JPH0144278B2 - - Google Patents

Info

Publication number
JPH0144278B2
JPH0144278B2 JP22084585A JP22084585A JPH0144278B2 JP H0144278 B2 JPH0144278 B2 JP H0144278B2 JP 22084585 A JP22084585 A JP 22084585A JP 22084585 A JP22084585 A JP 22084585A JP H0144278 B2 JPH0144278 B2 JP H0144278B2
Authority
JP
Japan
Prior art keywords
mold
lubricant
lubricants
graphite
metal salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22084585A
Other languages
Japanese (ja)
Other versions
JPS6281493A (en
Inventor
Tadahiro Tsukata
Eiji Tamura
Shigeru Nishama
Noboru Kanda
Tsunekichi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22084585A priority Critical patent/JPS6281493A/en
Publication of JPS6281493A publication Critical patent/JPS6281493A/en
Publication of JPH0144278B2 publication Critical patent/JPH0144278B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 これらの発明は、熱間鍛造において、型と被加
工物との間に供給され、両者間の摩擦を軽減する
潤滑性や接触時間を短くするための離型性さらに
耐熱性を確保するための熱間鍛造用型潤滑剤に関
するものである。 従来の技術 周知のように熱間鍛造では型と被加工物との接
触時間を短くしたり被加工物から型への熱移動を
減少させて型の損傷を防止するために型潤滑剤が
用いられている。このような型潤滑剤としては前
述のように潤滑性および離型性に優れていること
が要求されている。 従来、潤滑性および離型性に優れた型潤滑剤と
してはコロイド状黒鉛を水または油に希釈した黒
鉛含有形潤滑剤が知られており、かつ多用されて
いる。この黒鉛含有形潤滑剤は鍛造型にスプレイ
(例えば鍛造型打毎に120c.c.)することなどにより
塗布して使用されている。 ところでこの黒鉛含有形潤滑剤は潤滑性および
離型性に優れているものの、これを塗布する際に
は微粒子である黒鉛粉末が飛散したり周辺機械な
どに付着したりして作業環境を悪化させるという
問題点がある。また、使用回数を重ねるに従い黒
鉛が前記潤滑剤を塗布するためのパイプやノズル
に詰まり、作業に支障をきたしまたこれらを清掃
するために余分な作業を必要とし、作業効率を悪
化させるという問題点があり、さらに機械設備本
体の例えば電動機内部に侵入し、回転子などに付
着して短絡事故などを度々発生させるという問題
点もある。黒鉛含有形潤滑剤によるこれらの問題
点を解決するために、黒鉛を含有しない潤滑剤す
なわち黒鉛非含有形潤滑剤が求められており、一
部が使用に供されている。この種の潤滑剤として
は塑性加工学会発行の「塑性と加工」第25巻第
893頁〜898頁において鉱物油、動物油脂、重合体
などの有機物や二硫化モリブデン、モリブデン酸
塩などの無機物が開示されており、また特開昭55
―13498号の明細書にはアジピン酸が開示されて
いる。 発明が解決しようとする問題点 しかしながら、上述の黒鉛非含有形潤滑剤で
は、温度上昇に伴なう摩擦係数の急激な増大など
のために潤滑性が不十分であり、さらに離型性に
も劣つているという問題点がある。このため変型
率の大きい熱間鍛造や形状の複雑な加工物の熱間
鍛造に適用することは困難である。 ところで、自動車などに使用される鍛造部品は
高精度化、軽量化を推進する中で高速化も進めて
おり、例えば自動車部品の主流を占める軸付きフ
ランジ部品は、従来縦型の押出プレスを使い手動
で型打ちしていたが、最近では熱間多段成形機を
使い全自動で生産することが可能になつており、
これによれば、従来の縦型押出プレスによるもの
に対して生産性は7〜10倍であり、1分間に60個
程度の型打ちを行なうことができる。このように
最近の熱間鍛造では高速かつ高リダクシヨンでの
加工が行なわれており、型潤滑剤に対する要求も
激しさを増している。すなわち熱間鍛造用型潤滑
剤としては高度の潤滑性と離型性が要求されるも
のであり、従来の黒鉛非含有型潤滑剤では使用に
耐え得ないものである。一方、黒鉛含有型潤滑剤
では飛散黒鉛などによる作業環境や機械故障など
の点で使用は困難である。 これらの発明は上述の点に鑑み、黒鉛含有型潤
滑剤の前記欠点がなく、しかも潤滑性および離型
性に優れ、高変形率での熱間鍛造や形状の複雑な
加工物の熱間鍛造にも適用することができる型潤
滑剤を提供することを目的とする。 問題点を解決するための手段 本発明者らは、上記の目的を達成するために、
鋭意研究した結果、潤滑性および離型性に優れた
黒鉛非含有型潤滑剤を知見し、本発明をするに至
つたものである。 すなわちこれらの発明のうち第一の発明は、リ
グニンスルホン酸のアルカリ金属塩またはアルカ
リ土類金属塩の一種以上を希釈液に溶解または分
散させてなることを特徴とする。 第二の発明はリグニンスルホン酸のアルカリ金
属塩またはアルカリ土類金属塩の一種以上とアミ
ンとを希釈液に溶解または分散させてなることを
特徴とする。 作 用 これらの発明のうち第一の発明によれば、希釈
液に溶解または分散されたリグニンスルホン酸の
アルカリ金属塩またはアルカリ土類金属塩の一種
以上を型に塗布することにより、型と被加工物と
の間に被膜が形成され、両者間の摩擦係数を減少
させて潤滑性を向上させるとともに、接触を防い
で離型性を確保する。また第二の発明によれば、
型と被加工物との間に形成される被膜は強固にな
り、上記離型性の確保とともに、潤滑性は一層向
上する。 発明を実施するための具体的な説明 これらのリグニンスルホン酸のアルカリ金属塩
としては例えばナトリウム塩またはカリウム塩、
アルカリ土類金属塩としては例えばカルシウム
塩、マグネシウム塩、またはバリウム塩を用いる
ことができる。このリグニンスルホン酸塩の市販
品には、還元性糖類、糖スルホン酸塩などの副生
物を含有しているものもあるが、これらの副成分
は潤滑剤としての性能には何らの悪影響を与える
ことはなく、サルフアイトパルプを処理して得ら
れるような副成分を含んだ市販品のリグニンスル
ホン酸塩をそのまま本発明の型潤滑剤の原料とし
て用いることができる。 また希釈液としては水または油を用いることが
できる。 ただし、型冷却をかねることと安価で環境を悪
化させない点で水希釈が好ましい。 さらに第二の発明におけるアミンとしては、エ
タノールアミン(モノ、ジもしくはトリ)、イソ
プロパノールアミン(モノ、ジもしくはトリ)、
セカンダリーブタノールアミン(モノ、ジもしく
はトリ)、ジメチルエタノールアミン、ジエチル
エタノールアミン、アミノエチルエタノールアミ
ン、N―シクロヘキシルジエタノールアミンなど
のアルカノールアミン類を用いれば強固な被膜に
よる潤滑性の向上の効果は大である。 なお、これらの発明における熱間鍛造用型潤滑
剤は、上記の必須成分の他に、従来熱間鍛造用潤
滑剤に用いられている補助的成分である界面活性
剤、非鉄金属防食剤、消泡剤などを必要に応じ適
宜含有させることができる。 本発明における型潤滑剤の希釈液に対する必須
成分の含有量は1重量%以上であるのが望まし
い。1重量%未満では充分な潤滑被膜が形成され
ず、所望の潤滑効果が得られないためである。た
