JPH0144518B2 - - Google Patents

Info

Publication number
JPH0144518B2
JPH0144518B2 JP54102263A JP10226379A JPH0144518B2 JP H0144518 B2 JPH0144518 B2 JP H0144518B2 JP 54102263 A JP54102263 A JP 54102263A JP 10226379 A JP10226379 A JP 10226379A JP H0144518 B2 JPH0144518 B2 JP H0144518B2
Authority
JP
Japan
Prior art keywords
thin film
temperature
vanadium
metal
magne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54102263A
Other languages
Japanese (ja)
Other versions
JPS5627136A (en
Inventor
Masaharu Fukuma
Sakae Maebotoke
Shintaro Myazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10226379A priority Critical patent/JPS5627136A/en
Publication of JPS5627136A publication Critical patent/JPS5627136A/en
Publication of JPH0144518B2 publication Critical patent/JPH0144518B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/705Compositions containing chalcogenides, metals or alloys thereof, as photosensitive substances, e.g. photodope systems

Description

【発明の詳細な説明】 本発明は、Magne´li相特有の半導体−金属の転
移を有する光記録用のVO2よりなる薄膜を得るも
のにおいて、真空蒸着法を用いて、VO2よりなる
薄膜を再現性よく製造することに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is for obtaining a thin film of VO 2 for optical recording having a semiconductor-metal transition characteristic of the Magne´li phase. It is related to manufacturing with good reproducibility.

従来、バナジウムのMagne´li相化合物の中でも
VO2は60〜70℃で半導体−金属転移を起こし、そ
の際に光に対する反射特性、透過特性に大きな温
度ヒステリシスを示すことから、光記録用材料と
して考えられている。また、バナジウム元素の一
部をTi、Cr、Nb、Mo、Ta、W等の元素と置き
換えることにより、転移温度を変化させることが
できることが知られている。
Conventionally, among the Magne´li phase compounds of vanadium,
VO 2 undergoes a semiconductor-metal transition at 60 to 70°C and exhibits large temperature hysteresis in its light reflection and transmission properties, so it is considered as a material for optical recording. Furthermore, it is known that the transition temperature can be changed by replacing a part of the vanadium element with elements such as Ti, Cr, Nb, Mo, Ta, and W.

このようなVO2薄膜の製造方法として、反応性
蒸着法(Duchene等、Thin Solid Films12、231
(1972))、および反応性スパツタ法(Smith等、
Appl.Phys.Lett、23、437(1973))が知られてい
る。しかしながら、前者において蒸着後の処理が
不明なために、必ずしも良好なVO2膜が作成でき
にないという問題点が残されている。また、後者
においては、薄膜の生成が反応時の雰囲気調整に
敏感で、再現性が因難であるといつた欠点のある
ものである。
A reactive vapor deposition method (Duchene et al., Thin Solid Films12, 231) is a method for producing such VO2 thin films.
(1972)), and the reactive sputtering method (Smith et al.
Appl.Phys.Lett, 23, 437 (1973)) is known. However, in the former method, the problem remains that a good VO 2 film cannot necessarily be created because the post-evaporation process is unclear. In addition, the latter method has the disadvantage that the formation of a thin film is sensitive to the atmosphere adjustment during the reaction, and reproducibility is difficult.

特に、反応性蒸着法による薄膜の作成において
は、蒸着物の基板への付着速度が早いために、蒸
着膜内のVとOの原子的配列が乱れ、Magne´li相
特有のVO層とO層の周期的構造が実現されず、
蒸着後の熱処理による再配列化が不可欠であり、
蒸着後の熱処理条件の確立を必要とするものであ
つた。
In particular, when creating a thin film using the reactive vapor deposition method, the deposition rate on the substrate is fast, so the atomic arrangement of V and O in the deposited film is disordered, and the VO layer and O The periodic structure of the layers is not realized;
Rearrangement by heat treatment after vapor deposition is essential;
It was necessary to establish heat treatment conditions after vapor deposition.

本発明の目的とするところは、光記録用のバナ
ジウムを用いてのMagne´li相化合物薄膜の製造に
おける、上記に挙げた従来の方法における蒸着時
の雰囲気調整に起因する薄膜中の組成および構造
の不安定性を改善して、再現性の良い薄膜の製造
方法を提供するにある。
The object of the present invention is to investigate the composition and structure of a thin film caused by the atmosphere adjustment during vapor deposition in the conventional method mentioned above in the production of a Magne´li phase compound thin film using vanadium for optical recording. The purpose of the present invention is to provide a method for manufacturing a thin film with good reproducibility by improving the instability of the film.

