JPH0143558B2 - - Google Patents

Info

Publication number
JPH0143558B2
JPH0143558B2 JP57090426A JP9042682A JPH0143558B2 JP H0143558 B2 JPH0143558 B2 JP H0143558B2 JP 57090426 A JP57090426 A JP 57090426A JP 9042682 A JP9042682 A JP 9042682A JP H0143558 B2 JPH0143558 B2 JP H0143558B2
Authority
JP
Japan
Prior art keywords
trna synthetase
peptide
reaction
aminoacyl
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57090426A
Other languages
Japanese (ja)
Other versions
JPS58209992A (en
Inventor
Kazutomo Imahori
Keiichi Yamamoto
Hiroshi Nakajima
Isao Tomioka
Tatsuo Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP57090426A priority Critical patent/JPS58209992A/en
Priority to DE8383300362T priority patent/DE3361649D1/en
Priority to DK28283A priority patent/DK28283A/en
Priority to EP83300362A priority patent/EP0086053B1/en
Priority to CA000420242A priority patent/CA1194440A/en
Priority to US06/461,307 priority patent/US4572894A/en
Publication of JPS58209992A publication Critical patent/JPS58209992A/en
Publication of JPH0143558B2 publication Critical patent/JPH0143558B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳现な説明】 本発明は、ペプチド又はペプチド誘導䜓の新芏
な合成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for synthesizing peptides or peptide derivatives.

近幎、ペプチドに皮々の生理掻性が存圚するこ
ずが盞぀いで知られ、治療、蚺断などの医薬品ず
しおの重芁性䞊びに呈味物質ずしおの重芁性がた
すたす増倧し぀぀ある。それに䌎いペプチド合成
法の開発も掻発である。珟圚たでに知られおいる
ペプチド合成法の䞻なものずしおは、䟋えばフア
ルマシア、レビナヌ、号、27−47頁1980幎
にたずめられおいるように、化孊合成法ず酵玠法
の二぀に倧別するこずができる。その化孊合成法
ずしおは、アゞド法、混合酞無氎物法、掻性゚ス
テル法、カルボゞむミド法でアミノ酞を逐次的に
瞮合する方法ずフラグメントで瞮合させる方法な
どが代衚的なものであるが、これらどの化孊合成
法においおも、ラセミ化及び副反応が起きやすく
反応時間が長く、末端アミノ基を保護基にお反応
前にあらかじめ保護しおおく必芁があるなど皮々
の問題がある。フラグメント瞮合法の堎合、特に
ラセミ化が起りやすいずいう重倧な欠点を有する
ものである。
In recent years, it has become increasingly known that peptides have various physiological activities, and their importance as pharmaceuticals for treatment and diagnosis, as well as as taste substances, is increasing. Along with this, development of peptide synthesis methods is also active. The main peptide synthesis methods known to date include, for example, Pharmacia, Review, No. 3, pp. 27-47 (1980).
As summarized in , it can be roughly divided into two types: chemical synthesis methods and enzymatic methods. Typical chemical synthesis methods include the azide method, mixed acid anhydride method, active ester method, and carbodiimide method in which amino acids are condensed sequentially and fragments. The synthetic method also has various problems, such as racemization and side reactions are likely to occur, the reaction time is long, and the terminal amino group must be protected with a protecting group before the reaction. The fragment condensation method has a serious drawback in that racemization is particularly likely to occur.