だし、あらかじめ濃厚な分散もしくは溶解液を製
造しておき、使用に際して適当な濃度に希釈して
用いることも可能である。 また、本発明による型潤滑剤はPHが8以上であ
るのが望ましい。PHが8未満であると、腐敗によ
る作業性の低下あるいはスライムの発生による供
給系の配管詰まりなどを生じ易いためである。こ
のPHの調整はアルカリ金属の水酸化物、アルカリ
金属の炭酸塩、アルカリ土類金属の水酸化物、ア
ミンなどを用いることにより、リグニンスルホン
酸の中和率を調節することにより行なうことがで
きる。この際にアミンを用いれば、潤滑剤のPHの
調節と同時に潤滑被膜を強固にして潤滑性をより
向上させる効果があるので有利である。 このようにして得られた熱間鍛造用型潤滑剤は
例えば、スプレイ方式または刷毛塗りにより型に
塗布される。 ところで、熱間鍛造では、被加工材料は、通常
1000〜1200℃に加熱されており、この材料からの
熱伝動により型も80〜350℃に加熱されて昇温す
る。この型に塗布された潤滑剤は水分などの低沸
点成分が蒸発し、残留成分が型面上に被膜を形成
する。この被膜は次いで、1000〜1200℃に加熱さ
れている被加工材料と接し、熱分解などの熱的変
化を受ける。 本発明による型潤滑剤がこのような使用環境下
で潤滑性および離型性に優れているのは、80〜
350℃に昇温されている型面上で厚い潤滑被膜を
形成し、しかもこの被膜の付着状態が均一で、か
つ強固であるためであり、さらに1000〜1200℃に
加熱されている被加工材料と接しても高温まで熱
分解しにくいこと、また熱分解しても残留炭素成
分が多くこれが潤滑に寄与するためである。 実施例 以下、この発明の実施例を従来の熱間鍛造用型
潤滑剤と対比して説明する。 本発明の実施例および従来の型潤滑剤は第1表
に示されている。 型潤滑剤はNo.1〜13まで示されており、No.1〜
9が本発明の実施例であり、No.1〜4が第一の発
明の実施例、No.5〜9が第二の発明の実施例であ
る。一方、No.10〜13が従来の型潤滑剤であり、No.
10〜12が黒鉛非含有型潤滑剤、No.13は黒鉛含有型
潤滑剤である。 これらの型潤滑剤を用いて種々の試験を行な
い、実施例と従来例との性能を評価した。 第一に、第2−1表に示される試験条件で摩擦
試験(試験法)を行なつた。この摩擦試験では
第1図に示される摩擦試験機を用いて行なつた。
この摩擦試験機1は型潤滑剤を一定の厚さで回転
体2に被覆し、この回転体2を回転させながら所
定温度に加熱された加熱体3を押付けて回転体2
と加熱体3との間で焼付けが生じる時間を測定し
て摩擦性能を評価するものである。加熱体3には
トランス4が接続されており、このトランス4の
出力を変えることにより加熱体3の温度を変化さ
せることができる。なお潤滑剤は油槽5に貯蔵さ
れており、この油槽5内の潤滑剤をポンプ6で回
転体2に供給するようにされている。 この摩擦試験の結果は第2―2表に示されるよ
うに、本発明の実施例ではいずれも摩擦性能が優
れているものの従来例ではNo.13の潤滑剤を除き摩
擦性能は劣つている。この摩擦性能は各潤滑剤の
摩擦係数に基因するものであり、本発明の実施例
の希釈倍率に対する摩擦係数の関係を第2図に示
す。希釈倍率10における摩擦係数はμ=0.14であ
り、この希釈倍率での黒鉛含有型潤滑剤の摩擦係
数であるμ=0.15と比較して同等もしくはそれ以
上の摩擦性能を有している。 次にこれらの型潤滑剤を所定温度に加熱して鋼
板(50×100×70mm)のハンドスプレイで塗布し
て被膜を形成させ、直ちにスパチラーでこすり、
そのときの抵抗感により被膜の付着強度を評価し
た(試験法)。この結果は第3表に示されるよ
うに、実施例の潤滑剤では満足する性能が得られ
るが、従来例の潤滑剤の付着強度は不十分であ
る。 さらにこれらの潤滑剤を用いて耐熱性試験を行
なつた(試験法)。この試験では、潤滑剤を105
℃〜110℃の恒温槽で乾燥させた後、第4−1表
に示す試験条件で重量減少率を測定した。この結
果は第4−2表に示されるようにNo.13の従来例が
最も優れている。実施例の潤滑剤は温度の上昇と
ともに徐々に重量が減少されるが熱間鍛造で潤滑
被膜が昇温される温度域(250℃前後)での重量
減少率は実用上の支障は何ら存在しない。一方、
No.10〜12の従来例の潤滑剤では実用温度域での重
量減少率は大であり、このため潤滑性能の劣化を
招く。この潤滑剤の各温度における重量減少率の
変化は第3図のグラフで示される。 さらに、この各潤滑剤の残留炭素分:C(質量
%)の測定をJIS2270の規定に従い行なうととも
に、JIS2272の3.1の規定に従い灰分:A(質量%)
を測定し、C0=C−Aを以て潤滑作用に寄与す
る残留炭素分の測定を行なつた(試験法)。こ
の結果を第5表に示す。このことから従来例のNo.
10〜12における前記重量減少率の増大に伴い残留
炭素分は急激に減少し潤滑性能を劣化させる。 これらの試験結果に基づき各潤滑剤の総合評価
を行なつた。 この総合評価の結果を第6表に示すと、本発明
における型潤滑材はすべての試験で満足する結果
が得られており、黒鉛含有型潤滑剤と同等もしく
はそれ以上の性能を有することが示されている。
一方、従来の黒鉛非含有型潤滑剤はすべての試験
において満足する結果は得られなかつた。
Industrial Application Fields These inventions are used in hot forging to provide lubricity between the die and the workpiece to reduce friction between the two, release properties to shorten the contact time, and heat resistance. This relates to a die lubricant for hot forging to ensure the following. Conventional technology As is well known, in hot forging, mold lubricants are used to shorten the contact time between the mold and the workpiece, reduce heat transfer from the workpiece to the mold, and prevent damage to the mold. It is being As mentioned above, such mold lubricants are required to have excellent lubricity and mold release properties. Conventionally, graphite-containing lubricants prepared by diluting colloidal graphite in water or oil have been known as mold lubricants with excellent lubricity and mold release properties, and are widely used. This graphite-containing lubricant is used by applying it to a forging die by spraying (for example, 120 c.c. per forging die). By the way, although this graphite-containing lubricant has excellent lubricity and mold release properties, when it is applied, fine particles of graphite powder scatter or adhere to surrounding machinery, worsening the working