本発明における光記録用薄膜の製造方法の特徴
とするところは、半導体−金属転移を示す
Magne´li相化合物よりなる光記録用薄膜を製造す
るものにおいて、酸素分圧(0.2〜3)×10-4Torr
の真空雰囲気中にて、ガラス、パイレツクス、石
英、またはサフアイア等よりなる基板上に、基板
温度を500℃±100℃になして、金属バナジウムま
たはMagne´li相を形成するTi、Cr、Nb、Mo、
Ta、W等の他の金属元素を合金化したバナジウ
ム合金を加熱して真空蒸着を行つて蒸着膜を形成
し次に該蒸着膜を流量毎分400c.c.〜800c.c.の高純度
窒素ガス雰囲気中、温度400〜550℃にて、1〜10
時間熱処理することにある。このような本発明に
より得られる薄膜は再現性のよい半導体−金属の
転移特性を有し、反射光および透過光強度の温度
変化において特有のヒステリシスを示すものであ
る。
The feature of the method for producing a thin film for optical recording according to the present invention is that it exhibits semiconductor-metal transition.
In manufacturing optical recording thin films made of Magne´li phase compounds, oxygen partial pressure (0.2 to 3) × 10 -4 Torr
Ti, Cr, Nb, which forms a metallic vanadium or Magne´li phase on a substrate made of glass, pyrex, quartz, sapphire, etc. at a substrate temperature of 500°C ± 100°C in a vacuum atmosphere of Mo,
A vanadium alloy made by alloying other metal elements such as Ta and W is heated and vacuum evaporated to form a vapor deposited film. 1 to 10 at a temperature of 400 to 550℃ in a nitrogen gas atmosphere
It is time heat treated. The thin film obtained according to the present invention has semiconductor-metal transition characteristics with good reproducibility, and exhibits a unique hysteresis in the intensity of reflected light and transmitted light with respect to temperature changes.

まず、本発明による光記録用のバナジウムまた
はバナジウム合金を用いてのMagne´li相化合物薄
膜の作成手順を具体的に述べる。
First, the procedure for producing a thin film of a Magne'li phase compound using vanadium or vanadium alloy for optical recording according to the present invention will be specifically described.

蒸発源としては、金属バナジウム(99.9%純
度)または金属バナジウムと金属Ti、Cr、Nb、
Mo、Ta、W等との合金金属を用い、そのような
金属のフイラメント状またはリボン状のものに電
流を流すか、またはその他の方法によりそのよう
な金属を加熱し、(0.2〜3)×10-4Torrの酸素分
圧を有する減圧雰囲気中で昇華物をガラス、パイ
レツクス、石英またはサフアイア等の基板上に蒸
着する。この際、基板温度が400〜600℃になるよ
うに加熱する。このようにして形成された基板上
の蒸着膜は、室温において基板からはがれること
なく、また蒸着膜の表面状態は、温度によらず滑
らかで金属光沢を有するものである。次に、この
蒸着膜を、400〜800c.c./minの窒素ガス気流中
で、400〜550℃、1〜10時間熱処理することによ
り、VO2に近い組成の薄膜(以下「VO2よりなる
薄膜」と総称する)が得られる。熱処理時間は膜
厚、温度により選定する。
Evaporation sources include metallic vanadium (99.9% purity) or metallic vanadium and metallic Ti, Cr, Nb,
Using a metal alloyed with Mo, Ta, W, etc., by passing an electric current through a filament or ribbon shape of such metal, or by heating such metal by other methods, (0.2 to 3) The sublimate is deposited on a substrate such as glass, pyrex, quartz or sapphire in a reduced pressure atmosphere with an oxygen partial pressure of 10 -4 Torr. At this time, the substrate is heated to a temperature of 400 to 600°C. The vapor deposited film on the substrate thus formed does not peel off from the substrate at room temperature, and the surface condition of the vapor deposited film is smooth and has a metallic luster regardless of the temperature. Next, this vapor-deposited film is heat-treated at 400-550°C for 1-10 hours in a nitrogen gas flow of 400-800 c.c./min to form a thin film with a composition close to VO 2 (hereinafter referred to as "more than VO 2" ). A thin film (collectively referred to as "thin film") is obtained. The heat treatment time is selected depending on the film thickness and temperature.