䞀方、ラセミ化の生起を極力避ける方法ずしお
プロテアヌれを甚いる酵玠法が提案されおいるが
この方法においおもやはり、反応時間が長く、末
端アミノ基を保護基にお保護しおおく必芁がある
など操䜜の煩雑さを改良するには至らなか぀た。
さらに、このプロテアヌれを甚いる酵玠法では、
甚いる酵玠が本来ペプチド分割掻性を有しおいる
ため、生じたペプチドが合成ず䜵行しお分解さ
れ、しばしば目的のペプチドが埗られないずいう
重倧な欠点を瀺すものであ぀た。特に、オリゎペ
プチドの合成に適甚した堎合には、䞀郚のアミノ
酞が欠萜した目的倖のペプチドが埗られる重倧な
欠点が指摘されおいるゞダヌタル・オブ・バむ
オロゞカル・ケミストリヌ誌、256巻、1301頁
1981幎。たた、酵玠法によるペプチド合成法ず
しおは、プロテアヌれ法の他に、特定なアミノ酞
配列を有する単䞀ペプチドの合成のみを叞る特殊
な酵玠を甚いる方法が知られおいる。この皮の酵
玠ずしおは、䟋えばグルタミン酞システむン
グリシンの配列であるトリペプチドを合成するグ
ルタチオン合成酵玠特開昭54−122793号公報。
やデカペプチドであるグラミシゞンを合成する
グラミシゞン合成酵玠珟代化孊1974幎12月号
12頁などが報告されおいる。しかし、これらの
酵玠は特殊な酵玠であ぀お、この酵玠によ぀お合
成しうるペプチドは、限定された䞀皮のみのペプ
チドであり、目的ずする任意なペプチドを合成す
るこずができない。このため、この方法は䞀般的
なペプチド合成法ずはなり埗ないのが珟状であ
る。
On the other hand, an enzymatic method using protease has been proposed as a method to avoid the occurrence of racemization as much as possible, but this method also requires a long reaction time and the need to protect the terminal amino group with a protecting group. The complexity of the process could not be improved.
Furthermore, in the enzymatic method using this protease,
Since the enzyme used inherently has peptide-splitting activity, the resulting peptide is degraded in parallel with the synthesis, presenting a serious drawback in that the desired peptide is often not obtained. In particular, when applied to the synthesis of oligopeptides, a serious drawback has been pointed out: unintended peptides lacking some amino acids can be obtained (Journal of Biological Chemistry, Vol. 256, 1301). Page (1981). In addition to the protease method, methods for synthesizing peptides using enzymatic methods include methods that use special enzymes that control only the synthesis of a single peptide with a specific amino acid sequence. Examples of seed enzymes include glutamic acid/cysteine/
Glutathione synthetase that synthesizes a tripeptide having the sequence of glycine (Japanese Patent Application Laid-Open No. 122793/1983).
Gramicidin S synthase, which synthesizes gramicidin S, a decapeptide, and decapeptide (Gendai Kagaku December 1974 issue)
(p. 12) have been reported. However, these enzymes are special enzymes, and only a limited number of peptides can be synthesized by these enzymes, and it is not possible to synthesize any desired peptide. Therefore, at present, this method cannot be used as a general peptide synthesis method.