environment. There is a problem. In addition, as the lubricant is used over and over again, graphite clogs the pipes and nozzles used to apply the lubricant, which hinders work and requires extra work to clean, which worsens work efficiency. Moreover, there is also the problem that they can invade the inside of mechanical equipment, such as electric motors, and adhere to rotors, often causing short-circuit accidents. In order to solve these problems caused by graphite-containing lubricants, lubricants that do not contain graphite, that is, graphite-free lubricants, are required, and some of them are in use. This type of lubricant is listed in "Plasticity and Processing", Volume 25, published by the Japan Society for Plastic Processing.
On pages 893 to 898, organic substances such as mineral oils, animal fats and oils, and polymers, and inorganic substances such as molybdenum disulfide and molybdates are disclosed.
-Adipic acid is disclosed in the specification of No. 13498. Problems to be Solved by the Invention However, the graphite-free lubricants described above have insufficient lubricity due to a rapid increase in the coefficient of friction as the temperature rises, and also have poor mold release properties. The problem is that it is inferior. Therefore, it is difficult to apply it to hot forging with a large deformation rate or hot forging of workpieces with complicated shapes. By the way, the speed of forged parts used in automobiles and other products is increasing as the precision and weight reduction is promoted.For example, shafted flange parts, which are the mainstream of automobile parts, have traditionally been produced using vertical extrusion presses. Previously, molds were stamped manually, but recently it has become possible to produce them fully automatically using hot multi-stage molding machines.
According to this, the productivity is 7 to 10 times higher than that using a conventional vertical extrusion press, and about 60 molds can be punched per minute. As described above, recent hot forging processes are performed at high speeds and high reductions, and demands for die lubricants are becoming more intense. That is, a mold lubricant for hot forging is required to have high lubricity and mold releasability, and conventional graphite-free mold lubricants cannot withstand use. On the other hand, graphite-containing lubricants are difficult to use due to the work environment and mechanical failure caused by scattered graphite. In view of the above points, these inventions do not have the above-mentioned drawbacks of graphite-containing lubricants, have excellent lubricity and mold release properties, and are suitable for hot forging at high deformation rates and hot forging of workpieces with complex shapes. The purpose is to provide a mold lubricant that can also be applied to molds. Means for Solving the Problems In order to achieve the above object, the present inventors
As a result of extensive research, we discovered a graphite-free lubricant with excellent lubricity and mold release properties, leading to the present invention. That is, the first invention among these inventions is characterized in that one or more types of alkali metal salts or alkaline earth metal salts of ligninsulfonic acid are dissolved or dispersed in a diluent. The second invention is characterized in that one or more alkali metal salts or alkaline earth metal salts of ligninsulfonic acid and an amine are dissolved or dispersed in a diluent. Effect According to the first invention among these inventions, by applying to the mold one or more types of alkali metal salts or alkaline earth metal salts of ligninsulfonic acid dissolved or dispersed in a diluted solution, the mold and the coating are coated. A film is formed between the workpiece and the workpiece, which reduces the coefficient of friction between the two and improves lubricity, and prevents contact and ensures mold releasability. According to the second invention,
