JPS6011299B2 - temperature control device - Google Patents

temperature control device

Info

Publication number
JPS6011299B2
JPS6011299B2 JP3016776A JP3016776A JPS6011299B2 JP S6011299 B2 JPS6011299 B2 JP S6011299B2 JP 3016776 A JP3016776 A JP 3016776A JP 3016776 A JP3016776 A JP 3016776A JP S6011299 B2 JPS6011299 B2 JP S6011299B2
Authority
JP
Japan
Prior art keywords
temperature
flow rate
control
amount
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3016776A
Other languages
Japanese (ja)
Other versions
JPS52112844A (en
Inventor
康清 上田
慶一 森
継治郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3016776A priority Critical patent/JPS6011299B2/en
Publication of JPS52112844A publication Critical patent/JPS52112844A/en
Publication of JPS6011299B2 publication Critical patent/JPS6011299B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】 本発明は流体温度制御の改良に関するものである。[Detailed description of the invention] The present invention relates to improvements in fluid temperature control.

電磁式比例制御弁を用いた瞬間湯沸器を例にとり、従来
の温度制御装置を第1図で説明する。
A conventional temperature control device will be explained with reference to FIG. 1, taking as an example an instantaneous water heater using an electromagnetic proportional control valve.

第1図で1は熱交換器であってバーナ4とともに加熱手
段を構成しており、バーナ4の燃焼熱を水パイプ2から
入って釆た水へ熱交換し、水道蛇口3から給湯する。ガ
スはガスパィプ6、電磁式比例制御弁5を介してガスバ
ーナへ供給される。電磁式比例制御弁5は内蔵するコイ
ルに流れる電流量に応じて連続的に弁の開度が変わり、
ガスを比例的に制御するものあり、その特性を第2図に
示す。縦軸0はガス流量、横軸1はコイル電流であり、
電流量に比例してガス量が変化する。給湯溢度は従来の
場合は熱交換器出口点に装着された温度検出手段である
負性感温抵抗素子×(以下サーミスタと呼ぶ)によって
検出され、その出力は電磁式比例制御弁5とともに加熱
手段の加熱量を制御し流体の温度制御を行う制御手段を
構成する比較増幅器7を介して電磁式比例制御弁5のコ
イルに加えられ、ガス量を制御して一定温度に保たせる
のであるが制御の安定性に問題があった。
In FIG. 1, reference numeral 1 denotes a heat exchanger, which together with a burner 4 constitutes a heating means, which exchanges the combustion heat of the burner 4 with boiled water that enters from a water pipe 2, and supplies hot water from a water tap 3. Gas is supplied to the gas burner via a gas pipe 6 and an electromagnetic proportional control valve 5. The electromagnetic proportional control valve 5 continuously changes the valve opening depending on the amount of current flowing through the built-in coil.
There is a device that controls gas proportionally, and its characteristics are shown in Figure 2. The vertical axis 0 is the gas flow rate, the horizontal axis 1 is the coil current,
The amount of gas changes in proportion to the amount of current. Conventionally, the overflow of hot water is detected by a negative temperature-sensitive resistance element (hereinafter referred to as a thermistor) which is a temperature detection means installed at the exit point of the heat exchanger, and its output is transmitted to the heating means together with the electromagnetic proportional control valve 5. It is applied to the coil of the electromagnetic proportional control valve 5 through the comparator amplifier 7, which constitutes a control means that controls the amount of gas heated and controls the temperature of the fluid, and controls the amount of gas to maintain a constant temperature. There was a stability problem.

そこで比較増幅器7の従来の具体回路を第3図に示す。
8は電源であり、前記サーミスタ×と固定抵抗13,1
4,17とでブリッジを形成し、中点電位をトランジス
タ15で比較している。
Therefore, a conventional concrete circuit of the comparator amplifier 7 is shown in FIG.
8 is a power supply, and the thermistor × and fixed resistors 13, 1
4 and 17 form a bridge, and the midpoint potential is compared by the transistor 15.