本発明者らは、ペプチドの有甚性に鑑み、䞊蚘
のような欠点、特にラセミ化、副反応の生起、反
応の煩雑さ等の原因ずなり、同時に経枈性を損う
保護基の必芁性を解決し、汎甚性のある新芏なペ
プチド合成法を提䟛するこずを目的ずしお鋭意研
究を重ねた結果、アミノ酞を栞酞の䞀皮である
tRNAに結合させる䜜甚を有する酵玠で、埓来党
くペプチド結合を圢成する䜜甚が知られおいなか
぀たアミノアシル−tRNAシンテタヌれに驚くべ
きこずに、ペプチド合成胜があるこずを芋い出
し、この酵玠を瞮合剀ずしお甚いるず、前蚘の目
的がすべお達成されるこずを芋い出し、先に特蚱
出願した特願昭57−10336号。しかし、この方
法は瞮合剀ずしお甚いるアミノアシル−tRNAシ
ンテタヌれを高玔床に粟補しおおり、このため、
操䜜が煩雑で所望のアミノアシル−tRNAシンテ
タヌれを埗るに長時間を芁し、アミノアシル−
tRNAシンテタヌれ掻性が粟補䞭に床々倱われる
䟋があり、このため、酵玠の収率の䜎䞋をきたし
易い傟向があ぀た。これを改良するため、アミノ
アシル−tRNAシンテタヌれを、䟋えば埮生物な
ど自然界に広く求めたずしおも、取埗したアミノ
アシル−tRNAシンテタヌれの収率が䜎い傟向に
あり、䞊蚘の点を改善するこずはできなか぀た。
さらに操䜜の煩雑性を改良すべく、䟋えば、埮生
物现胞などをホモゞナむザヌやダむノミル等で砎
砕したたたの粗抜出液を甚いるこずを怜蚎しおみ
たが、この方法では、ペプチド合成時に混圚する
他の酵玠などの圱響のためか、床々副反応が認め
られお目的ペプチドの収率を䜎䞋せしめる傟向に
あり、か぀反応埌の目的物の単離粟補が十分では
なか぀た。
In view of the usefulness of peptides, the present inventors have solved the above-mentioned drawbacks, particularly the need for protective groups that cause racemization, occurrence of side reactions, and complexity of the reaction, and at the same time impair economic efficiency. As a result of extensive research aimed at providing a new and versatile peptide synthesis method, we discovered that amino acids are a type of nucleic acid.
Surprisingly, we discovered that aminoacyl-tRNA synthetase, an enzyme that binds to tRNA and had no known ability to form peptide bonds, has the ability to synthesize peptides, and used this enzyme as a condensing agent. We discovered that all of the above objectives could be achieved, and filed a patent application (Japanese Patent Application No. 10336/1983). However, in this method, the aminoacyl-tRNA synthetase used as the condensing agent is purified to a high degree of purity;
The procedure is complicated and it takes a long time to obtain the desired aminoacyl-tRNA synthetase.
There were cases in which tRNA synthetase activity was frequently lost during purification, which tended to result in a decrease in enzyme yield. In order to improve this problem, even if aminoacyl-tRNA synthetases were widely sought in the natural world, such as microorganisms, the yield of the obtained aminoacyl-tRNA synthetases tended to be low, and the above-mentioned problem could not be improved.
Furthermore, in order to improve the complexity of the operation, we considered using a crude extract obtained by crushing microbial cells with a homogenizer or Dynomill, but this method does not allow the use of other enzymes mixed during peptide synthesis. Perhaps due to these factors, side reactions were often observed, which tended to reduce the yield of the target peptide, and the target product was not sufficiently isolated and purified after the reaction.

そこで、本発明者らは䞊蚘の点を改良するため
にさらに鋭意研究を重ねた結果、驚くべきこずに
粗抜出液をリン酞基を有する陜むオン亀換暹脂で
凊理しお埗たアミノアシル−tRNAシンテタヌれ
を含む粗酵玠液を甚いるず、䞊蚘の点をすべお解
決し、ペプチド又はペプチド誘導䜓を高収量で合
成できるこずを芋い出し、本発明を完成した。
Therefore, the present inventors conducted further intensive research to improve the above points, and surprisingly found that aminoacyl-tRNA synthetase obtained by treating the crude extract with a cation exchange resin having a phosphate group. The inventors have discovered that using a crude enzyme solution containing the above-mentioned solution solves all of the above problems and can synthesize peptides or peptide derivatives in high yields, and have completed the present invention.

すなわち、本発明はアミノ酞からペプチド又は
ペプチド誘導䜓を合成するに際し、生物现胞を砎
砕しお埗た粗抜出液をリン酞基を有する陜むオン
亀換暹脂で凊理しおアミノアシル−tRNAシンテ
タヌれを含む粗酵玠液を反応系に加えお合成する
こずを特城ずするペプチド又はペプチド誘導䜓の
合成法である。
That is, when synthesizing peptides or peptide derivatives from amino acids, the present invention involves treating a crude extract obtained by crushing biological cells with a cation exchange resin having a phosphate group to prepare a crude enzyme solution containing aminoacyl-tRNA synthetase. This is a method for synthesizing peptides or peptide derivatives, which is characterized by adding peptides or peptide derivatives to a reaction system.