The coating formed between the mold and the workpiece becomes strong, ensuring the above-mentioned mold releasability and further improving lubricity. Specific description for carrying out the invention Examples of the alkali metal salts of these ligninsulfonic acids include sodium salts or potassium salts,
As the alkaline earth metal salt, for example, a calcium salt, a magnesium salt, or a barium salt can be used. Some commercially available lignin sulfonate products contain by-products such as reducing sugars and sugar sulfonates, but these sub-components have no negative effect on the lubricant's performance. A commercially available lignin sulfonate containing subcomponents such as those obtained by treating sulfite pulp can be used as is as a raw material for the mold lubricant of the present invention. Furthermore, water or oil can be used as the diluent. However, dilution with water is preferable because it serves as mold cooling, is inexpensive, and does not degrade the environment. Furthermore, the amine in the second invention includes ethanolamine (mono, di, or tri), isopropanolamine (mono, di, or tri),
If alkanolamines such as secondary butanolamine (mono, di, or tri), dimethylethanolamine, diethylethanolamine, aminoethylethanolamine, and N-cyclohexyldiethanolamine are used, the effect of improving lubricity through a strong film is significant. . In addition to the above-mentioned essential components, the hot forging die lubricant in these inventions also contains surfactants, non-ferrous metal corrosion inhibitors, and auxiliary components conventionally used in hot forging lubricants. Foaming agents and the like can be appropriately contained as needed. In the present invention, the content of the essential components in the mold lubricant diluted solution is desirably 1% by weight or more. This is because if the amount is less than 1% by weight, a sufficient lubricating film will not be formed and the desired lubricating effect will not be obtained. However, it is also possible to prepare a concentrated dispersion or solution in advance and dilute it to an appropriate concentration before use. Further, it is desirable that the mold lubricant according to the present invention has a pH of 8 or more. This is because if the pH is less than 8, workability may be reduced due to putrefaction or pipes in the supply system may be clogged due to slime generation. This pH can be adjusted by adjusting the neutralization rate of lignin sulfonic acid by using alkali metal hydroxides, alkali metal carbonates, alkaline earth metal hydroxides, amines, etc. . It is advantageous to use an amine in this case because it has the effect of controlling the pH of the lubricant and at the same time strengthening the lubricating film to further improve lubricity. The hot forging die lubricant thus obtained is applied to the die by, for example, spraying or brushing. By the way, in hot forging, the workpiece material is usually