以下に、本発明を実施例につき具体的に詳細に
説明する。
Hereinafter, the present invention will be specifically explained in detail with reference to examples.

実施例 1 フイラメント状金属バナジウム(99.9%純度)
に電流を流して加熱し、2.5×10-4Torrの酸素分
圧減圧雰囲気中での昇華物を500℃に加熱したパ
イレツクスガラス基板上に蒸着させて、厚さ900
Å程度のバナジウム酸物の蒸着膜を形成した。次
にこのものを650c.c./minの窒素ガス気流中で500
℃、2時間熱処理した。得られたVO2薄膜のKr
レーザ(λ=0.799μm)で測定した反射光強度、
透過光強度の温度変化に対する値を図示したのが
第1図の曲線(反射光)および(透過光)で
ある。第1図の曲線およびから解るように、
この薄膜は50〜80℃でVO2薄膜の半導体−金属転
移に特有の温度ヒステリシスを示し、転移点付近
で反射率は約30%、透過率は約18%減少し温度幅
約20℃のヒステリシスを示した。
Example 1 Filamentary metal vanadium (99.9% purity)
The sublimate was deposited on a Pyrex glass substrate heated to 500°C in a reduced oxygen partial pressure atmosphere of 2.5 × 10 -4 Torr to form a 900° thick glass substrate.
A vapor-deposited film of vanadium oxide with a thickness of about Å was formed. Next, this material was heated to 500°C in a nitrogen gas flow of 650c.c./min.
It was heat-treated at ℃ for 2 hours. Kr of the obtained VO2 thin film
Reflected light intensity measured by laser (λ = 0.799 μm),
The curves (reflected light) and (transmitted light) in FIG. 1 illustrate the value of transmitted light intensity with respect to temperature change. As can be seen from the curves in Figure 1,
This thin film exhibits temperature hysteresis characteristic of the semiconductor-to-metal transition of VO 2 thin films at 50 to 80°C. Near the transition point, the reflectance decreases by about 30% and the transmittance decreases by about 18%, resulting in a hysteresis with a temperature range of about 20°C. showed that.

実施例 2 実施例1の場合と同様にして、ただし酸素分圧
は2×10-5Torrである減圧雰囲気中で蒸着膜を
作成し、その後400c.c./minの窒素ガス気流中で、
550℃、1時間の熱処理を行つた。このようにし
て得られた薄膜の反射率および透過率の温度変化
は50〜80℃でそれぞれ、30%および20%であつ
た。また、ヒステリシス幅は20℃で、第1図に示
す、実施例1のものとほぼ同様であつた。
Example 2 A vapor deposited film was created in the same manner as in Example 1 in a reduced pressure atmosphere with an oxygen partial pressure of 2 × 10 -5 Torr, and then in a nitrogen gas flow of 400 c.c./min.
Heat treatment was performed at 550°C for 1 hour. The temperature changes in reflectance and transmittance of the thin film thus obtained were 30% and 20%, respectively, at 50 to 80°C. Further, the hysteresis width was 20° C., which was almost the same as that of Example 1 shown in FIG.

実施例 3 実施例1の場合と同様にして、ただし酸素分圧
は3×10-4Torrである減圧雰囲気中で蒸着膜を
作成し、その後800c.c./minの窒素ガス気流中で、
400℃、10時間の熱処理を行つた。このようにし
て得られた薄膜の反射率および透過率の温度変化
は60〜75℃でいずれも約30%であつた。また、ヒ
ステリシス幅は約10℃で第1図に示した実施例1
のものに比較して狭くなつたが、その形状はほぼ
同様であつた。
Example 3 A vapor deposited film was created in the same manner as in Example 1 in a reduced pressure atmosphere with an oxygen partial pressure of 3×10 -4 Torr, and then in a nitrogen gas flow of 800 c.c./min.
Heat treatment was performed at 400°C for 10 hours. The change in reflectance and transmittance of the thin film thus obtained with temperature was about 30% at 60 to 75°C. In addition, the hysteresis width is approximately 10°C, and the hysteresis width is approximately 10°C.
Although it was narrower than the previous one, its shape was almost the same.