出湯溢度が低い場合にはサーミスタXの抵抗値が大きく
、そのためトランジスタ15が付勢され、トランジスタ
11で増幅して電磁式比例制御弁5のコイル10‘こ電
流を流す。出湯温度が設定温度より低ければ低い程電流
が大きくなり、燃焼量が増大し閉ループ制御により出湯
温度を設定温度に引き上げる。固定抵抗16はトランジ
スター 1のベース抵抗、固定抵抗12はトランジスタ
1 1のェミッ夕抵抗、ダイオード9はコイル10の逆
起電力吸収用である。この場合の制御特性を第4図に示
す。
When the overflow of hot water is low, the resistance value of the thermistor X is large, so the transistor 15 is energized, and the current is amplified by the transistor 11 to flow through the coil 10' of the electromagnetic proportional control valve 5. The lower the outlet temperature is than the set temperature, the larger the current is, the more the combustion amount increases, and the closed loop control raises the outlet temperature to the set temperature. The fixed resistor 16 is the base resistance of the transistor 1, the fixed resistor 12 is the emitter resistance of the transistor 11, and the diode 9 is for absorbing the back electromotive force of the coil 10. The control characteristics in this case are shown in FIG.

縦軸にサーミスタ×の検出温度(給湯温度)Txとして
、また、その時の給湯量をWとして示し、横軸に経過時
間をtとして示してある。今、時間0に到るまでは給湯
量がそ、その時の検出温度がnで安定していたとする。
時間○で給湯量をmに変えると、熱交換器の遅れなどに
より、即座に検出温度が上昇せず、その間は従来の燃焼
量を維持する。その結果、多少の時間経過後、急激に検
出温度が上昇し、それに応じて燃焼量が絞られるが、設
定温度nより高い間は過大に燃焼量を絞る。その内、検
出温度は下降するが、前記の絞り過ぎのために設定温度
に達しも更に下降を続ける。それに応じて燃焼量が増大
し、設定温度nより低い間は過大な燃焼量を供給する。
その内、検出温度は上昇するが、前記の過大な燃焼量の
ために設定温度に達しても更に上昇を続ける。以下これ
をくり返し、次第に減衰して設定温度nに安定するが、
脈動時間が長く、はなはだしい場合には永久に脈動を続
ける。つまり、この従来の構成では、検出温度は設定温
度に常に一致するように作用するが安定性が極めて悪い
欠点を有する。
The vertical axis shows the temperature detected by the thermistor x (hot water supply temperature) Tx, the amount of hot water supplied at that time is shown as W, and the horizontal axis shows the elapsed time as t. Now, it is assumed that the amount of hot water supplied is n and the detected temperature at that time is stable until time 0 is reached.
When the hot water supply amount is changed to m at time ○, the detected temperature does not rise immediately due to a delay in the heat exchanger, and the conventional combustion amount is maintained during that time. As a result, after some time has elapsed, the detected temperature suddenly rises, and the combustion amount is reduced accordingly, but the combustion amount is excessively reduced while the temperature is higher than the set temperature n. In the meantime, the detected temperature decreases, but because of the above-mentioned excessive throttling, it continues to decrease even after reaching the set temperature. The combustion amount increases accordingly, and an excessive combustion amount is supplied while the temperature is lower than the set temperature n.
In the meantime, the detected temperature rises, but due to the above-mentioned excessive combustion amount, it continues to rise even after reaching the set temperature. After repeating this, it gradually decreases and stabilizes at the set temperature n, but
If the pulsation time is long and extreme, the pulsation will continue forever. In other words, in this conventional configuration, the detected temperature always works to match the set temperature, but has the drawback of extremely poor stability.