It is heated to 1000-1200°C, and due to heat transfer from this material, the mold is also heated to 80-350°C, raising its temperature. In the lubricant applied to the mold, low-boiling components such as water evaporate, and the remaining components form a film on the mold surface. This film then comes into contact with the workpiece material that has been heated to 1000-1200°C and undergoes thermal changes such as thermal decomposition. The mold lubricant according to the present invention has excellent lubricity and mold release properties under such usage environments.
This is because a thick lubricating film is formed on the mold surface that has been heated to 350°C, and the adhesion of this film is uniform and strong. This is because it is difficult to thermally decompose at high temperatures even if it comes into contact with it, and even if it is thermally decomposed, there is a large residual carbon component, which contributes to lubrication. Examples Examples of the present invention will be described below in comparison with a conventional hot forging die lubricant. Examples of the present invention and conventional mold lubricants are shown in Table 1. The mold lubricants are numbered No. 1 to 13, and No. 1 to No.
9 is an example of the present invention, Nos. 1 to 4 are examples of the first invention, and Nos. 5 to 9 are examples of the second invention. On the other hand, Nos. 10 to 13 are conventional mold lubricants;
No. 10 to 12 are graphite-free lubricants, and No. 13 is a graphite-containing lubricant. Various tests were conducted using these mold lubricants to evaluate the performance of the examples and conventional examples. First, a friction test (test method) was conducted under the test conditions shown in Table 2-1. This friction test was conducted using a friction testing machine shown in FIG.
This friction tester 1 coats a rotary body 2 with mold lubricant to a constant thickness, and presses a heating body 3 heated to a predetermined temperature while rotating the rotary body 2.
The friction performance is evaluated by measuring the time during which seizure occurs between the heating element 3 and the heating element 3. A transformer 4 is connected to the heating body 3, and by changing the output of the transformer 4, the temperature of the heating body 3 can be changed. Note that the lubricant is stored in an oil tank 5, and the lubricant in this oil tank 5 is supplied to the rotating body 2 by a pump 6. As shown in Table 2-2, the results of this friction test show that all of the examples of the present invention have excellent friction performance, but the conventional examples have poor friction performance except for lubricant No. 13. This frictional performance is based on the friction coefficient of each lubricant, and FIG. 2 shows the relationship between the friction coefficient and the dilution ratio in Examples of the present invention. The friction coefficient at a dilution rate of 10 is μ=0.14, which is equivalent to or better than the friction coefficient μ=0.15 of a graphite-containing lubricant at this dilution rate. Next, heat these mold lubricants to a predetermined temperature and apply them to a steel plate (50 x 100 x 70 mm) with a hand sprayer to form a film, and immediately rub it with a spa chiller.
The adhesion strength of the film was evaluated based on the sense of resistance at that time (test method). As shown in Table 3, the lubricants of the examples provide satisfactory performance, but the adhesive strength of the conventional lubricants is insufficient. Furthermore, a heat resistance test was conducted using these lubricants (test method). This test tested lubricant 105