上記の実施例1、2、3から、蒸着膜の蒸着時
の酸素分圧は(0.2×3)×10-4Torr、蒸着膜蒸着
後の熱処理条件としては400〜800c.c./minの窒素
ガス気流中、400〜550℃の温度で1〜10時間が良
好なVO2よりなる薄膜を得る条件であることを立
証できる。また、実施例1の、場合を例にとれ
ば、第1図の曲線から、薄膜を60〜65℃に加熱し
ておいて強いレーザ光を照射すると反射光強度お
よび透過光強度は照射部分のみ点2および2′で
示す値となり、非常射部分1および1′とそれぞ
れ差を生じる。すなわち、2,2′は光による記
録状態であり、1,1′と2,2′との差を読みと
ることにより光記録の読み出しができる。また、
消去は温度を室温まで下げることによりなされ
る。
From the above Examples 1, 2, and 3, the oxygen partial pressure during vapor deposition of the vapor-deposited film was (0.2×3)×10 -4 Torr, and the heat treatment conditions after vapor-deposited film were 400 to 800 c.c./min. It can be verified that 1 to 10 hours at a temperature of 400 to 550° C. in a nitrogen gas stream is the condition for obtaining a good thin film of VO 2 . Taking the case of Example 1 as an example, from the curve in Figure 1, if the thin film is heated to 60 to 65°C and irradiated with strong laser light, the reflected light intensity and transmitted light intensity will only be at the irradiated part. The values are shown at points 2 and 2', which are different from the non-radiant parts 1 and 1', respectively. That is, 2, 2' is a recorded state by light, and the optical recording can be read by reading the difference between 1, 1' and 2, 2'. Also,
Erasing is accomplished by lowering the temperature to room temperature.

実施例 4 上記の実施例1においては蒸着源として金属バ
ナジウムを用いたのに対し、本実施例においては
金属バナジウムの約5重量%を金属タングステン
(W)に置き換えたバナジウム合金を母金属とし、
その他の条件は上記実施例1と同一条件で、蒸着
膜を基板上に形成し、そのものにつき熱処理を行
つた。その結果は、半導体−金属転移温度が約45
℃であつた以外は、第1図に示すものと同一傾向
の温度ヒステリシスが得られた。
Example 4 In Example 1 above, metal vanadium was used as the vapor deposition source, whereas in this example, a vanadium alloy in which about 5% by weight of the metal vanadium was replaced with metal tungsten (W) was used as the base metal,
The other conditions were the same as in Example 1 above, and a vapor-deposited film was formed on the substrate, and then heat-treated. The result is that the semiconductor-metal transition temperature is approximately 45
Temperature hysteresis with the same tendency as shown in FIG. 1 was obtained, except that the temperature was 0.degree.

上記においては、Magne´li相化合物用の合金用
金属としてWを用いたが、他のMagne´li相金属元
素であるTi、Cr、Nb、Mo、TaをVと合金化し
た母金属を用いて蒸着膜を蒸着し、同様の熱処理
条件で熱処理を施すことによつて半導体−金属転
移を有するVO2よりなる薄膜が得られることが同
様にして確認された。
In the above, W was used as the alloy metal for the Magne´li phase compound, but a base metal in which other Magne´li phase metal elements Ti, Cr, Nb, Mo, and Ta were alloyed with V was used. It was similarly confirmed that a thin film made of VO 2 having a semiconductor-metal transition can be obtained by depositing a film using the same method and performing heat treatment under the same heat treatment conditions.

以上の諸実施例においては蒸着源としてフイラ
メント状のバナジウム金属またはバナジウム合金
を用いることについて述べたが、同様にしてリボ
ン状のものも用いることができるものである。
In the above embodiments, a filament-shaped vanadium metal or vanadium alloy is used as the vapor deposition source, but a ribbon-shaped one can also be used in the same manner.

実施例 5 本実施例においては、蒸着源としてバナジウム
金属を用い、タングステンバスケツト内で、酸素
分圧2×10-4Torrの減圧雰囲気中で溶融し、上
記の実施例の場合と同様に、蒸着物を基板上に蒸
着させた。そのものにつき実施例3の場合と同様
の熱処理を施したところ、60〜70℃に転移点を有
するVO2よりなる薄膜が得られた。
Example 5 In this example, vanadium metal is used as a vapor deposition source, melted in a reduced pressure atmosphere with an oxygen partial pressure of 2×10 -4 Torr in a tungsten basket, and vapor-deposited as in the above example. material was deposited onto the substrate. When this material was subjected to the same heat treatment as in Example 3, a thin film made of VO 2 having a transition point of 60 to 70°C was obtained.

