JPS61208648A - Production of optical recording medium - Google Patents
Production of optical recording mediumInfo
- Publication number
- JPS61208648A JPS61208648A JP4938185A JP4938185A JPS61208648A JP S61208648 A JPS61208648 A JP S61208648A JP 4938185 A JP4938185 A JP 4938185A JP 4938185 A JP4938185 A JP 4938185A JP S61208648 A JPS61208648 A JP S61208648A
- Authority
- JP
- Japan
- Prior art keywords
- film
- recording
- optical recording
- current
- recording film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Optical Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
光記録媒体において、書き込みを行なう前に記録膜を結
晶化する際に、記録膜に電流を流しながら熱処理を行な
うことによって、記録膜として最適の結晶状態を達成す
ることが可能である。[Detailed Description of the Invention] [Summary] In an optical recording medium, when crystallizing the recording film before writing, heat treatment is performed while passing a current through the recording film, thereby achieving the optimum crystalline state for the recording film. It is possible to achieve this.
本発明は光記録媒体の製造方法、特に、記録膜に光を照
射して反射率または透過率を選択的に変化させて信号を
記録する光記録媒体の製造方法に係る。The present invention relates to a method of manufacturing an optical recording medium, and particularly to a method of manufacturing an optical recording medium in which a signal is recorded by irradiating a recording film with light to selectively change reflectance or transmittance.
反射率または透過率の変化を利用して信号や記録を行な
う光記録媒体は、一般的に、光を選択的に照射して非結
晶質と結晶質の間、あるいは結晶質の間で、記録膜の状
態を変化させて記録を行なうことができる。Optical recording media that perform signals and recording using changes in reflectance or transmittance generally perform recording between amorphous and crystalline materials or between crystalline materials by selectively irradiating light. Recording can be performed by changing the state of the film.
従来、反射率、透過率の変化を利用した光ディスクは、
アクリル基板あるいはガラス基板上にカルコゲナイド系
合金、m−v族化合物その他の半導体などの記録材料を
蒸着法あるいはスパッタ法で成膜する。しかし、こうし
て堆積しただけの記録膜は一般に結晶構造の乱れた不安
定な状態であり、そのまま書き込みに用いるのに適当な
状態ではない。そこで、我々は、これを最適化するため
に、記録膜を恒温槽中で熱処理して結晶化する方法をと
っている。Conventionally, optical discs that utilize changes in reflectance and transmittance are
A recording material such as a chalcogenide alloy, m-v group compound, or other semiconductor is deposited on an acrylic substrate or a glass substrate by vapor deposition or sputtering. However, the recording film deposited in this manner is generally in an unstable state with a disordered crystal structure, and is not in a state suitable for use as is for writing. Therefore, in order to optimize this, we have adopted a method in which the recording film is heat-treated in a constant temperature bath to crystallize it.
しかしながら、記録膜を恒温槽中で熱処理した場合、結
晶粒が大きく成長したり、また結晶化にムラが生じたり
して、光記録におけるノイズレベルが増大するという問
題点があった。However, when the recording film is heat-treated in a constant temperature bath, crystal grains grow large and crystallization becomes uneven, resulting in an increase in the noise level in optical recording.
本発明は、上記問題点を解決するために、記録膜を成膜
後、結晶化のために熱処理する際に、記録膜に電流を流
すものである。In order to solve the above-mentioned problems, the present invention supplies a current to the recording film during heat treatment for crystallization after the recording film is formed.
カルコゲナイド系合金などの記録材料は結晶化の際に電
流を流すと、結晶を形成する原子間の結合が電荷により
切断されるので、記録膜の結晶化における粒成長が抑制
され、光記録膜にとって所望な、粒径のそろった、微結
晶を得ることが可能になる。こうした通電が結晶成表に
及ぼす作用は薄膜技術の分野では周知の事項である。こ
うして、印加電流、電圧、熱処理の温度、時間を適宜調
整することによって、所望の結晶状態を達成することが
可能になる。When a current is applied to a recording material such as a chalcogenide alloy during crystallization, the bonds between the atoms that form the crystal are broken by the electric charge, which suppresses grain growth during crystallization of the recording film, making it a good choice for optical recording films. It becomes possible to obtain microcrystals with a desired uniform particle size. This effect of energization on crystal growth is well known in the field of thin film technology. In this way, a desired crystalline state can be achieved by appropriately adjusting the applied current, voltage, temperature and time of heat treatment.