本発明に䜿甚されるアミノアシル−tRNAシン
テタヌれは、酵玠分類6.1.1に属し、次匏 アミノ酞ATPtRNA→アミノアシル−tRNAAMP
ピロリン酞 の反応を觊媒する酵玠であり、䟋えば、りサギ、
りマ、りシ、ラツト、ニワトリ、ヘビなどの動物
組織より埗られるもの、むネ、むモ、トマトなど
の怍物組織より埗られるもの、カビ、酵母、キノ
コ、现菌、攟線菌などの埮生物及び藻類より埗ら
れるものなどがあげられる。なかでも、酵玠の取
埗が容易であるから、埮生物より埗られるものが
奜たしく、さらに酵玠の安定性からバチルス・ス
テアロサヌモフむルス、サヌマス・サヌモフむル
ス、サヌマス・フラバス、クロストリゞりム・サ
ヌモアセチカム、サヌマス・マグアテむカスなど
の奜熱性现菌より埗られるアミノアシル−tRNA
シンテタヌれが最適である。
The aminoacyl-tRNA synthetase used in the present invention belongs to enzyme classification 6.1.1 and has the following formula: amino acid + ATP + tRNA → aminoacyl-tRNA + AMP +
An enzyme that catalyzes the reaction of pyrophosphate, such as rabbit,
Those obtained from animal tissues such as horses, cows, rats, chickens, and snakes; those obtained from plant tissues such as rice, potatoes, and tomatoes; those obtained from microorganisms such as molds, yeasts, mushrooms, bacteria, actinomycetes, and algae. Things can be given. Among them, enzymes obtained from microorganisms are preferred because they are easy to obtain, and Bacillus stearothermophilus, Thermus thermophilus, Thermus flavus, Clostridium thermoaceticum, and Thermus magateicus are preferred because of the stability of the enzyme. Aminoacyl-tRNA obtained from thermophilic bacteria such as
Synthetase is optimal.

これら各皮のアミノアシル−tRNAシンテタヌ
れは、皮々のα−アミノ酞に特異性のあるものが
甚いられ、䟋えばチロシンに特異性のあるものず
しおは、チロシル−tRNAシンテタヌれが、たた
ロむシンに特異性のあるものずしおは、ロむシル
−tRNAシンテタヌれが、さらにバリンに特異性
のあるものずしおは、バリル−tRNAシンテタヌ
れ、その他む゜ロむシル−tRNAシンテタヌれ、
プニルアラニル−tRNAシンテタヌれ、アラニ
ン−tRNAシンテタヌれ、グルタミル−tRNAシ
ンテタヌれ、アスパラギニル−tRNAシンテタヌ
れ、メチオニル−tRNAシンテタヌれ、ヒスチゞ
ル−tRNAシンテタヌれ、リゞル−tRNAシンテ
タヌれ、トレオニル−tRNAシンテタヌれ、セリ
ル−tRNAシンテタヌれ、などが具䜓䟋ずしおあ
げられる。
These various aminoacyl-tRNA synthetases have specificity for various α-amino acids. For example, tyrosyl-tRNA synthetases have specificity for tyrosine, and tyrosyl-tRNA synthetases have specificity for leucine. is leucyl-tRNA synthetase, and those with specificity for valine include valyl-tRNA synthetase, other isoleucyl-tRNA synthetases,
Specific examples include phenylalanyl-tRNA synthetase, alanine-tRNA synthetase, glutamyl-tRNA synthetase, asparaginyl-tRNA synthetase, methionyl-tRNA synthetase, histidyl-tRNA synthetase, lysyl-tRNA synthetase, threonyl-tRNA synthetase, and seryl-tRNA synthetase. can give.