After drying in a constant temperature bath at 110°C to 110°C, the weight loss rate was measured under the test conditions shown in Table 4-1. As shown in Table 4-2, the conventional example No. 13 is the best. Although the weight of the lubricant in the example gradually decreases as the temperature rises, there is no practical problem in the weight reduction rate in the temperature range where the lubricating film is heated during hot forging (around 250°C). . on the other hand,
In the conventional lubricants No. 10 to 12, the rate of weight loss in the practical temperature range is large, leading to deterioration of lubrication performance. Changes in the weight loss rate of this lubricant at various temperatures are shown in the graph of FIG. Furthermore, the residual carbon content: C (mass%) of each lubricant was measured according to the regulations of JIS2270, and the ash content: A (mass%) according to the regulations of 3.1 of JIS2272.
The residual carbon content contributing to the lubricating effect was measured using C 0 =C-A (test method). The results are shown in Table 5. From this, the conventional example No.
As the weight reduction rate increases in the range of 10 to 12, the residual carbon content rapidly decreases and the lubricating performance deteriorates. A comprehensive evaluation of each lubricant was conducted based on these test results. The results of this comprehensive evaluation are shown in Table 6. The mold lubricant of the present invention obtained satisfactory results in all tests, indicating that it has performance equivalent to or better than graphite-containing lubricants. has been done.
On the other hand, conventional graphite-free lubricants did not give satisfactory results in all tests.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 以上、説明したように、これらの発明のうち第
一の発明はリグニンスルホン酸のアルカリ金属塩
またはアルカリ土類金属塩の一種以上を希釈液に
溶解または分散させたので潤滑性および離型性に
優れており、高速かつ高リダクシヨンの熱間鍛造
に使用することができ、しかも黒鉛含有型潤滑剤
のように作業環境の悪化や周辺機器の損傷を起す
問題がない。また第二の発明はリグニンスルホン
酸のアルカリ金属塩またはアルカリ土類金属塩の
一種以上とアミンとを希釈液に溶解または分散さ
せたので強固な潤滑被膜を得ることができ、上記
効果において潤滑性を一層向上させることができ
る。
[Table] Effects of the Invention As explained above, the first of these inventions dissolves or disperses one or more types of alkali metal salts or alkaline earth metal salts of ligninsulfonic acid in a diluted liquid, thereby providing a lubricating effect. It has excellent hardness and mold release properties, and can be used for high-speed, high-reduction hot forging. Moreover, unlike graphite-containing lubricants, it does not cause problems such as deterioration of the working environment or damage to peripheral equipment. In addition, in the second invention, a strong lubricating film can be obtained because one or more types of alkali metal salts or alkaline earth metal salts of ligninsulfonic acid or alkaline earth metal salts and an amine are dissolved or dispersed in a diluted liquid. can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこれらの発明の一実施例の摩擦性能の
測定を行なうための試験機の概略図、第2図は同
じく一実施例の希釈倍率と摩擦係数の関係を示す
グラフ、第3図は同じく一実施例の温度と重量減
少率の関係を示すグラフである。
Fig. 1 is a schematic diagram of a testing machine for measuring the friction performance of one embodiment of these inventions, Fig. 2 is a graph showing the relationship between dilution ratio and friction coefficient of one embodiment, and Fig. 3 is a graph showing the relationship between dilution ratio and friction coefficient of one embodiment. It is also a graph showing the relationship between temperature and weight reduction rate in one example.