〔実施例〕
例1
第1図を参照して説明する。外径30抛mの円板状ガラ
ス基板1上に透明電極膜2としてSnugあるいはIT
O(インジウム−スズ−酸化物)を蒸着した。膜厚は5
0〜500na+の範囲内が適当である。[Example] Example 1 This will be explained with reference to FIG. 1. Snug or IT is applied as a transparent electrode film 2 on a disk-shaped glass substrate 1 with an outer diameter of 30 mm.
O (indium-tin-oxide) was deposited. Film thickness is 5
A range of 0 to 500 na+ is appropriate.
従来の光ディスク等では基板1と記録膜3の間にSiO
□等の保護膜を形成していたが、この例では透明電極膜
2が記録膜3の下側の保護膜の役割をも担うので、特別
に保護膜を付加する必要はない。In conventional optical discs, etc., SiO is placed between the substrate 1 and the recording film 3.
A protective film such as □ was formed, but in this example, since the transparent electrode film 2 also plays the role of a protective film under the recording film 3, there is no need to add a special protective film.
透明電極膜2の上に記録膜3としてTe −Sn合金膜
を形成した。真空蒸着装置内に装着した基板を回転しな
がら、独立に温度制御できる2つの蒸着源からそれぞれ
TeとSnを蒸着することによって、Te:Snの原子
比が8=2の合金膜3を基板(透明電極膜)上に堆積し
た。膜厚は150nsであった。このような堆積しただ
けの合金膜は、・結晶構想が乱れた不規則な状態(非結
晶状態)である。A Te--Sn alloy film was formed as a recording film 3 on the transparent electrode film 2. The alloy film 3 with a Te:Sn atomic ratio of 8=2 is deposited on the substrate ( transparent electrode film). The film thickness was 150ns. Such a deposited alloy film is in an irregular state (non-crystalline state) with a disordered crystal structure.
合金膜3上に保護膜4としてSnO□あるいはITOを
厚さ150na+に蒸着した。このような円板を2枚用
意し、そのうち1方には、保護II!4の上にさらに金
属電極膜5としてクロムを厚さ200nmはと蒸着した
。SnO□ or ITO was deposited as a protective film 4 on the alloy film 3 to a thickness of 150 na+. Prepare two such discs, one of which has Protection II! Chromium was further vapor-deposited as a metal electrode film 5 to a thickness of 200 nm.
これらの円板を恒温槽に入れ、150℃で1時間加熱し
た。但し、その間、金属電極膜5を有する円板は、第1
図に示す如く、金属電極膜5と透明電極膜2の間に10
0vの電圧をかけて電流を流した。These disks were placed in a constant temperature bath and heated at 150° C. for 1 hour. However, during that time, the disk having the metal electrode film 5 is
As shown in the figure, between the metal electrode film 5 and the transparent electrode film 2,
A voltage of 0V was applied and a current was caused to flow.
加熱終了後、それぞれの円板から記録膜3の小片を剥が
して透過型電子顕微鏡で観察したところ、どちらの円板
の記録膜も多結晶状態であった。電流を流さなかった円
板の結晶粒の粒径は約数100nI11〜2μmの範囲
内、電流を流した円板のそれは約5on1m〜100n
sの範囲内であった。すなわち、電流を流した方が、結
晶粒の大きさは小さくかつ大きさがそろっている。After the heating was completed, a small piece of the recording film 3 was peeled off from each disc and observed under a transmission electron microscope, and it was found that the recording film of both discs was in a polycrystalline state. The grain size of the crystal grains of the disk in which no current was passed was within the range of approximately several 100 nI11 to 2 μm, and that of the disk in which current was passed was approximately 5 on 1 m to 100 nm.
It was within the range of s. In other words, when a current is applied, the crystal grains are smaller and more uniform in size.
これらの円板(記録媒体)に、回転数600rpa+で
’l MHzの信号を記録してC/N比(キャリヤ対ノ
イズ比)を測定(バンド幅30kHz)したところ、電
流を流さなかった円板では43dB、電流を流した円板
では47dBであうた。すなわち、熱処理の際に電流を
流したことによってC/Nの4dBの増加が認められた
。 □lu
例1の手順を繰り返した。但し、例1では直流電圧を印
加して電流を流したが、この例では100V、50Hz
の交流電圧を印加して電流を流した。When the C/N ratio (carrier-to-noise ratio) was measured (bandwidth 30 kHz) by recording a 1 MHz signal at a rotation speed of 600 rpa+ on these discs (recording media), it was found that the discs that did not conduct current The current was 43 dB, and the current was 47 dB. That is, an increase in C/N of 4 dB was observed by flowing current during heat treatment. □lu The procedure of Example 1 was repeated. However, in Example 1, a DC voltage was applied to cause current to flow, but in this example, 100V, 50Hz
An alternating current voltage was applied to cause a current to flow.