本発明においおは、これらのアミノアシル−
tRNAシンテタヌれを含む粗酵玠液を埗るには、
䟋えば、䞊蚘組織又は现胞をホモゞナむザヌやダ
むノミル等で砎砕した埌、埗られた粗抜出液をリ
ン酞基を有する陜むオン亀換暹脂で凊理するこず
が必芁である。
In the present invention, these aminoacyl-
To obtain a crude enzyme solution containing tRNA synthetase,
For example, it is necessary to crush the tissue or cells with a homogenizer, dyno mill, etc., and then treat the resulting crude extract with a cation exchange resin having a phosphate group.

このリン酞基を有する陜むオン亀換暹脂で凊理
するには、䟋えば、PHないしPH12、奜たしくは
PHないしPH、最適にはPHないしPHで、濃
床がないし1M、奜たしくは20ないし
100の緩衝液で平衡化したリン酞基を有する
陜むオン亀換暹脂に、䞊蚘粗抜出液を加えるバ
ツチ法か、䞊蚘暹脂をカラムに぀め、そのカラ
ムに粗抜出液を通液カラム法しお行なえばよ
い。その時の凊理枩床ずしおは、アミノアシル−
tRNAシンテタヌれの掻性を維持する枩床で行え
ばよいが、䞀般には、℃から70℃が奜たしく、
特に℃から30℃が最適である。たた、その時に
甚いる緩衝液ずしおは、アミノアシル−tRNAシ
ンテタヌれが溶解し、所望のPHが埗られるもので
あればいかなるものでもよい。そのようなものず
しお、䟋えば、トリス塩酞緩衝液、ヘペス緩衝
液、トリ゚タノヌルアミン緩衝液、むミダゟヌル
緩衝液、リン酞緩衝液などがあげられる。さらに
酵玠の倱掻を防ぐこずを䞻目的ずしお、凊理甚緩
衝液にメルカプト゚タノヌル、ゞチオスレむトヌ
ルなどのスルフヒドリル化剀プニルメチルスル
ホニルフルオリドなどのタンパク質分解酵玠阻害
剀、゚チレンゞアミン四酢酞ナトリりムなどのキ
レヌト剀を添加しおもよい。前蚘バツチ法で凊理
するには、䟋えば、粗抜出液を䞊蚘緩衝液で平衡
化したリン酞基を有する陜むオン亀換暹脂に加
え、分以䞊、奜たしくは30分以䞊撹拌し、さら
にしばらく攟眮した埌、同じ緩衝液で溶出せしめ
るか、PHの異なる䞊蚘緩衝液、濃床倉化を持たせ
た、あるいは塩を含む緩衝液で吞着した酵玠を溶
出せしめるこずにより、アミノアシル−tRNAシ
ンテタヌれを含む粗酵玠液を埗るこずができる。
たた、カラム法で凊理するには、䟋えば、カラム
内で所望の酵玠の吞着・脱着操䜜を行えばよく、
原理的にはバツチ法ず同じである。凊理する時間
ずしおは、できるだけ迅速であるこずが奜たし
く、カラム内の線速床がcm・h-1以䞊で行うの
がよい。さらに分離胜を考慮しおカラム内の線速
床ずしおは、最倧60cm・h-1であるこずがより奜
たしい。さらにバツチ法及びカラム法で溶出に䜿
甚する塩ずしおは、本質的に完党に解離するもの
であればどのようなものでも䜿甚できるが、特に
むオン亀換基の察むオンずなる塩、あるいは甚い
た緩衝液のそれず同じである塩が奜たしい。
For treatment with a cation exchange resin having a phosphate group, for example, PH3 to PH12, preferably
PH6 to PH9, optimally PH7 to PH8, concentration 1mM to 1M, preferably 20mM to PH8.
Add the above crude extract to a cation exchange resin containing phosphate groups equilibrated with 100mM buffer (batch method), or pack the resin into a column and pass the crude extract through the column (column method). ). The processing temperature at that time is aminoacyl-
It may be carried out at a temperature that maintains the activity of tRNA synthetase, but in general, a temperature between 0°C and 70°C is preferred;
In particular, a temperature between 0°C and 30°C is optimal. The buffer used at that time may be any buffer as long as it dissolves the aminoacyl-tRNA synthetase and provides the desired pH. Examples of such buffers include Tris-HCl buffer, Hepes buffer, triethanolamine buffer, imidazole buffer, and phosphate buffer. Furthermore, with the main purpose of preventing enzyme inactivation, treatment buffers include mercaptoethanol, sulfhydrylators such as dithiothreitol, protease inhibitors such as phenylmethylsulfonyl fluoride, and chelates such as sodium ethylenediaminetetraacetate. Agents may also be added. To process by the batch method, for example, the crude extract is added to a cation exchange resin having phosphate groups equilibrated with the above buffer solution, stirred for 5 minutes or more, preferably 30 minutes or more, and then left for a while. After that, the crude enzyme solution containing aminoacyl-tRNA synthetase is obtained by eluating the adsorbed enzyme with the same buffer solution, or with the above buffers with different pH values, with varying concentrations, or with buffers containing salt. Obtainable.
In addition, in order to perform treatment using the column method, for example, the desired enzyme may be adsorbed and desorbed within the column.
The principle is the same as the batch method. The treatment time is preferably as quick as possible, and the treatment is preferably carried out at a linear velocity of 1 cm·h −1 or more in the column. Further, in consideration of separation ability, it is more preferable that the linear velocity within the column is at most 60 cm·h −1 . Furthermore, as the salt used for elution in the batch method and column method, any salt can be used as long as it essentially completely dissociates; Salts that are the same as those of the liquid are preferred.