Claims (1)

【特許請求の範囲】 1 リグニンスルホン酸のアルカリ金属塩または
アルカリ土類金属塩の一種以上を希釈液に溶解ま
たは分散させてなる熱間鍛造用型潤滑剤。 2 リグニンスルホン酸のアルカリ金属塩または
アルカリ土類金属塩の一種以上とアミンとを希釈
液に溶解または分散させてなる熱間鍛造用型潤滑
剤。
[Claims] 1. A die lubricant for hot forging, which is prepared by dissolving or dispersing one or more types of alkali metal salts or alkaline earth metal salts of ligninsulfonic acid in a diluent. 2. A mold lubricant for hot forging, which is prepared by dissolving or dispersing one or more alkali metal salts or alkaline earth metal salts of ligninsulfonic acid and an amine in a diluent.
JP22084585A 1985-10-03 1985-10-03 Mold lubricant for hot forging Granted JPS6281493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22084585A JPS6281493A (en) 1985-10-03 1985-10-03 Mold lubricant for hot forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22084585A JPS6281493A (en) 1985-10-03 1985-10-03 Mold lubricant for hot forging

Publications (2)

Publication Number Publication Date
JPS6281493A JPS6281493A (en) 1987-04-14
JPH0144278B2 true JPH0144278B2 (en) 1989-09-26

Family

ID=16757442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22084585A Granted JPS6281493A (en) 1985-10-03 1985-10-03 Mold lubricant for hot forging

Country Status (1)

Country Link
JP (1) JPS6281493A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273833B2 (en) 2003-10-02 2007-09-25 Yushiro Chemical Industry Co., Ltd. Water-soluble lubricant for warm or hot metal forming
WO2014046202A1 (en) * 2012-09-21 2014-03-27 住鉱潤滑剤株式会社 Lubricant composition
JP6562514B2 (en) * 2016-03-16 2019-08-21 住鉱潤滑剤株式会社 Water-soluble lubricant composition

Also Published As

Publication number Publication date
JPS6281493A (en) 1987-04-14

Similar Documents

Publication Publication Date Title
EP0917559B1 (en) Waterborne lubricant for the cold plastic working of metals
US6194357B1 (en) Waterborne lubricant for the cold plastic working of metals
US4168241A (en) Lubricant and method for non-chip metal forming
CN102649919B (en) The aqueous lubricant composition for plastic working of metal material
KR100621692B1 (en) Aqueous lubricant for plastic working of metallic material and method for forming lubricant film
KR100621693B1 (en) Aqueous lubricant for plastic working of metallic material and method of lubricant film processing
JP5355583B2 (en) Dry film corrosion resistant cold forming lubricant
CA2767859A1 (en) Concentrate for producing a cooling and release agent or a cooling and lubricating agent and such cooling and release agents and cooling and lubricating agents
TW539744B (en) Aqueous lubricant of one process type used for high efficient cold forging
JPH0144278B2 (en)
JPS6099200A (en) Lubrication treatment of metal
CN107523404A (en) Aqueous rustproof metal cold forging lubricant and preparation method thereof
JPS6053043B2 (en) How to draw welding wire
JPS6019357B2 (en) Lubricant for cold working of metals
WO2015118602A1 (en) Lubricating coating agent for metal plasticity processing and metal material for metal plasticity processing
JP3820285B2 (en) Water-soluble metal plastic working lubricant
SU586195A1 (en) "spga-1" lubricant for cold plastic working of metals
JPS58152096A (en) Lubrication oil composition for metal working and its use
JP3462632B2 (en) Aqueous lubricant composition for plastic working of metal materials and surface treatment method thereof
SU1268610A1 (en) Lubricant for plastic cold working of metals
RU2708084C1 (en) Lubricant-coolant for mechanical processing of metals
JPS61253128A (en) Lubricating treatment for metal surface
JPS62297394A (en) Mold-releasing lubricant for forging
JPH02298592A (en) Lubricant for warm molding and processing of aluminum material
JPS62190294A (en) Pinion for automobile

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees