-circuit fault occurs in the system A to which the generator motor is connected, a fault current flows through the generator motor to cause a transient secondary winding. A direct current is induced in the line and overvoltage occurs. In order to prevent the destruction of the converter element of the power converter 3 due to this overvoltage, an overvoltage protection device (not shown) connected to the secondary winding is operated to short-circuit the circuit on the secondary winding side to prevent overvoltage. . Further, the voltage input to the power converter 3 also drops sharply, so that the function is temporarily stopped. When the power converter 3 stops functioning, the supply of the exciting current to the secondary winding also stops, so the AC component contained in the failure current flowing in the primary winding of the generator motor becomes small and zero crossing does not occur. The circuit breaker 6 that interrupts the current may cause DC interruption.

【0008】1次側の遮断器6は直流遮断ができないた
め、故障電流の交流分が減少する現象を防止するため電
力変換器3の機能が停止した場合は、スイッチ9で直流
電源10を選択し、この直流電源10から2次巻線を直接励
磁し故障電流の交流分を確保している。なお、三相巻線
が施されている回転子巻線1のうちU,V,W相の端子
に直流電源10のP,N極をどのように接続するかは、予
め特定している。
Since the breaker 6 on the primary side cannot cut off the direct current, the switch 9 selects the direct current power source 10 when the function of the power converter 3 is stopped in order to prevent the phenomenon that the alternating current component of the fault current decreases. Then, the secondary winding is directly excited from the DC power source 10 to secure the AC portion of the fault current. It should be noted that how to connect the P and N poles of the DC power supply 10 to the U, V and W phase terminals of the rotor winding 1 provided with the three phase winding is specified in advance.

【0009】以上のように系統故障時、一時電力変換器
が機能停止した時に1次故障電流の交流分が減少して遮
断器動作時に直流しゃ断とならないよう電力変換器を直
流電源に切替て交流分を確保することを交流化動作と称
している。
As described above, in the event of a system failure, when the temporary power converter stops functioning, the AC component of the primary failure current is reduced, and the power converter is switched to a DC power source so that the circuit breaker does not cause DC interruption during operation. Securing the minute is called alternating current operation.

【0010】[0010]

【発明が解決しようとする課題】以上のような系統故障
時に2次巻線を直流励磁する故障時交流化を行なった場
合、次のような不具合があった。系統故障時電力変換器
3が停止したとき、2次巻線に直流電流を流すことによ
り1次側の故障電流を交流化することができるが、回転
子1があるすべりをもって回転しているので系統Aの位
相は必ずしも一致せず、ずれてしまい、この直流励磁電
流により生じる発電電動機の出力電圧位相が時間ととも
に変動してしまう。
However, when the secondary winding is DC-excited during the system failure as described above, and the alternating current is used during the failure, the following problems occur. When the power converter 3 is stopped at the time of system failure, the failure current on the primary side can be converted to AC by passing a DC current through the secondary winding, but the rotor 1 is rotating with slippage. The phases of the system A do not always match and they shift, and the output voltage phase of the generator motor generated by this DC exciting current fluctuates with time.

【0011】故障地点が2回線ラインの一方で起きた場
合は故障ラインの遮断器が開放されるとただちに電圧が
回復しなければならないが、以上のような故障時交流化
を行なった場合、タイミングによっては前記位相のずれ
が大きくなり発電電動機の出力が系統電圧を抑制する方
向に作用するので、発電電動機の出力電圧の回復が遅い
場合が出てくる。故障時交流化は系統故障発生後、電力
変換器3が停止したことで動作し、事故点が遮断器6に
より除去され、系統電圧が回復したことで停止するよう
に制御され、交流化動作停止後、電力変換器3を再動作
させて通常運転に復帰する。
When the failure point occurs on one of the two circuit lines, the voltage must be restored as soon as the circuit breaker of the failure line is opened. In some cases, the phase shift becomes large and the output of the generator motor acts in the direction of suppressing the system voltage, so that the recovery of the output voltage of the generator motor may be slow. Alternating operation at the time of failure is controlled by stopping the power converter 3 after the occurrence of the system failure, and the fault point is removed by the circuit breaker 6, and the control is stopped so that the system voltage is restored. After that, the power converter 3 is restarted to return to the normal operation.

【0012】従来の制御装置では系統電圧の回復を発電
電動機端子電圧を検出して電圧レベルが定格に近い値ま
で復帰した時点でスイッチ9を開放し故障時交流化を解
除し、電力変換器3を再動作するように制御している。
In the conventional control device, the recovery of the system voltage is detected by detecting the generator motor terminal voltage, and when the voltage level returns to a value close to the rating, the switch 9 is opened to cancel the AC conversion at the time of failure, and the power converter 3 Have control to restart.

【0013】前述したように遮断器6が開放する時点で
の位相のずれが大きいと、発電電動機端子電圧は定格ま
では回復せず、位相差が小さくなるまで待たねばならな
い。よって、系統故障時交流化の停止が遅れ従って故障
点が除去されたにもかかわらず交流化動作が継続するの
で発電電動機から不要な電流を流すことになる。このこ
とは発電電動機の近傍の系統保護リレ―に対して誤動作
を起こさせる恐れがあった。一方、発電電動機と水車/
ポンプ4に於いては系統故障中、水車/ポンプ4の機械
入力と発電電動機の電気出力の間で不均衡が生じ、差分
のエネルギ―により発電電動機および水車/ポンプ4が
加速され、速度制御範囲から逸脱する恐れがあり、加速
期間を短くするために系統故障が復旧した後、速やかに
発電電動機が通常運転に復旧することが必要とされてい
た。
As described above, if the phase shift at the time of opening the circuit breaker 6 is large, the generator motor terminal voltage does not recover to the rated value, and it is necessary to wait until the phase difference becomes small. Therefore, even if the stop of AC conversion is delayed at the time of a system failure and the failure point is removed, the AC operation continues, so that an unnecessary current is supplied from the generator motor. This may cause the system protection relay near the generator motor to malfunction. On the other hand, generator motor and turbine /
In the pump 4, during the system failure, an imbalance occurs between the mechanical input of the turbine / pump 4 and the electrical output of the generator / motor, and the difference in energy accelerates the generator / motor and the turbine / pump 4, thereby controlling the speed control range. Therefore, in order to shorten the acceleration period, it was necessary to quickly restore the generator motor to normal operation after the system failure was restored.

【0014】本発明は、系統にて三相地絡又は三相短絡
が生じたとき、電力変換器3の停止に伴って生ずる恐れ
のある直流遮断の回避の手段である交流化動作におい
て、発電電動機の2次巻線を直流励磁することによる発
電電動機1の1次電流の系統との位相のずれから生ずる
遮断器開放後の系統電圧の回復遅れを短くし、交流化を
速やかに停止させ、遮断器開放後の交流化動作による系
統保護システムに与える影響を防止することを目的とす
る。
According to the present invention, when a three-phase ground fault or a three-phase short circuit occurs in the system, the power generation is performed in the AC operation, which is a means for avoiding DC interruption which may occur when the power converter 3 is stopped. The recovery delay of the system voltage after the circuit breaker is opened, which is caused by the phase deviation of the primary current of the generator motor 1 due to the DC excitation of the secondary winding of the motor, and the AC conversion is quickly stopped, The purpose is to prevent the influence on the system protection system due to the AC operation after the breaker is opened.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、[請求項1]記載発明は、1次巻線が遮断器と変圧
器を介し電力系統に接続され、2次巻線が交流励磁され
る発電電動機と、前記変圧器の低圧側を介して降圧され
た信号に基づいて所定の演算処理を施し前記2次巻線を
交流励磁を行なう電力変換器と、発電電動機の回転子の
回転位相と電力系統の系統周波数に基づき回転子の回転
磁界が系統周波数に同期するように前記電力変換器から
出力する励磁電流を制御する制御装置と、系統事故発生
時に前記制御装置により機能停止された前記電力変換器
の代わりに前記2次巻線に直流を供給する直流電源とを
有する可変速発電電動機において、系統事故発生時に機
能停止された前記電力変換器のかわりに前記直流電源に
て前記2次巻線に直流を供給した場合、前記遮断器が開
放された後、前記変圧器の高圧側で検出される検出出力
と予め設定された設定値との比較を行ない検出出力が設
定値以上になった場合に前記2次巻線への前記直流電源
からの供給を停止させることを特徴とする。
In order to achieve the above object, in the invention described in [Claim 1], the primary winding is connected to a power system through a circuit breaker and a transformer, and the secondary winding is an alternating current. A generator motor to be excited, a power converter that performs predetermined calculation processing based on a signal stepped down via the low voltage side of the transformer to excite the secondary winding with alternating current, and a rotor of the generator motor. A control device that controls the exciting current output from the power converter so that the rotating magnetic field of the rotor is synchronized with the system frequency based on the rotation phase and the system frequency of the power system; and when the system fault occurs, the control device stops the function. In a variable speed generator motor having a direct current power supply for supplying direct current to the secondary winding instead of the power converter, the direct current power supply is used instead of the power converter stopped when a system fault occurs. On the secondary winding When a current is supplied, after the circuit breaker is opened, the detection output detected on the high-voltage side of the transformer is compared with a preset set value, and when the detected output exceeds the set value, The DC power supply to the secondary winding is stopped.

【0016】[請求項2]記載発明は、前記遮断器が開
放された後、前記変圧器の高圧側で検出される検出電圧
と予め定められた設定電圧との比較を行ない、検出電圧
が設定電圧以上になった場合に前記2次巻線への前記直
流電源からの供給を停止させることを特徴とする。
According to a second aspect of the present invention, after the circuit breaker is opened, a comparison is made between a detection voltage detected on the high voltage side of the transformer and a preset setting voltage, and the detection voltage is set. The supply from the DC power supply to the secondary winding is stopped when the voltage becomes equal to or higher than the voltage.

【0017】[請求項3]記載発明は、[請求項2]ま
たは[請求項3]記載発明において前記開放手段により
前記遮断器が開放された後、前記変圧器の高圧側で検出
される検出出力と予め設定された設定値との比較を行な
い検出出力が設定値以上になった場合に前記2次巻線へ
の前記直流電源からの供給が停止された後、電力変換器
を再動作させることを特徴とする。
According to a third aspect of the invention, in the invention of the second aspect or the third aspect, the detection is made on the high voltage side of the transformer after the breaker is opened by the opening means. The output is compared with a preset set value, and when the detected output is equal to or greater than the preset value, the power supply from the DC power source to the secondary winding is stopped, and then the power converter is restarted. It is characterized by

【0018】[0018]

【作用】[請求項1],[請求項2],[請求項3]記
載発明によれば、系統事故が遮断機開放により除去され
ると系統電圧が回復した時、系統電圧が回復したことを
検出するのに発電電動機の出力端でなく、主変圧器の高
圧側(系統側)で電圧を検出するほうが主変圧器の内部
インピ−ダンスによる電圧降下がないため、正確に系統
側の電圧を検出することができ、この検出出力と予め設
定された設定値を比較することで交流化動作をリセット
できるので、系統に対して不要な電流を流すことを防止
できる。
According to the inventions described in [Claim 1], [Claim 2] and [Claim 3], the system voltage is restored when the system voltage is restored when the system fault is eliminated by opening the circuit breaker. It is better to detect the voltage on the high voltage side (system side) of the main transformer instead of the output end of the generator motor to detect the voltage because there is no voltage drop due to the internal impedance of the main transformer. Can be detected, and the alternating current operation can be reset by comparing this detection output with a preset value. Therefore, it is possible to prevent unnecessary current from flowing to the system.

【0019】[0019]

【実施例】本発明の実施例を図を参照して以下説明す
る。図1は、本実施例の可変速発電電動機の構成図を示
すものである。本システムは、回転子1に三相交流励磁
電流を供給される構成の可変速発電電動機(以下、発電
電動機1と言う。)、発電電動機の2次側(2次巻線)
に可変交流励磁電流を供給する電力変換器3と、発電時
には発電電動機を駆動し、揚水時には発電電動機により
駆動される水車/ポンプ4と、電力変換器3を制御する
制御装置55から構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration diagram of a variable speed generator-motor of the present embodiment. This system includes a variable speed generator motor (hereinafter referred to as generator motor 1) having a configuration in which a three-phase alternating current is supplied to a rotor 1, and a secondary side (secondary winding) of the generator motor.
A power converter 3 that supplies a variable AC exciting current to the turbine, a water turbine / pump 4 that drives a generator motor during power generation and is driven by the generator motor during pumping, and a controller 55 that controls the power converter 3. .

【0020】発電電動機の1次側(1次巻線)は、主変
圧器7Mを介して系統Aに接続されている。電力変換器
3は、主変圧器7Mの低圧側と接続された変換器変圧器
5を介して降圧された信号を入力し、所定の演算処理を
施し発電電動機の2次側(2次巻線)に出力する。ま
た、逆に可変周波数の電力を商用周波数の電力に変換し
て、系統Aに回生し、双方向の電力変換を行なう。
The primary side (primary winding) of the generator motor is connected to the grid A via the main transformer 7M. The power converter 3 inputs the stepped-down signal via the converter transformer 5 connected to the low-voltage side of the main transformer 7M, performs a predetermined calculation process, and performs secondary calculation (secondary winding of the generator motor). ) Is output. On the contrary, the variable frequency power is converted into the commercial frequency power to be regenerated in the system A, and bidirectional power conversion is performed.

【0021】レベル比較器CPは、主変圧器7Mの高圧
側(系統に接続される側)に設けられた電圧検出器Sで
検出された出力と予め設定された設定値との比較を行な
い、検出された出力が設定値より大きい場合に信号を出
力する。
The level comparator CP compares the output detected by the voltage detector S provided on the high voltage side (the side connected to the system) of the main transformer 7M with a preset set value, Outputs a signal when the detected output is larger than the set value.

【0022】通常、設定値は系統が正常電圧であると判
定できる値である。例えば、定格電圧の約85%〜90%。
直流電源10は、系統事故などで電力変換器3の機能が停
止した場合に1次巻線に交流分を発生させ、2次巻線に
発生する電流がゼロ点を切るような直流を供給する。
Usually, the set value is a value with which it can be determined that the system has a normal voltage. For example, about 85% to 90% of the rated voltage.
The DC power supply 10 supplies a direct current such that an AC component is generated in the primary winding when the function of the power converter 3 is stopped due to a system fault or the like, and a current generated in the secondary winding is below the zero point. .

【0023】通常、故障電流は故障発生直後はゼロクロ
スしないが直流分が徐々に減衰するので遮断器が動作す
る時間までにはゼロクロスするようになる。ところが、
可変速機の場合は過電圧保護装置が動作するとき変換器
が停止するので励磁電流がなくなり、一次側の交流分が
小さくなるのでゼロクロスしにくくなる。
Normally, the fault current does not cross zero immediately after the occurrence of the fault, but the DC component gradually attenuates, so that the zero cross occurs by the time when the breaker operates. However,
In the case of a variable speed machine, the converter stops when the overvoltage protection device operates, so that the exciting current disappears and the AC component on the primary side becomes small, which makes it difficult for zero crossing.

【0024】図2は、系統事故発生時の故障電流の動作
を示す減衰特性図である。図2の(A)は、定速機の場
合の故障電流の減衰状態を示すものである。時刻t1に
系統事故が発生すると、電流は過渡的に上がり時間と共
に減衰しゼロ点を切り、時刻t2に遮断器を解放する。
図中の点線は、過渡直流分を示すものである。
FIG. 2 is an attenuation characteristic diagram showing the operation of a fault current when a system fault occurs. FIG. 2A shows the state of decay of the fault current in the case of a constant speed machine. When a system fault occurs at time t1, the current transiently rises, decays with time, cuts off the zero point, and opens the circuit breaker at time t2.
The dotted line in the figure shows the transient DC component.

【0025】図2の(B)は、従来の可変速機の場合の
故障電流の減衰状態を示すものである。時刻t1に系統
事故が発生すると、図3の(A)と同様に電流は過渡的
に上がり時間と共に減衰するが、1次側の交流分が小さ
いため時刻t2でゼロ点通過しない。
FIG. 2B shows the state of attenuation of the fault current in the case of the conventional variable speed machine. When a system fault occurs at time t1, the current transiently rises and decays with time as in the case of FIG. 3A, but since the AC component on the primary side is small, it does not pass through the zero point at time t2.

【0026】時刻t2で遮断すると直流遮断を起こす。
図2(C)は、本実施例の可変速機の場合の故障電流の
減衰状態を示すものである。時刻t1に系統事故が発生
すると、図3の(B)と同様に電流は過渡的に上がり時
間と共に減衰するが、交流化動作を行なうことで交流分
の振幅が大きくなりゼロ点通過するようになるので、遮
断器が開放動作をおこなう前に交流化動作をおこなう。
When the power is cut off at the time t2, the direct current is cut off.
FIG. 2C shows the attenuation state of the fault current in the variable speed machine of this embodiment. When a system fault occurs at time t1, the current transiently rises and decays with time as in the case of FIG. 3B, but by performing the AC operation, the amplitude of the AC component increases and the zero point is passed. Therefore, the AC circuit performs the AC operation before the circuit breaker performs the opening operation.

【0027】制御装置55は、発電電動機の回転子1の回
転位相ωと系統Aの系統周波数fに基づき回転子1の回
転磁界が1次側系統周波数f1に同期するように電力変
換器3から出力される出力電流、すなわち発電電動機の
2次巻線に供給される2次電流の位相を制御する。図示
していない検出器により検出された回転子1の回転磁界
の速度に基づき、系統周波数fと回転子1のすべりsを
求め、回転子1の速度はf(1−s)であり、回転子1
の2次巻線をすべりsに相当する周波数の交流励磁電流
を供給し位相を合わせることで回転子1により発生する
回転磁界はすべり零(同期速度)で回転し、固定子1の
回転磁界の速度と同一になる。
The controller 55 controls the power converter 3 to synchronize the rotating magnetic field of the rotor 1 with the primary side system frequency f1 based on the rotation phase ω of the rotor 1 of the generator motor and the system frequency f of the system A. The output current, that is, the phase of the secondary current supplied to the secondary winding of the generator motor is controlled. Based on the speed of the rotating magnetic field of the rotor 1 detected by a detector (not shown), the system frequency f and the slip s of the rotor 1 are obtained, and the speed of the rotor 1 is f (1-s). Child 1
The rotating magnetic field generated by the rotor 1 rotates at a slip zero (synchronous speed) by supplying an AC exciting current of a frequency corresponding to the slip s to match the phases, and the rotating magnetic field of the stator 1 It will be the same as the speed.

【0028】また、レベル比較器CPから信号が出力さ
れると、電力変換器3の機能を停止させ、直流電源10か
らスイッチ9を介して2次巻線に直流電流を供給し、交
流化動作を行ない発電電動機の1次側の交流分を確保す
る。
When a signal is output from the level comparator CP, the function of the power converter 3 is stopped, and a DC current is supplied from the DC power supply 10 to the secondary winding through the switch 9 to perform the AC conversion operation. To secure the AC component on the primary side of the generator motor.

【0029】以上の構成により、系統事故が発生した場
合、レベル比較器CPの信号により制御装置55は電力変
換器3の機能停止を行なうとともに、直流電源10から2
次巻線に励磁電流を供給させる。遮断器6解放により事
故点が送電線回路から除去されると、2回線送電線の場
合、系統電圧が復旧する。
With the above configuration, when a system fault occurs, the control device 55 stops the function of the power converter 3 by the signal of the level comparator CP, and the DC power supplies 10 to 2
Excitation current is supplied to the next winding. When the fault point is removed from the transmission line circuit by opening the circuit breaker 6, the system voltage is restored in the case of the two-line transmission line.

【0030】遮断器6解放時の発電電動機の内部起電圧
と発電電動機の出力端電圧と主変圧器の高圧側電圧と系
統電圧の状態を、図3の電圧分布図(A),電圧ベクト
ル図(B)とを用いて説明する。
The internal electromotive voltage of the generator motor, the output terminal voltage of the generator motor, the high voltage side voltage of the main transformer and the state of the system voltage when the circuit breaker 6 is released are shown in the voltage distribution diagram (A) and voltage vector diagram of FIG. This will be described with reference to (B).

【0031】故障点の回線の遮断器6が開放すると健全
である側の回線の電圧が回復する。そのときの電圧分布
は図3の(A)のようになる。すなわち、発電電動機の
内部一定電圧VGと系統電圧VLが発電機内部インピ―
ダンスZGと主変圧器7Mのインピ―ダンスZTと送電
線のインピ―ダンスZLを介して接続される。従って、
発電電動機の内部一定電圧VGと系統電圧VLの電圧差
はこれらのインピ―ダンスの比で分圧される。主変圧器
7Mのインピ―ダンスZTは送電線のインピ―ダンスZ
Lに比べて大きいので主変圧器7Mの高圧側の電圧V2
は主変圧器7Mの低圧側V1に比べて系統電圧VLによ
り近い値を示す。よって系統電圧信号を主変圧器7Mの
高圧側からとればより速く系統電圧の回復を検出するこ
とができる。
When the circuit breaker 6 of the line at the failure point is opened, the voltage of the line on the healthy side is restored. The voltage distribution at that time is as shown in FIG. That is, the internal constant voltage VG of the generator motor and the system voltage VL are the internal impedance of the generator.
The dance ZG is connected to the impedance ZT of the main transformer 7M and the impedance ZL of the transmission line. Therefore,
The voltage difference between the internal constant voltage VG of the generator motor and the system voltage VL is divided by the ratio of these impedances. The impedance ZT of the main transformer 7M is the impedance Z of the transmission line.
Since it is larger than L, the voltage V2 on the high voltage side of the main transformer 7M
Indicates a value closer to the system voltage VL than the low voltage side V1 of the main transformer 7M. Therefore, if the system voltage signal is taken from the high voltage side of the main transformer 7M, the system voltage recovery can be detected more quickly.

【0032】すなわち、発電電動機内部一定電圧VGと
系統電圧V2との電圧位相θが大きくずれていた場合、
発電電動機出力端V1は定格より非常に低い値となる。
主変圧器7Mの高圧側の電圧V2は系統側であるため、
電圧位相差θの影響を大きく受けず定格に近い値を得る
ことができる。従って、電圧検出器Sの出力レベルをレ
ベル比較器CPで検出し、この信号で交流化動作をリセ
ットする。
That is, when the voltage phase θ between the constant voltage VG inside the generator motor and the system voltage V2 is greatly deviated,
The generator motor output terminal V1 has a value much lower than the rating.
Since the voltage V2 on the high voltage side of the main transformer 7M is on the system side,
It is possible to obtain a value close to the rating without being greatly affected by the voltage phase difference θ. Therefore, the output level of the voltage detector S is detected by the level comparator CP, and this signal resets the AC operation.

【0033】以上により、従来は交流化動作をリセット
するには発電電動機と系統の電圧位相差が小さくなるま
で待つ必要があったが、本実施例によれば事故点除去と
同時に交流化動作をリセットできるので系統に対して不
要な電流を流すことを防止できるとともに、励磁装置で
ある電力変換器の通常運転への復旧を早めることがで
き、系統故障時の機械入力と電気入力の不均衡による水
車/ポンプの過速度化を抑制することができる。
As described above, in the past, in order to reset the AC operation, it was necessary to wait until the voltage phase difference between the generator motor and the system became small. However, according to the present embodiment, the AC operation is performed at the same time as the accident point is removed. Since it can be reset, unnecessary current can be prevented from flowing to the system, and the power converter, which is an exciter, can be restored quickly to normal operation, and due to the imbalance between mechanical input and electrical input in the event of a system failure. It is possible to suppress overspeed of the water turbine / pump.

【0034】[0034]

【発明の効果】本発明によれば、主変圧器の高圧側の電
圧に基づいて系統事故復帰を検出することにより、系統
上の事故点の除去と同時に交流化動作のリセットを行な
うことで系統へ不要な電流を流すことを防止し、励磁シ
ステムの速やかな復旧を可能とする可変速発電電動機を
得ることができる。
According to the present invention, the system fault recovery is detected on the basis of the voltage on the high voltage side of the main transformer, thereby eliminating the fault point on the system and simultaneously resetting the AC operation. It is possible to obtain a variable-speed generator-motor that prevents unnecessary current from flowing to the excitation system and enables quick recovery of the excitation system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の可変速発電電動機の構成図。FIG. 1 is a configuration diagram of a variable speed generator-motor of the present embodiment.

【図2】系統事故発生時の1次側電流の減衰特性図。FIG. 2 is an attenuation characteristic diagram of the primary side current when a system fault occurs.

【図3】本実施例の遮断器解放時の電圧分布図、電圧ベ
クトル図。
FIG. 3 is a voltage distribution diagram and a voltage vector diagram when the breaker of the present embodiment is released.

【図4】従来の可変速発電電動機の構成図。FIG. 4 is a configuration diagram of a conventional variable speed generator-motor.

【符号の説明】[Explanation of symbols]

1…回転子、2…固定子、3…電力変換装置、4…水車
/ポンプ、5,55…制御装置、6…遮断器、7…主変圧
器、8…変換器変圧器、9…スイッチ、10…直流電源、
A…系統、S…電圧検出器、CP…比較器、VG…発電
電動機内部電圧、V1…発電電動機端子電圧、V2…主
変圧器高圧側電圧、VL…系統電圧、ZL…発電電動機
内部インピ―ダンス、ZT…主変圧器インピ―ダンス、
ZL…系統インピ―ダンス、θ…電圧位相差。
DESCRIPTION OF SYMBOLS 1 ... Rotor, 2 ... Stator, 3 ... Electric power converter, 4 ... Water turbine / pump, 5, 55 ... Control device, 6 ... Circuit breaker, 7 ... Main transformer, 8 ... Converter transformer, 9 ... Switch , 10 ... DC power supply,
A ... system, S ... voltage detector, CP ... comparator, VG ... generator motor internal voltage, V1 ... generator motor terminal voltage, V2 ... main transformer high voltage side voltage, VL ... system voltage, ZL ... generator motor internal impedance Dance, ZT ... Main transformer impedance,
ZL: system impedance, θ: voltage phase difference.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1次巻線が遮断器と変圧器を介し電力系
統に接続され、2次巻線が交流励磁される発電電動機
と、前記変圧器の低圧側を介して降圧された信号に基づ
いて所定の演算処理を施し前記2次巻線を交流励磁を行
なう電力変換器と、発電電動機の回転子の回転位相と電
力系統の系統周波数に基づき回転子の回転磁界が系統周
波数に同期するように前記電力変換器から出力する励磁
電流を制御する制御装置と、系統事故発生時に前記制御
装置により機能停止された前記電力変換器の代わりに前
記2次巻線に直流を供給する直流電源とを有する可変速
発電電動機において、 系統事故発生時に機能停止された前記電力変換器のかわ
りに前記直流電源にて前記2次巻線に直流を供給した場
合、前記遮断器が開放された後、前記変圧器の高圧側で
検出される検出出力と予め設定された設定値との比較を
行ない検出出力が設定値以上になった場合に前記2次巻
線への前記直流電源からの供給を停止させることを特徴
とする可変速発電電動機。
1. A generator motor in which a primary winding is connected to a power system via a circuit breaker and a transformer, and a secondary winding is AC-excited, and a signal stepped down via a low voltage side of the transformer is provided. Based on a power converter that performs a predetermined calculation process on the basis of the above to perform AC excitation on the secondary winding, and a rotating magnetic field of the rotor is synchronized with the system frequency based on the rotation phase of the rotor of the generator motor and the system frequency of the power system. A controller for controlling the exciting current output from the power converter, and a DC power supply for supplying DC to the secondary winding instead of the power converter stopped by the controller when a system fault occurs In the variable-speed generator-motor having the above-mentioned, when DC is supplied to the secondary winding by the DC power supply instead of the power converter that is stopped when a system fault occurs, after the circuit breaker is opened, High voltage side of transformer The detected output detected is compared with a preset set value, and when the detected output exceeds a set value, the supply from the DC power supply to the secondary winding is stopped. Variable speed generator motor.
【請求項2】 前記遮断器が開放された後、前記変圧器
の高圧側で検出される検出電圧と予め設定された設定電
圧との比較を行ない、検出電圧が設定電圧以上になった
場合に前記2次巻線への前記直流電源からの供給を停止
させることを特徴とする請求項1記載の可変速発電電動
機。
2. After the breaker is opened, a comparison between a detection voltage detected on the high voltage side of the transformer and a preset set voltage is performed, and when the detected voltage becomes equal to or higher than the set voltage, 2. The variable speed generator-motor according to claim 1, wherein the supply of the DC power to the secondary winding is stopped.
【請求項3】 前記開放手段により前記遮断器が開放さ
れた後、前記変圧器の高圧側で検出される検出出力と予
め設定された設定値との比較を行ない検出出力が設定値
以上になった場合に前記2次巻線への前記直流電源から
の供給が停止された後、電力変換器を再動作させること
を特徴とする請求項2または請求項3記載の可変速発電
電動機。
3. After the circuit breaker is opened by the opening means, the detection output detected on the high voltage side of the transformer is compared with a preset set value, and the detected output becomes equal to or higher than the set value. The variable speed generator-motor according to claim 2 or 3, wherein the power converter is restarted after the supply of the DC power to the secondary winding is stopped in such a case.
JP6034315A 1994-03-04 1994-03-04 Variable speed generator motor Pending JPH07245872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6034315A JPH07245872A (en) 1994-03-04 1994-03-04 Variable speed generator motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6034315A JPH07245872A (en) 1994-03-04 1994-03-04 Variable speed generator motor

Publications (1)

Publication Number Publication Date
JPH07245872A true JPH07245872A (en) 1995-09-19

Family

ID=12410736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6034315A Pending JPH07245872A (en) 1994-03-04 1994-03-04 Variable speed generator motor

Country Status (1)

Country Link
JP (1) JPH07245872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041459A (en) * 2009-07-30 2011-02-24 Alstom Technology Ltd Static exciter of field winding and method for operating the same
CZ304084B6 (en) * 2008-06-20 2013-10-09 Method of and circuit arrangement for controlling wind power station
CN109687332A (en) * 2019-01-29 2019-04-26 中国电建集团北京勘测设计研究院有限公司 The electrical major loop equipment double-layer arrangement structure of AC excitation speed change pump-storage generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304084B6 (en) * 2008-06-20 2013-10-09 Method of and circuit arrangement for controlling wind power station
JP2011041459A (en) * 2009-07-30 2011-02-24 Alstom Technology Ltd Static exciter of field winding and method for operating the same
CN109687332A (en) * 2019-01-29 2019-04-26 中国电建集团北京勘测设计研究院有限公司 The electrical major loop equipment double-layer arrangement structure of AC excitation speed change pump-storage generator

Similar Documents

Publication Publication Date Title
US7321221B2 (en) Method for operating a wind power plant and method for operating it
CN106067695B (en) Power distribution system
US4931715A (en) Synchronous motor torque control device
US4952852A (en) Power system and synchronizing breakers for a variable speed generator motor system
JP2017184337A (en) Overvoltage prevention apparatus for adjustable speed pumped storage power generation system
JP3043707B2 (en) Pumped storage generator
US6285533B1 (en) Method of and apparatus for controlling the operation of variable speed gearing
JP2020065437A (en) Overvoltage prevention apparatus for adjustable speed pumped storage power generation system
JPH07245872A (en) Variable speed generator motor
JP3774838B2 (en) Accident detection and protection method when starting motor mode of synchronous generator motor, and synchronous generator motor
JP3286049B2 (en) Variable speed power generation system
JP3499078B2 (en) Control and protection equipment for variable speed pumped storage power plants.
JP2020145815A (en) Shaft driving power generator
EP4304081A1 (en) Permanent magnet machine fault protection
JPH1028398A (en) Controller for variable speed generator/motor
JPS6112469B2 (en)
EP3267576B1 (en) Controller and generator-motor starting method
JP2761375B2 (en) Operation control device for induction motor
JPH05284794A (en) Method and apparatus for operating variable speed pumped storage hydroelectric generator facility
JPH04121100A (en) Variable speed pumped-storage power station
JPH06335295A (en) Method and apparatus for controlling variable-speed generator-motor
JP3268457B2 (en) Power system stabilization method and variable speed generator motor
JP3686273B2 (en) AC power system equipment
JP4143269B2 (en) Variable speed system and overvoltage protection device protection method
JPS59226677A (en) Starter of synchronous generating motor of pumping-in power plant