このように凊理しお埗たアミノアシル−tRNA
シンテタヌれを含む粗酵玠液を、そのたた甚いお
もよいし、これをさらに凍結也燥しお埗た固圢状
のものも甚いられる。
Aminoacyl-tRNA obtained by this treatment
A crude enzyme solution containing synthetase may be used as it is, or a solid solution obtained by further freeze-drying this may also be used.

このように凊理しお埗たアミノアシル−tRNA
シンテタヌれを含む粗酵玠液は、さらにDEAEæš¹
脂凊理を斜しおペプチド合成に䜿甚しおもよい。
Aminoacyl-tRNA obtained by this treatment
The crude enzyme solution containing synthetase may be further treated with DEAE resin and used for peptide synthesis.

本発明に甚いられるリン酞基を有する陜むオン
亀換暹脂ずしおは、亀換基がリン酞基であるもの
であれば、いかなる基材でもよい。なかでも、セ
ルロヌスを基材ずしたリン酞セルロヌス暹脂䟋
えば、ワツトマン瀟補、バむオ・ラツド瀟補ある
いはセルバ瀟補を甚いるず、所望のアミノアシ
ル−tRNAシンテタヌれを含む粗酵玠液が迅速か
぀高収率で埗られ、その粗酵玠液を甚いるず高収
量でペプチド又はペプチド誘導䜓を合成するこず
ができお奜たしい。
As the cation exchange resin having a phosphoric acid group used in the present invention, any base material may be used as long as the exchange group is a phosphoric acid group. Among these, the use of cellulose phosphate resins based on cellulose (e.g., manufactured by Watmann, Bio-Rad, or Selva) allows for the rapid production of a crude enzyme solution containing the desired aminoacyl-tRNA synthetase with high yield. If the crude enzyme solution is used, peptides or peptide derivatives can be synthesized in high yield, which is preferable.

