JPH0144977B2 - - Google Patents

Info

Publication number
JPH0144977B2
JPH0144977B2 JP59009680A JP968084A JPH0144977B2 JP H0144977 B2 JPH0144977 B2 JP H0144977B2 JP 59009680 A JP59009680 A JP 59009680A JP 968084 A JP968084 A JP 968084A JP H0144977 B2 JPH0144977 B2 JP H0144977B2
Authority
JP
Japan
Prior art keywords
temperature
output
control means
loop control
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59009680A
Other languages
Japanese (ja)
Other versions
JPS59229127A (en
Inventor
Yasukyo Ueda
Keiichi Mori
Keijiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59009680A priority Critical patent/JPS59229127A/en
Publication of JPS59229127A publication Critical patent/JPS59229127A/en
Publication of JPH0144977B2 publication Critical patent/JPH0144977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves

Description

【発明の詳細な説明】 本発明は温度制御装置付湯沸器に関し、過渡的
な温度変化、特に急激な温度上昇を少なくし、シ
ヤワーなどの安全性と快適性を飛躍的に向上させ
んとするものである。
[Detailed Description of the Invention] The present invention relates to a water heater with a temperature control device, which reduces transient temperature changes, especially rapid temperature rises, and dramatically improves the safety and comfort of showers, etc. It is something to do.

従来の温度制御装置付湯沸器およびその温度制
御特性を第1図〜第5図に従つて説明する。
A conventional water heater with a temperature control device and its temperature control characteristics will be explained with reference to FIGS. 1 to 5.

第1図は最も一般的なガス湯沸器の制御システ
ムである。給水は、給水パイプ2から熱交換器1
へ送られ、ついで水栓6へ送られる。ガスはガス
パイプ3から入り、比例制御弁4を介して熱源で
あるバーナ5で燃焼し、熱交換器1内の水を加熱
する。比例制御弁4は、例えばコイルに流す電流
量で磁力を可変し、弁を上下させてガス流量を連
続的に制御するものである。出湯温度を第2の温
度センサ7で検知し、制御回路8において温度設
定器9によつて決められた設定温度と比較し、そ
の差に応じて比例制御弁4を駆動し、燃焼量を制
御して、出湯温度を設定値に保つものである。し
かし、この場合にはクローズドループ制御の問題
として本体の加熱遅れのため、特に出湯量可変
時、即出湯温度の変化として現れないため、制御
の安定性が悪く、第2図に示すような特性にな
る。縦軸Tは出湯温度、横軸tは経過時間、To
は設定温度、Tiは初期温度であり、図示の如く
設定温度Toを境にして減衰振動を起こす。はな
はだしい場合には永久に振動し、いずれにしても
シヤワー使用時には不快感を与え、火傷の危険さ
れ生ずる。
Figure 1 shows the most common gas water heater control system. Water is supplied from water supply pipe 2 to heat exchanger 1
and then to the faucet 6. Gas enters through a gas pipe 3, passes through a proportional control valve 4, and is combusted in a burner 5, which is a heat source, to heat water in a heat exchanger 1. The proportional control valve 4 continuously controls the gas flow rate by varying the magnetic force by, for example, the amount of current flowing through the coil and moving the valve up and down. The outlet temperature is detected by the second temperature sensor 7, and compared with the set temperature determined by the temperature setting device 9 in the control circuit 8, and the proportional control valve 4 is driven according to the difference to control the combustion amount. This is to maintain the hot water temperature at the set value. However, in this case, the problem with closed-loop control is that there is a delay in the heating of the main unit, which does not appear as an immediate change in the temperature of hot water, especially when the amount of hot water dispensed is variable, resulting in poor control stability and the characteristics shown in Figure 2. become. The vertical axis T is the hot water temperature, and the horizontal axis t is the elapsed time, To
is the set temperature, Ti is the initial temperature, and as shown in the figure, damped oscillation occurs with the set temperature To as a boundary. In severe cases, the shower vibrates permanently, causing discomfort when using the shower and creating a risk of burns.

そこで、本発明者らは第3図に示す如く、給水
温度を第1の温度センサ11で検出し、出湯量を
流量センサ10で検出して制御回路12で (設定温度−給水温度)×出湯量 を演算し、その結果を比例制御弁4に与え燃焼量
を決定する方式を提案したが、オープンループ制
御であるため第4図に示す如く、どうしても設定
温度Toとの偏差ΔTを生じてしまい好ましくな
い。偏差ΔTを生ずる原因は、熱交換器1や比例
制御弁4やバーナ5などの機構部品、センサ7や
制御回路8などの回路部品等の特に直線的変化性
のバラツキによるものであり、その値は不定(つ
まり例えば燃焼量が多いときにはマイナスの値を
とり、燃焼量が少なくなるとプラスの値になる)
であるため、夏場にシヤワーを使うと、予定して
いた温度より熱い湯が突然出て来るということが
多々発生する。
Therefore, as shown in FIG. 3, the inventors of the present invention detect the water supply temperature with the first temperature sensor 11, detect the amount of hot water with the flow rate sensor 10, and control the control circuit 12 by (set temperature - water supply temperature) x output. We have proposed a method in which the amount of hot water is calculated and the result is sent to the proportional control valve 4 to determine the amount of combustion, but since it is an open loop control, a deviation ΔT from the set temperature To inevitably occurs, as shown in Figure 4. Undesirable. The cause of the deviation ΔT is due to variations in the linear variation of mechanical parts such as the heat exchanger 1, proportional control valve 4, and burner 5, and circuit parts such as the sensor 7 and control circuit 8. is indeterminate (for example, when the amount of combustion is large, it takes a negative value, and when the amount of combustion is small, it becomes a positive value)
Therefore, when using a shower in the summer, it often happens that the water suddenly comes out hotter than expected.

又、その他の従来例としては、第5図に示すよ
うな方式のものが知られている。第2の温度セン
サ7が検出する出湯温量、流量センサ10が検出
する出湯量、温度設定器9で決める温度設定値を
制御回路13で処理し、 (設定温度−出湯温度)×出湯量 の演算結果を比例制御弁4に出力し、燃焼量を制
御するものである。しかしこの方式は給水温度の
フアクターが無いため、季節によつてその制御特
性が変化し、結局、第2図に示すような場合が生
ずる。その理由は、同一温度設定、同一出湯量変
化でも、給水温度が高い(夏場)場合には少ない
燃焼量変化を、給水温度が低い(冬場)場合には
多い燃焼量変化を行わないと、過渡的な変化を小
さく押えることができないことによる。
Further, as another conventional example, a system as shown in FIG. 5 is known. The control circuit 13 processes the hot water temperature detected by the second temperature sensor 7, the hot water amount detected by the flow rate sensor 10, and the temperature set value determined by the temperature setting device 9, and The calculation result is output to the proportional control valve 4 to control the combustion amount. However, since this method does not have a factor for supply water temperature, its control characteristics change depending on the season, resulting in the situation shown in FIG. 2. The reason for this is that even with the same temperature setting and the same change in hot water output, unless the change in combustion rate is small when the water supply temperature is high (summer) and the combustion rate is large when the water supply temperature is low (winter), transient This is due to the inability to keep changes small.

本発明は従来の上記欠点を解決するものであ
り、その一実施例を第6図に示す。本発明は制御
器100を設け、その制御器100は、第2の温
度センサ7で検出された出湯温度と温度設定器9
による設定温度とを比較しその温度差に応じて出
力するクローズドループ制御手段8と、第1の温
度センサで検出された水の温度と温度設定器9に
よる設定温度とを比較しその温度差に流量センサ
10で検出された出湯量を乗算するという次式に
示す演算を行い、 (設定温度−給水温度)×出湯量 その値を出力するオープンループ制御手段14
を、オープンループ制御手段の出力を所定の値に
減少させる出力減少制御手段101と、出力減少
制御手段の出力とクローズドループ制御手段の出
力を合成しその合成出力に応じて熱源であるバー
ナ5の燃焼量を制御する出力合成制御手段102
とで構成したものである。この制御器を用いた湯
沸器においては、オープンループ制御とクローズ
ドループ制御の各々の特長のみが引き出され、欠
点は相殺されて極めて小さくなり、したがつてそ
の出湯特性は第7図に示すように過渡的なアンダ
ーシユートおよび特に危険をまねくオーバシユー
トがなくなるとともに常に設定温度に等しい温度
が得られるという、湯沸器としては理想に近い制
御特性が得られるものである。時間tpまでは主に
オープンループ制御出力によつて設定温度Toの
近傍まで急速に引き上げられるが、その値は各構
成部品のバラツキを考慮して出力減少制御手段1
01によつて減じられているため、設定温度To
を越えることはない。しかも、設定温度への未到
達分はクローズドループ制御出力によつてすみや
かに補正されるために、設定温度Toの出湯が確
実に得られるものである。
The present invention solves the above-mentioned drawbacks of the conventional technology, and one embodiment thereof is shown in FIG. The present invention includes a controller 100, which controls the outlet hot water temperature detected by the second temperature sensor 7 and the temperature setting device 9.
A closed loop control means 8 compares the temperature set by the temperature setting device 9 and outputs an output according to the temperature difference, and a closed loop control means 8 compares the temperature of the water detected by the first temperature sensor and the temperature set by the temperature setting device 9 and outputs an output according to the temperature difference. Open loop control means 14 performs the calculation shown in the following formula by multiplying the amount of hot water detected by the flow rate sensor 10, and outputs the value ((set temperature - water supply temperature) x amount of hot water released)
output reduction control means 101 that reduces the output of the open loop control means to a predetermined value; and output reduction control means 101 that combines the output of the output reduction control means and the output of the closed loop control means and controls the burner 5, which is a heat source, according to the combined output. Output synthesis control means 102 that controls the combustion amount
It is composed of In a water heater using this controller, only the advantages of open-loop control and closed-loop control are brought out, and the disadvantages are offset and minimized, so the hot water output characteristics are as shown in Figure 7. This provides nearly ideal control characteristics for a water heater, in that transient undershoots and especially dangerous overshoots are eliminated, and a temperature always equal to the set temperature is obtained. Until the time tp, the temperature is rapidly raised to the vicinity of the set temperature To mainly by the open loop control output, but the value is determined by taking into account the variation of each component and output reduction control means 1.
01, the set temperature To
It never exceeds. Furthermore, since the amount of hot water that does not reach the set temperature is quickly corrected by the closed loop control output, hot water at the set temperature To can be reliably obtained.

上述のアンダーシユート・オーバシユートが小
さくなる具体的理由は、例えば出湯量を減少させ
た場合には (設定温度−給水温度)×出湯量×減少値 ―但し、減少値<1.0― もしくは (設定温度−給水温度)×出湯量−減少値 で示されるオープンループ制御出力が即座に変化
して必要出力に近いが偏差のバラツキを含めても
必要出力を越えない値を出力し、この出力で出湯
温度をほとんど設定温度に近い低目の値に急速に
移動させられるとともに、このオープンループ制
御出力は出湯温度の変化に影響を受けない固定出
力、つまり底上げ出力として安定して存在する。
その上で出湯温度と設定温度との微少なマイナス
の偏差分がクローズドループ制御出力によつて自
動的に補正されるので、出湯温度は設定温度と必
ず一致するとともに、微少偏差分の補正として働
くクローズドループ制御出力の変化は必然的に小
さな値になり、その結果、過渡的なアンダーシユ
ート・オーバシユートを発生させる原因がとり除
かれて、その値が少なくなるものである。上述の
クローズドループ制御出力の変化が必然的に小さ
な値になる点が、オープンループ制御とクローズ
ドループ制御の合成によつて始めて生ずる効果で
あり、しかもその効果は出湯量変化の大小や設定
温度変化の大小にほとんど影響を受けずに安定し
て発揮できるものである。
The specific reason why the above-mentioned undershoot/overshoot becomes small is, for example, when the hot water output amount is decreased, (set temperature - water supply temperature) x hot water output x decrease value - however, decrease value < 1.0 - or (set temperature The open-loop control output, which is expressed as - water supply temperature) × hot water output amount - decrease value, immediately changes to output a value that is close to the required output but does not exceed the required output even if deviation variations are included, and with this output, the hot water output temperature is rapidly moved to a low value almost close to the set temperature, and this open-loop control output stably exists as a fixed output that is not affected by changes in the tapped water temperature, that is, a bottom-up output.
Furthermore, minute negative deviations between the hot water outlet temperature and the set temperature are automatically corrected by the closed loop control output, so the hot water outlet temperature always matches the set temperature and works as a correction for minute deviations. The change in the closed loop control output inevitably becomes a small value, and as a result, the cause of transient undershoot/overshoot is removed and the value becomes small. The fact that the change in the closed-loop control output described above inevitably becomes a small value is an effect that only occurs when open-loop control and closed-loop control are combined. It can be stably demonstrated almost unaffected by the size of the object.

この具体的な制御回路例を第8図に示す。7′
は出湯温度を検知する第2の温度センサ7の負性
感温抵抗素子(以下、サーミスタと称す)であ
る。11′は給水温度を検知する第1の温度セン
サー11のサーミスタである。10′は出湯量を
検知する流量センサ10の感圧抵抗素子であり、
例えば流量を差圧に変換し、その圧力で抵抗値変
化を起こさせるものである。9′は温度設定器9
に用いられる二連の可変抵抗器である。4′は比
例制御弁4のコイルである。20,33は演算増
幅器、32は回路用の電源である。
A concrete example of this control circuit is shown in FIG. 7′
is a negative temperature-sensitive resistance element (hereinafter referred to as a thermistor) of the second temperature sensor 7 that detects the temperature of the tapped water. 11' is a thermistor of the first temperature sensor 11 that detects the temperature of the water supply. 10' is a pressure sensitive resistance element of the flow rate sensor 10 that detects the amount of hot water dispensed;
For example, the flow rate is converted into differential pressure, and that pressure causes a change in resistance value. 9' is temperature setting device 9
This is a double variable resistor used in 4' is a coil of the proportional control valve 4. 20 and 33 are operational amplifiers, and 32 is a power supply for the circuit.

まずオープンループ制御手段14の説明を行
う。抵抗16,17、温度設定用可変抵抗器9′、
給水温度検知用サーミスタ11′でブリツジを構
成し、中点電位の差を演算増幅器20で比較増幅
している。抵抗15はサーミスタ変化を直線化す
るためのものである。この回路の増幅率は、抵抗
18と、流量センサ10′および抵抗19の並列
合成値との比で決定される。抵抗19は流量セン
サ10′の変化を直線化するものである。以上の
回路構成により、演算増幅器20の出力として、 (設定温度−給水温度)×出湯量 に比例した値がオープンループ制御手段14の出
力として得られる。
First, the open loop control means 14 will be explained. Resistors 16, 17, temperature setting variable resistor 9',
A bridge is formed by a thermistor 11' for detecting the supply water temperature, and the difference in midpoint potential is compared and amplified by an operational amplifier 20. The resistor 15 is for linearizing the thermistor change. The amplification factor of this circuit is determined by the ratio of the resistor 18 to the parallel composite value of the flow rate sensor 10' and the resistor 19. Resistor 19 linearizes the variation in flow rate sensor 10'. With the above circuit configuration, the output of the operational amplifier 20 is a value proportional to (set temperature - water supply temperature) x amount of hot water dispensed as the output of the open loop control means 14 .

次に出力減少制御手段101の説明を行う。演
算増幅器20の出力を抵抗34,35で分割し、
その中点を出力減少制御手段101の出力として
いる。例えばバラツキ、変動分等を考慮し演算値
の80%で駆動すると出湯温度が上がり過ぎること
が無い場合には、抵抗34と35の比を2:8に
設定することで目的を達成できる。この例では演
算値に一定比0.8を乗算して減少させるものであ
り、この他にも一定値を引いたり、その値をある
関数値にしたり等、色々な構成が考えられるもの
ではあるが、設定温度にすみやかに一致させるた
めには、その減少値は極力少ない方が良いのは当
然であり、その為に例えば各センサの直線化を促
す並列抵抗15,19,21等が接続されている
ものである。
Next, the output reduction control means 101 will be explained. The output of the operational amplifier 20 is divided by resistors 34 and 35,
The midpoint is set as the output of the output reduction control means 101. For example, if the outlet temperature does not rise too much when driven at 80% of the calculated value, taking into account variations and fluctuations, the objective can be achieved by setting the ratio of resistors 34 and 35 to 2:8. In this example, the calculated value is reduced by multiplying it by a constant ratio of 0.8, but there are many other possible configurations such as subtracting a constant value or making that value a certain function value. In order to quickly match the set temperature, it is natural that the decrease value should be as small as possible, and for this reason, for example, parallel resistors 15, 19, 21, etc. are connected to promote linearization of each sensor. It is something.

次にクローズドループ制御手段8の説明を行
う。抵抗22,23、温度設定用可変抵抗器9′
と出湯温度検知用サーミスタ7′とでブリツジを
構成し、中点電位の差を演算増幅器33で比較増
幅している。抵抗21はサーミスタ7′の変化を
直線化するためのものである。この回路の増幅率
は抵抗24と25の比で決定されると同時に、積
分用コンデンサ26が接続されているため、設定
温度と検出温度との差がある限り積分が行われ、
演算増幅器33の出力を変化させ、これがクロー
ズドループ制御手段8の出力となる。出力合成制
御手段102は、抵抗27,28を介してトラン
ジスタ30のベースを駆動し、比例制御弁コイル
4′を電流を加減するものであり、抵抗29はト
ランジスタ30のエミツタ抵抗、31はコイル
4′の誘起電圧吸収用ダイオードである。
Next, the closed loop control means 8 will be explained. Resistors 22, 23, temperature setting variable resistor 9'
and the thermistor 7' for detecting the hot water temperature, forming a bridge, and the difference between the midpoint potentials is compared and amplified by the operational amplifier 33. The resistor 21 is for linearizing the change in the thermistor 7'. The amplification factor of this circuit is determined by the ratio of the resistors 24 and 25, and since the integrating capacitor 26 is connected, integration is performed as long as there is a difference between the set temperature and the detected temperature.
The output of the operational amplifier 33 is changed, and this becomes the output of the closed loop control means 8. The output synthesis control means 102 drives the base of the transistor 30 via resistors 27 and 28 to adjust the current flowing through the proportional control valve coil 4'. ' is a diode for absorbing induced voltage.

本発明の作用効果を以下にまとめる。 The effects of the present invention are summarized below.

(1) オープンループ制御手段の出力は出力減少制
御手段によつて所定の値に減少されて出力され
るので、機構部品や回路部品のバラツキや直線
的変化性のバラツキなどによつて間違つて設定
温度よりも高い温度が出てしまう危険性が無く
なり、しかもオープンループ制御手段の出力に
よる温度未到達分はクローズドループ制御手段
の出力によつてすみやかに補正されるために設
定温度の出湯が確実に得られる。
(1) Since the output of the open-loop control means is reduced to a predetermined value by the output reduction control means, it is possible to avoid errors caused by variations in mechanical parts or circuit parts or variations in linear variation. There is no danger that the temperature will be higher than the set temperature, and in addition, any temperature that has not reached the temperature due to the output of the open-loop control means is quickly corrected by the output of the closed-loop control means, so hot water is reliably delivered at the set temperature. can be obtained.

(2) オープンループ制御出力が底上げ出力として
安定して存在し、その上で出湯温度と設定温度
との微少なマイナスの偏差分がクローズドルー
プ制御出力によつて自動的に補正される構成な
ので、微少偏差分の補正として働くクローズド
ループ制御出力の変化は必然的に小さな値にな
り、その結果、過渡的なアンダーシユート・オ
ーバシユートを発生させる原因がとり除かれて
その値が小さくなる。
(2) The open-loop control output exists stably as a bottom-up output, and on top of that, the minute negative deviation between the tapped water temperature and the set temperature is automatically corrected by the closed-loop control output. The change in the closed loop control output that acts as a correction for minute deviations inevitably becomes a small value, and as a result, the cause of transient undershoot/overshoot is removed and the value becomes small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の構成図、第2図はその温度制
御特性を示す図、第3図は別の従来例の構成図、
第4図はその温度制御特性を示す図、第5図はさ
らに別の従来例の構成図、第6図は本発明の湯沸
器の構成図、第7図はその温度制御特性を示す
図、第8図は制御回路の実施例を示す回路図であ
る。 1…熱交換器、2…給水パイプ、4…比例制御
弁、5…熱源(バーナ)、7…第2の温度センサ、
8…クローズドループ制御手段、9…温度設定
器、10…流量センサ、11…第1の温度セン
サ、14…オープンループ制御手段、100…制
御器、101…出力減少制御手段、102…出力
合成制御手段。
Fig. 1 is a configuration diagram of a conventional example, Fig. 2 is a diagram showing its temperature control characteristics, and Fig. 3 is a configuration diagram of another conventional example.
Fig. 4 is a diagram showing its temperature control characteristics, Fig. 5 is a block diagram of another conventional example, Fig. 6 is a block diagram of the water heater of the present invention, and Fig. 7 is a diagram showing its temperature control characteristics. , FIG. 8 is a circuit diagram showing an embodiment of the control circuit. 1... Heat exchanger, 2... Water supply pipe, 4... Proportional control valve, 5... Heat source (burner), 7... Second temperature sensor,
8... Closed loop control means, 9... Temperature setter, 10... Flow rate sensor, 11... First temperature sensor, 14... Open loop control means, 100... Controller, 101... Output reduction control means, 102... Output combination control means.

Claims (1)

【特許請求の範囲】[Claims] 1 熱源と、前記熱源の熱を水に伝える熱交換器
と、前記熱交換器へ向う水の温度を検出する第1
の温度センサと、前記熱交換器から出て来た出湯
の温度を検出する第2の温度センサと、前記の水
の流量を検出する流量センサと、前記第1の温度
センサによつて検出された水の温度と設定温度と
を比較しその温度差に前記流量センサで検出され
た流量を乗算した乗算値を出力するオープンルー
プ制御手段および前記第2の温度センサで検出さ
れた出湯温度と設定温度とを比較しその温度差に
応じて出力するクローズドループ制御手段および
前記オープンループ制御手段の出力を所定の値に
減少させる出力減少制御手段および前記出力減少
制御手段の出力と前記クローズドループ制御手段
の出力を合成しその合成出力に応じて前記熱源を
制御する出力合成制御手段からなる制御器とを備
えた湯沸器。
1 a heat source, a heat exchanger that transfers heat from the heat source to water, and a first device that detects the temperature of the water heading toward the heat exchanger.
a second temperature sensor that detects the temperature of the hot water coming out of the heat exchanger, a flow rate sensor that detects the flow rate of the water, and a temperature sensor that is detected by the first temperature sensor. open loop control means that compares the temperature of the heated water with a set temperature and outputs a multiplied value obtained by multiplying the temperature difference by the flow rate detected by the flow rate sensor; and the outlet temperature detected by the second temperature sensor and the set temperature. closed-loop control means for comparing the temperature and outputting the output according to the temperature difference; output reduction control means for reducing the output of the open-loop control means to a predetermined value; and the output of the output reduction control means and the closed-loop control means. and a controller comprising an output synthesis control means for synthesizing the outputs of and controlling the heat source according to the synthesized output.
JP59009680A 1984-01-23 1984-01-23 Water heater Granted JPS59229127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59009680A JPS59229127A (en) 1984-01-23 1984-01-23 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009680A JPS59229127A (en) 1984-01-23 1984-01-23 Water heater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15022778A Division JPS5575156A (en) 1978-12-04 1978-12-04 Hot-water heating system

Publications (2)

Publication Number Publication Date
JPS59229127A JPS59229127A (en) 1984-12-22
JPH0144977B2 true JPH0144977B2 (en) 1989-10-02

Family

ID=11726918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009680A Granted JPS59229127A (en) 1984-01-23 1984-01-23 Water heater

Country Status (1)

Country Link
JP (1) JPS59229127A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380116A (en) * 1986-09-19 1988-04-11 Matsushita Electric Ind Co Ltd Hot water feeder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922270A (en) * 1972-06-20 1974-02-27
JPS4972585A (en) * 1972-11-20 1974-07-12
JPS5096953A (en) * 1973-12-27 1975-08-01
JPS5253018U (en) * 1975-10-14 1977-04-15
JPS53125652A (en) * 1977-04-07 1978-11-02 Tokyo Gas Co Ltd Automatic combustion control system for hot water supply appliances

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922270A (en) * 1972-06-20 1974-02-27
JPS4972585A (en) * 1972-11-20 1974-07-12
JPS5096953A (en) * 1973-12-27 1975-08-01
JPS5253018U (en) * 1975-10-14 1977-04-15
JPS53125652A (en) * 1977-04-07 1978-11-02 Tokyo Gas Co Ltd Automatic combustion control system for hot water supply appliances

Also Published As

Publication number Publication date
JPS59229127A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
JPS6141823A (en) Setter for charging and interrupting cycle of burner
JPS6157529B2 (en)
JPH0144977B2 (en)
JPS6157976B2 (en)
JPS58158444A (en) Controller for heating liquid
JPS6122216B2 (en)
JPS6011299B2 (en) temperature control device
JPH0240444Y2 (en)
JP2808736B2 (en) Water heater control device
JPH01203844A (en) Hot-water apparatus
JPS6056967B2 (en) water heater
JPH0665927B2 (en) Combustion control device
JPS61250447A (en) Control of hot-water supplier
JPS5814681B2 (en) temperature control device
JPH0416115Y2 (en)
JP2006029173A (en) Circulating pump control system
JPS61289266A (en) Flow amount control of hot-water supplier
JP2577477B2 (en) Fluid heating controller
JPH0338590Y2 (en)
JP3033415B2 (en) Hot water supply control device
JPH0123070Y2 (en)
JPH0325026Y2 (en)
JPS6235575B2 (en)
JPH01150741A (en) Control device for feed hot water temperature of hot water feeder
JPS60235913A (en) Burning control device