時間を短くするために流体の流量、つまり給湯量を検出
する手段を設けて、その流量信号で燃焼量を変化させる
方法もある。その従来例を第5図に示す。給湯量を検出
するために給湯パイプ中にオリフィス18を形成し、前
後の差圧を検出して抵抗値の変化に替える圧力センサY
からの信号とサーミスタXからの信号とで燃焼量を制御
するものある。第6図に具体回路例を示す。第3図と異
りサーミスタXと直列に圧力センサYを接続したもので
あり、温度変化に加えて、給湯量が変化した場合でも出
力が変化する。例えば、給湯量が減少した場合には差圧
が少なくなり、圧力センサYの抵抗値が小さくなってコ
イル10への電流を減少させ、燃焼量を下げるものであ
る。この場合の特性を第7図に示す。総湯量の変化が則
燃焼量を変化として表れるため、温度変動幅が小さく安
定に到るまでの時間も少〈て済む。しかし、温度信号に
温度制御と直接関り合いのない給湯量信号が車畳して温
度の閉ループ制御を行う構成であるため、給湯量信号の
大きさによって温度設定が変化し、温度が設定温度nか
らpだけずれて安定してしまう。
In order to shorten the time, there is also a method of providing a means for detecting the fluid flow rate, that is, the amount of hot water supplied, and changing the combustion amount based on the flow rate signal. A conventional example is shown in FIG. In order to detect the amount of hot water supplied, an orifice 18 is formed in the hot water supply pipe, and a pressure sensor Y detects the differential pressure before and after and converts it into a change in resistance value.
There is one that controls the combustion amount using the signal from the thermistor X and the signal from the thermistor X. FIG. 6 shows a specific circuit example. Unlike FIG. 3, a pressure sensor Y is connected in series with the thermistor X, and the output changes even when the amount of hot water supplied changes in addition to temperature changes. For example, when the amount of hot water supplied decreases, the differential pressure decreases, and the resistance value of the pressure sensor Y decreases, reducing the current to the coil 10 and lowering the combustion amount. The characteristics in this case are shown in FIG. Since changes in the total amount of hot water appear as changes in the regular combustion amount, the range of temperature fluctuations is small and it takes less time to reach stability. However, since the temperature signal is combined with a hot water supply amount signal, which is not directly related to temperature control, to perform closed-loop control of the temperature, the temperature setting changes depending on the magnitude of the hot water supply amount signal, and the temperature changes to the set temperature. It deviates from n by p and becomes stable.

このずれpの値は、給湯量信号の大小と、制御系によっ
て異るとともに、正にも負にもなり得る。圧力センサ以
外に、給湯パイプ中に装着したプロペラの回転数によっ
て流量を直接検出するものや、制御回路として給湯量を
、熱交換器の入口、出口間の差温との積で燃焼量を決定
するような複雑なものもあるが、いずれも温度ずれpが
発生する。しかし、実際に制御したいのは温度であるも
のが多く、特にシャワー温度制御などは数度の変化でも
層が敏感に感じとり好ましくない。本発明は安定な制御
を行うために流量信号を利用するが、閉ループ制御は温
度で行い前記欠点を解決したものである。
The value of this deviation p varies depending on the magnitude of the hot water supply amount signal and the control system, and can be positive or negative. In addition to pressure sensors, there are devices that directly detect the flow rate based on the rotation speed of the propeller installed in the hot water pipe, and control circuits that determine the amount of hot water to be heated by multiplying it by the difference in temperature between the inlet and outlet of the heat exchanger. Although there are some complicated ones such as the following, a temperature deviation p occurs in all of them. However, in many cases what is actually desired to control is temperature, and this is particularly undesirable in shower temperature control as the layers are sensitive to changes even by a few degrees. The present invention uses a flow rate signal to perform stable control, but the closed-loop control is performed using temperature to solve the above-mentioned drawbacks.

第8図に本発明の実施例の回路を示す。FIG. 8 shows a circuit according to an embodiment of the present invention.

第3図と異なる点は、サーミスタ×と固定抵抗17の接
続点と、圧力センサY′と固定抵抗19の接続点とをコ
ンデンサ20で接続した所である。この構成では圧力セ
ンサYが検出する流量変化の大きさに応じた流量信号が
サーミスタ×の温度信号に加わって出力に影響を与える
ので、流量変化に応じて即座に必要加熱量近傍まで加熱
量が変わる。
The difference from FIG. 3 is that the connection point between the thermistor x and the fixed resistor 17 and the connection point between the pressure sensor Y' and the fixed resistor 19 are connected by a capacitor 20. In this configuration, the flow rate signal corresponding to the magnitude of the flow rate change detected by pressure sensor Y is added to the temperature signal of thermistor change.

したがって流量変化にともなう温度変化が少なくなり、
それによって安定に到る時間も短くなる。しかし、流量
、温度とも安定した時点ではコンデンサ20に流れる電
流は零であり、圧力センサYの値に関係なくサーミスタ
×と固定抵抗13,14,17で定まる閉ループ制御に
よって設定通りの温度が得られる。
Therefore, temperature changes due to flow rate changes are reduced,
This also shortens the time it takes to reach stability. However, when both the flow rate and temperature are stabilized, the current flowing through the capacitor 20 is zero, and regardless of the value of the pressure sensor Y, the set temperature can be obtained by closed loop control determined by thermistor x and fixed resistors 13, 14, and 17. .

その時の特性を第9図に示す。The characteristics at that time are shown in FIG.