電流を流さなかうた円板のC/N比は43dB、電流を
流した円板のC/N比は48dBであった。The C/N ratio of the disk with no current flowing through it was 43 dB, and the C/N ratio of the disk with current flowing through it was 48 dB.
例3
例1と同様にしてTe−Sn合金を記録材料とする円板
状光記録媒体を2枚作成した。但し、この例では透明電
極膜2の代りにSin、膜を作成し、また、記録膜にお
けるTe:Snの原子比を85:15、膜厚を10on
−とした。また、合金膜上にはSiO□保護膜のみを形
成し、金属電極膜は形成しなかった。Example 3 In the same manner as in Example 1, two disc-shaped optical recording media were prepared using a Te-Sn alloy as the recording material. However, in this example, a Sin film was created instead of the transparent electrode film 2, and the atomic ratio of Te:Sn in the recording film was 85:15, and the film thickness was 10 on.
−. Further, only a SiO□ protective film was formed on the alloy film, and no metal electrode film was formed.
次に、円板の中心を通る断面図である第2図を参照して
1枚の円板への電流の流し方を説明する。Next, with reference to FIG. 2, which is a cross-sectional view passing through the center of the disk, a method of passing current through one disk will be explained.
ガラス基板11上に記録膜に(この記録膜12はTe−
5層合金膜の上下をSin、の保護膜で挟んだ3層から
なる。)が形成されている。すなわち、この記録媒体は
従来と同じ構造を有している。この記録膜12の内周と
外周にそれぞれ銅製の内リング13と外リング14を載
せ、これを押え板15で加圧して、リング13.14と
記録膜12との間の接触を確実にする。そして、内リン
グ13と外リング14の間に100vの電圧を印加する
ことによって記録膜12に電流を流した。A recording film is formed on the glass substrate 11 (this recording film 12 is made of Te-
It consists of three layers with a five-layer alloy film sandwiched between upper and lower sides of a protective film of Sin. ) is formed. That is, this recording medium has the same structure as the conventional one. An inner ring 13 and an outer ring 14 made of copper are placed on the inner and outer peripheries of this recording film 12, respectively, and are pressed with a presser plate 15 to ensure contact between the rings 13 and 14 and the recording film 12. . Then, by applying a voltage of 100 V between the inner ring 13 and the outer ring 14, a current was caused to flow through the recording film 12.
この例でも、熱処理の間、1枚の円板には上記の如くし
て電流し、またもう1枚の円板には電流を流さなかった
。熱処理は恒温槽中150℃で10分間行なった。Also in this example, during the heat treatment, one disk was energized as described above, and the other disk was not energized. The heat treatment was performed at 150° C. for 10 minutes in a constant temperature bath.
こうして得られた光記録媒体(円板)を光学顕微鏡(1
000倍)で観察したところ、電流を流さなかったもの
は表面がざらついて見えるのに対し、電流を流したもの
は表面が均一でなめらかであった。The optical recording medium (disc) thus obtained was examined under an optical microscope (1
When observed at a magnification of 0.000 times), the surface of the sample to which no current was applied appeared rough, whereas the surface of the sample to which an electric current was applied was uniform and smooth.
例1におけると同様にしてC/N比を測定したところ、
電流を流さなかったものは43dBであうたが、電流を
流した方は47dBであった。When the C/N ratio was measured in the same manner as in Example 1,
The one with no current flowing was 43 dB, but the one with current flowing was 47 dB.
なお、例1〜3の各光記録媒体はいずれも書き換え可能
なものであるが、良好な書き換え特性を示した。Note that each of the optical recording media of Examples 1 to 3 was rewritable and exhibited good rewritability.
本発明の方法によれば、反射率、透過率の変化によって
信号を記録する光記録媒体の記録膜を均一にかつ望まし
い粒径に結晶化することができるので、光記録のノイズ
レベルを低減し、高信頼性の光記録媒体を提供すること
ができる。According to the method of the present invention, the recording film of an optical recording medium for recording signals can be uniformly crystallized to a desired grain size by changing the reflectance and transmittance, thereby reducing the noise level of optical recording. , it is possible to provide a highly reliable optical recording medium.