上記における蒸着源としてバナジウム金属の代
りに、実施例4に用いたタングステンとバナジウ
ムとの合金の母合金金属を用いて溶融して蒸着源
として蒸着膜を形成し、そのものを同様の条件に
よつて熱処理したところ、半導体−金属転移を有
するVO2よりなる薄膜を得ることができた。
Instead of the vanadium metal as the vapor deposition source in the above, the mother alloy metal of the alloy of tungsten and vanadium used in Example 4 was melted to form a vapor deposition film as the vapor deposition source, and the same was heated under the same conditions. When heat treated, a thin film made of VO 2 with semiconductor-metal transition could be obtained.

以上の実施例におけるものは、蒸着膜の蒸着工
程後に、熱処理を施したものであるが、熱処理を
施さない単に蒸着したままの薄膜の反射率および
透過率は、第1図に示すようなMagne´li相VO2
有の急峻な変化は示さないことから、本発明にお
ける熱処理工程は光記録用のVO2よりなる薄膜作
成上不可欠の条件であることがわかる。また、そ
のような単なる蒸着工程のみによる膜は、上記熱
処理温度より高温側および低温側では第1図に見
られるようなヒステリシスは見られず、従つて
VO2またはVO2を主体とするMagne´li相化合物で
はないことが確認された。
In the above examples, heat treatment was performed after the vapor deposition process of the vapor-deposited film, but the reflectance and transmittance of the thin film that was simply vapor-deposited without heat treatment were determined by Magnetism as shown in Figure 1. Since there is no sharp change peculiar to the 'li phase VO 2 , it can be seen that the heat treatment step in the present invention is an essential condition for producing a thin film made of VO 2 for optical recording. In addition, such a film produced only by a simple vapor deposition process does not exhibit hysteresis as seen in Figure 1 at higher and lower temperatures than the above heat treatment temperature.
It was confirmed that it was not a VO 2 or a Magne´li phase compound mainly composed of VO 2 .

上記の実施例から解るように、本発明方法は工
程制御の容易な膜蒸着工程と熱処理工程とよりな
るものであるので、再現性よく半導体−金属転移
を示すVO2よりなる薄膜を製造することができる
ものである。また、第1図を参照しての説明に明
らかなように、このようなVO2よりなる薄膜は高
いコントラスト比をもつ光記録材料として用いる
ことが可能である。また、他元素との合金を蒸発
源とすることにより、同様なものにおいて転移温
度を変化させることのできるものである。
As can be seen from the above examples, the method of the present invention consists of a film deposition step and a heat treatment step, which can be easily controlled, so that it is possible to produce a thin film made of VO 2 that exhibits a semiconductor-metal transition with good reproducibility. It is something that can be done. Further, as is clear from the explanation with reference to FIG. 1, such a thin film made of VO 2 can be used as an optical recording material having a high contrast ratio. Furthermore, by using an alloy with other elements as an evaporation source, the transition temperature can be changed in similar products.