第9図では第7図と同様温度変動幅が小さく、安定に到
るまでの時間も少し、。しかも安定温度は設定温度nに
落ちつく。このように本発明の温度制御を用いることに
より制御温度に影響を与えることなく、制御の安定性が
飛躍的に向上するものである。
In Figure 9, as in Figure 7, the temperature fluctuation range is small, and it takes a little time to reach stability. Moreover, the stable temperature settles down to the set temperature n. As described above, by using the temperature control of the present invention, the stability of control is dramatically improved without affecting the control temperature.

以上、給湯用瞬間湯沸器を例に掲げて説明してきたが、
第10図に示すようなガスフアーネスでも同様である。
The above has been explained using an instantaneous water heater for hot water supply as an example.
The same applies to a gas furnace as shown in FIG.

第1図と同じ番号のものは機能が同一である。21はフ
ァーネス外体である。
Components with the same numbers as in FIG. 1 have the same functions. 21 is a furnace outer body.

燃焼熱は熱交換器1を通って排気筒22から排出される
が、熱は送風機23から送られる空気と熱交換し吹出口
23′から温風を供給する。ファーネスにおいては吹出
口23′からの温風の温度制御を行うので、吹出口23
′にサーミスタXを装着して温度検知を行い、風量は送
風機23の回転数をセンサY″で検出し、前述湯溌器の
場合と同機安定な制御を行うものである。以上のように
機器の種類を問わず、本発明が有効に働く。
Combustion heat passes through the heat exchanger 1 and is exhausted from the exhaust stack 22, but the heat is exchanged with air sent from the blower 23 and hot air is supplied from the blower outlet 23'. In the furnace, the temperature of the hot air from the outlet 23' is controlled.
A thermistor The present invention works effectively regardless of the type.

また燃軍制御弁として電磁式比例弁を例に掲げ説明して
来たが、連続制御に限らず多段階制御においても有効で
あり、更に弁を用いないもの、例えば熱源がヒータであ
っても前記コイルの替りにヒータを接続するだけで本発
明が採用でき、機器や熱源によって本発明精神が限定さ
れるものではない。以上のように本発明の温度制御装置
は、流体加熱手段と、前記流体の流量を検出する手段と
、前記加熱手段による加熱後の流体温度を検出する手段
と、前記流量検出手段からの流量信号を入力として前記
加熱手段の加熱量を制御するとともに前記温度検出手段
からの温度信号を前記流量信号とは無関係に構成された
設定値に一致させる開ループ制御を行うことにより前記
流量信号の値に関係なく前記流体の温度を設定値に制御
する制御手段を有しているので、流量変化にともなう温
度変化が少なくなり、それによって安定に到る時間も短
くなり、しかも安定時には設定通りの温度が得られる特
長を有する。
In addition, although we have explained using an electromagnetic proportional valve as an example of a fuel control valve, it is effective not only in continuous control but also in multi-step control, and even if the heat source is a heater. The present invention can be employed simply by connecting a heater instead of the coil, and the spirit of the present invention is not limited by the equipment or heat source. As described above, the temperature control device of the present invention includes a fluid heating means, a means for detecting the flow rate of the fluid, a means for detecting the fluid temperature after heating by the heating means, and a flow rate signal from the flow rate detecting means. The value of the flow rate signal is controlled by controlling the heating amount of the heating means using the input as input, and performing open loop control to match the temperature signal from the temperature detection means with a set value configured independently of the flow rate signal. Since it has a control means that controls the temperature of the fluid to the set value regardless of the flow rate, the temperature changes due to changes in flow rate are reduced, thereby shortening the time it takes to reach stability.Moreover, when the temperature is stable, the temperature remains as set. It has the advantages that can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従釆の瞬間湯沸器の温度制御構成図、第2図は
第1図で用いた電磁式比例制御弁の特性図、第3図は従
来の温度制御回路図、第4図は従来の温度制御特性図、
第5図は瞬間傷沸器の温度制御構成図の他の例を示す構
成図、第6図は従来の他例の温度制御回路例図、第7図
は第5図、第6図での特性図、第8図は本発明の実施例
における温度制御回路図、第9図はその温度制御特性図
、第10図はガスフアーネスに用いた場合の温度制御構
成図である。 1・・・熱交換器、4・・・ガスバーナ(1とで加熱手
段を構成)、5・・・電磁式比例制御弁、7・・・比較
増幅器(5とで制御手段を構成)、10・・・電磁式比
例制御弁のコイル、113,14,17・・・固定抵抗
、15…トランジスタ、20…コンデンサ、X・・・負
性感温抵抗素子(温度検出手段)、Y′・・・圧力セン
サ(流量検出手段)。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図
Figure 1 is a temperature control configuration diagram of a secondary instantaneous water heater, Figure 2 is a characteristic diagram of the electromagnetic proportional control valve used in Figure 1, Figure 3 is a conventional temperature control circuit diagram, and Figure 4. is the conventional temperature control characteristic diagram,
Fig. 5 is a block diagram showing another example of the temperature control block diagram of an instant boiler, Fig. 6 is a diagram showing another example of a conventional temperature control circuit, and Fig. 7 is a diagram showing another example of a temperature control circuit diagram of an instantaneous boiler. FIG. 8 is a temperature control circuit diagram in an embodiment of the present invention, FIG. 9 is a temperature control characteristic diagram thereof, and FIG. 10 is a temperature control configuration diagram when used in a gas furnace. DESCRIPTION OF SYMBOLS 1... Heat exchanger, 4... Gas burner (constituting heating means together with 1), 5... Electromagnetic proportional control valve, 7... Comparative amplifier (constituting control means together with 5), 10 ... Coil of electromagnetic proportional control valve, 113, 14, 17... Fixed resistor, 15... Transistor, 20... Capacitor, X... Negative temperature sensitive resistance element (temperature detection means), Y'... Pressure sensor (flow rate detection means). Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 1 流体加熱手段と、前記流体の流量を検出する手段と
、前記加熱手段による加熱後の流体温度を検出する手段
と、前記流体検出手段からの流量信号を入力として前記
加熱手段の加熱量を制御するとともに前記温度検出手段
からの温度信号を前記流量信号とは無関係に構成された
設定値に一致させる閉ループ制御を行うことにより前記
流量信号の値に関係なく前記流体の温度を設定値に制御
する制御手段とを有する温度制御装置。
1 A fluid heating means, a means for detecting the flow rate of the fluid, a means for detecting the fluid temperature after heating by the heating means, and a flow rate signal from the fluid detecting means is input to control the heating amount of the heating means. At the same time, the temperature of the fluid is controlled to the set value regardless of the value of the flow rate signal by performing closed loop control to match the temperature signal from the temperature detection means with a set value configured independently of the flow rate signal. A temperature control device having a control means.
JP3016776A 1976-03-19 1976-03-19 temperature control device Expired JPS6011299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3016776A JPS6011299B2 (en) 1976-03-19 1976-03-19 temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3016776A JPS6011299B2 (en) 1976-03-19 1976-03-19 temperature control device

Publications (2)

Publication Number Publication Date
JPS52112844A JPS52112844A (en) 1977-09-21
JPS6011299B2 true JPS6011299B2 (en) 1985-03-25

Family

ID=12296184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3016776A Expired JPS6011299B2 (en) 1976-03-19 1976-03-19 temperature control device

Country Status (1)

Country Link
JP (1) JPS6011299B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056967B2 (en) * 1978-12-14 1985-12-12 松下電器産業株式会社 water heater
CN111426052B (en) * 2020-03-25 2024-01-23 华帝股份有限公司 Constant-temperature type gas water heater and control method thereof

Also Published As

Publication number Publication date
JPS52112844A (en) 1977-09-21

Similar Documents

Publication Publication Date Title
US4585165A (en) Means for setting the switching on and off periods of a burner of a hot water heating installation
CS207367B2 (en) Heat-conducting system control
JPS6157529B2 (en)
GB2237665A (en) Boiler control
JPS6011299B2 (en) temperature control device
JPS6144111Y2 (en)
JPS634096B2 (en)
JPH0240444Y2 (en)
JPS6034010B2 (en) gas water heater
JPS6056967B2 (en) water heater
JPS5814681B2 (en) temperature control device
JPH0144977B2 (en)
JPH0325026Y2 (en)
JPS6326825B2 (en)
JP3534865B2 (en) Air-fuel ratio control device for combustor
JPS5952721B2 (en) Water heater temperature control device
JPH0311657Y2 (en)
JPS5941714A (en) Water heater
JPH0416115Y2 (en)
JPH0240443Y2 (en)
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JPS6235575B2 (en)
JPH029337Y2 (en)
JPS61147055A (en) Fluid heating device
JPS587245Y2 (en) Water temperature control device for water heater