第1図は本発明の第1の実施例の光ディスクの断面図、
第2図は本発明の第2の実施例における光ディスクの熱
処理の様子を示す断面図である。
1−・基板、 2−・−・透明電極膜、3−
・記録膜、 4曲保護膜、
5−金属電極膜、 11・−・基板、
12−記録膜、 13−・銅製内リング、14・・
−・銅製外リング、15−・・・押え板。FIG. 1 is a sectional view of an optical disc according to a first embodiment of the present invention;
FIG. 2 is a sectional view showing the state of heat treatment of an optical disk in a second embodiment of the present invention. 1--Substrate, 2---Transparent electrode film, 3-
・Recording film, 4-track protective film, 5-metal electrode film, 11--substrate, 12-recording film, 13--copper inner ring, 14--
-・Copper outer ring, 15-... Pressing plate.
Claims (1)
率を選択的に変化させて信号を記録する光記録媒体を製
造するに当り、基板上に上記記録膜を成膜後、該記録膜
をそれに電流を流しながら熱処理して結晶化することを
特徴とする光記録媒体の製造方法。1. In manufacturing an optical recording medium in which a signal is recorded by selectively changing the reflectance or transmittance of the recording film by irradiating the recording film with light, after forming the recording film on the substrate, A method for manufacturing an optical recording medium, which comprises heat-treating and crystallizing the recording film while passing an electric current through it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4938185A JPS61208648A (en) | 1985-03-14 | 1985-03-14 | Production of optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4938185A JPS61208648A (en) | 1985-03-14 | 1985-03-14 | Production of optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61208648A true JPS61208648A (en) | 1986-09-17 |
Family
ID=12829439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4938185A Pending JPS61208648A (en) | 1985-03-14 | 1985-03-14 | Production of optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61208648A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100248299B1 (en) * | 1997-09-24 | 2000-03-15 | 구자홍 | Method for initializing an optical recording medium and an apparatus thereof |
US7368223B2 (en) * | 2001-06-01 | 2008-05-06 | Koninklijke Philips Electronics N.V. | Multi-stack optical data storage medium and use of such a medium |
-
1985
- 1985-03-14 JP JP4938185A patent/JPS61208648A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100248299B1 (en) * | 1997-09-24 | 2000-03-15 | 구자홍 | Method for initializing an optical recording medium and an apparatus thereof |
US6570833B2 (en) | 1997-09-24 | 2003-05-27 | Lg Electronics Inc. | Method for crystallizing optical data storage media using joule heat and apparatus therefor |
US7368223B2 (en) * | 2001-06-01 | 2008-05-06 | Koninklijke Philips Electronics N.V. | Multi-stack optical data storage medium and use of such a medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0195532B1 (en) | An information recording medium | |
JPH08221814A (en) | Optical recording medium and its production | |
KR930002932B1 (en) | Liquid crystal light valve and associated bonding structure | |
JPS61208648A (en) | Production of optical recording medium | |
JP2833190B2 (en) | Magnetic recording media | |
JPS62246788A (en) | Information recording medium | |
JPH0734271B2 (en) | Optical recording medium | |
JP2864770B2 (en) | Magnetic disk substrate and magnetic recording medium using the same | |
JPH0327974B2 (en) | ||
JP2773480B2 (en) | Method for manufacturing optical information recording medium | |
JP2629717B2 (en) | Information recording medium | |
JPS62192047A (en) | Production of photomagnetic recording medium | |
JPH05142605A (en) | Nonlinear optical material and its production | |
JPS61272190A (en) | Optical recording medium | |
JPH05263219A (en) | Production of copper indium selenide thin film | |
JP2629749B2 (en) | Information recording medium | |
US5490004A (en) | Photoconductivity reduction in cadmium telluride films for light blocking applications using nitrogen incorporation | |
JPH0144518B2 (en) | ||
JPS62124642A (en) | Production of thin magnetooptic film | |
JP2543056B2 (en) | Method for manufacturing optical information recording member | |
JPS6214346A (en) | Manufacture of optical recording medium | |
JPS61283049A (en) | Production of optical disk | |
JPS61195943A (en) | Alloy having variable spectral reflectance and recording material | |
JPH0444812B2 (en) | ||
JP2825059B2 (en) | Optical disc and method of manufacturing the same |