以上の説明に明らかなように、本発明によれば
光記録用のVO2よりなるMagne´li相化合物薄膜を
再現性良く得ることができるものであり、本発明
の効果は極めて顕著であると言うことができる。
As is clear from the above explanation, according to the present invention, it is possible to obtain a thin film of a Magne´li phase compound made of VO 2 for optical recording with good reproducibility, and the effects of the present invention are extremely remarkable. I can say it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例により製造された
VO2薄膜のKrレーザ光(λ=0.799μm)を用い
て測定した反射光強度、透過光強度の温度変化を
示すグラフである。 1……65℃に温度バイアスをかけた時の、非照
射部分の、透過光強度点、1′……同上、同上、
反射光強度点、2……同上、光記射部分の、透過
光強度点、2′……同上、同上、反射光強度点。
FIG. 1 shows a product manufactured according to an embodiment of the present invention.
2 is a graph showing temperature changes in reflected light intensity and transmitted light intensity measured using Kr laser light (λ=0.799 μm) of a VO 2 thin film. 1...The transmitted light intensity point of the non-irradiated part when applying a temperature bias to 65℃, 1'...Same as above, Same as above,
Reflected light intensity point, 2... Same as above, transmitted light intensity point of the optical recording part, 2'... Same as above, same as above, reflected light intensity point.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体−金属転移を示すMagne´li相化合物よ
りなる光記録用薄膜を製造するものにおいて、酸
素分圧(0.2〜3)×10-4Torrの真空雰囲気中に
て、ガラス、パイレツクス、石英、またはサフア
イア等よりなる基板上に、基板温度を500℃±100
℃になして、金属バナジウムまたはMagne´li相を
形成するTi、Cr、Nb、Mo、Ta、W等の他の金
属元素を合金化したバナジウム合金を加熱して真
空蒸着を行つて蒸着膜を形成し、次に該蒸着膜を
流量毎分400c.c.〜800c.c.の高純度窒素ガス雰囲気
中、温度400〜550℃にて、1〜10時間熱処理する
ことを特徴とする光記録用薄膜の製造方法。
1. In the production of optical recording thin films made of Magne'li phase compounds exhibiting semiconductor-metal transition, glass, pyrex , quartz, Or, on a substrate made of sapphire etc., the substrate temperature is 500℃±100.
℃, vacuum vapor deposition is performed by heating metallic vanadium or a vanadium alloy alloyed with other metal elements such as Ti, Cr, Nb, Mo, Ta, and W that form the Magne´li phase. and then heat-treating the deposited film at a temperature of 400 to 550°C for 1 to 10 hours in a high-purity nitrogen gas atmosphere with a flow rate of 400 c.c. to 800 c.c. per minute. Method of manufacturing thin film for use.
JP10226379A 1979-08-13 1979-08-13 Manufacture of photorecording thin film Granted JPS5627136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10226379A JPS5627136A (en) 1979-08-13 1979-08-13 Manufacture of photorecording thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10226379A JPS5627136A (en) 1979-08-13 1979-08-13 Manufacture of photorecording thin film

Publications (2)

Publication Number Publication Date
JPS5627136A JPS5627136A (en) 1981-03-16
JPH0144518B2 true JPH0144518B2 (en) 1989-09-28

Family

ID=14322701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10226379A Granted JPS5627136A (en) 1979-08-13 1979-08-13 Manufacture of photorecording thin film

Country Status (1)

Country Link
JP (1) JPS5627136A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587394A (en) * 1981-07-06 1983-01-17 Fuji Photo Film Co Ltd Heat-mode recording material
US4864537A (en) * 1982-04-14 1989-09-05 University Of Utah Polymers and dye combinations and methods for their use in optical recording
US4789965A (en) * 1986-10-31 1988-12-06 The University Of Utah Methods and compositions for recording optical information employing molecular pseudorotation
JPH0426914U (en) * 1990-06-26 1992-03-03

Also Published As

Publication number Publication date
JPS5627136A (en) 1981-03-16

Similar Documents

Publication Publication Date Title
JP2003500783A (en) Hybrid disc manufacturing method and hybrid disc
US4172718A (en) Ta-containing amorphous alloy layers and process for producing the same
JPH0144518B2 (en)
JPS62128015A (en) Magneto-resistance effect type magnetic head
JPH0320007A (en) Manufacture of magnetic thin film
JP3002720B2 (en) Vanadium oxide thin film and method for producing the same
JPH01158633A (en) Information recording medium
JPH02163363A (en) Production of transparent conductive film
JPH02430B2 (en)
JPH083546A (en) Production of thermochromic material
JPH0444812B2 (en)
JPS61190028A (en) Alloy having variable spectral reflectance and recording material
US6190763B1 (en) Magnetooptic thin film, magnetoopic record medium
Zhang et al. VO2 Films Prepared By Atomic Layer Deposition and RF Magnetron Sputtering
JPS63293154A (en) Manufacture of thin titanium oxide film
JPH09161340A (en) Magneto-optical recording medium and its production
JPS62124642A (en) Production of thin magnetooptic film
JPH06292826A (en) Production of composite super fine particles
JPH0582342A (en) Thin film for magneto-resistance effect element and its manufacture
JP3254471B2 (en) Manufacturing method of epitaxial multilayer film
JPS62124643A (en) Thin magnetooptic film and its production
JP3116454B2 (en) Method for producing organic polysilane and / or silicon carbide thin film
JPS61208648A (en) Production of optical recording medium
JPS60112490A (en) Production of optical information recording member
JPS63281250A (en) Magnetooptics thin film material and manufacture thereof