次に、リン酞基を有する陜むオン亀換暹脂で凊
理しお埗たアミノアシル−tRNAシンテタヌれを
含む粗酵玠液を甚いたペプチド又はペプチド誘導
䜓の合成方法を具䜓的に説明する。
Next, a method for synthesizing a peptide or a peptide derivative using a crude enzyme solution containing aminoacyl-tRNA synthetase obtained by treatment with a cation exchange resin having a phosphate group will be specifically explained.

本発明によれば、アミノ酞ずアミノ酞から誘導
されるアミノ酞誘導䜓ずをアミノアシル−tRNA
シンテタヌれを含む粗酵玠液の存圚䞋で反応させ
るこずによ぀おペプチド又はペプチド誘導䜓を合
成するこずができる。さらに本発明によれば、あ
らかじめアミノ酞ずアミノアシル−tRNAシンテ
タヌれを含む粗酵玠液ずを混合させお混合物を
埗、次いで埗られた混合物ずアミノ酞誘導䜓ずを
反応させるこずによ぀おペプチド又はペプチド誘
導䜓を合成するこずができる。このアミノアシル
−tRNAシンテタヌれを含む粗酵玠液ずあらかじ
め混合させるのに奜たしく甚いられるアミノ酞ず
しおは、䟋えばチロシン、アラニン、ロむシン、
む゜ロむシン、プニルアラニン、メチオニン、
リゞン、セリン、バリンなどのα−アミノ酞があ
げられ、䜓、䜓のいずれでもよい。たた、䞊
蚘反応に奜たしく甚いられるアミノ酞誘導䜓ずし
おは、䟋えば、グリシン、アラニン、ロむシン、
む゜ロむシン、プニルアラニン、グルタミン
酞、グルタミン、ノルロむシン、システむン、チ
ロシン、アルギニン、バリン、リゞン、ヒスチゞ
ン、アスパラギン酞、アスパラギン、メチオニ
ン、トリプトフアン、トレオニンなどのα−アミ
ノ酞、β−アラニン、β−アミノむ゜酪酞などの
β−アミノ酞、クレアチンなどの含窒玠γ−アミ
ノ酞、ピペリゞン酞などのγ−アミノ酞、ε−ア
ミノカプロン酞などのε−アミノ酞などの各皮ア
ミノ酞の゚ステル、チオ゚ステル、アミド、ヒド
ロキサミドなどがあげられるが、アミノ基が遊離
の圢であるアミノ酞誘導䜓であれば、䞊蚘䟋瀺化
合物に限定されるものではない。その゚ステルず
しおは、䟋えばメチル、゚チル、プロピル、シク
ロヘキシル、プニル、ベンゞルなどの単玔な炭
化氎玠系の゚ステルから、tRNAの3′−OHで䞊
蚘アミノ酞が゚ステル化したものたで、皮々の゚
ステルを甚いるこずができる。たた、アミドずし
おは、遊離のアミドの他、䟋えば異皮あるいは同
皮のアミノ酞がアミド結合したオリゎペプチドや
ポリペプチドを甚いるこずもできる。このオリゎ
ペプチドやポリペプチドがさらに゚ステル、チオ
゚ステル、ヒドロキサミド、゚ヌテル化したもの
を甚いるこずも可胜である。たた、䞊蚘アミノ酞
誘導䜓は氎溶液の状態で甚いるか、あるいは固䜓
のたた甚いおもよい。
According to the present invention, an amino acid and an amino acid derivative derived from the amino acid are combined into an aminoacyl-tRNA.
Peptides or peptide derivatives can be synthesized by reacting in the presence of a crude enzyme solution containing synthetase. Furthermore, according to the present invention, a peptide or a peptide derivative is synthesized by mixing an amino acid and a crude enzyme solution containing aminoacyl-tRNA synthetase in advance to obtain a mixture, and then reacting the obtained mixture with an amino acid derivative. can do. Examples of amino acids preferably used for pre-mixing with the crude enzyme solution containing aminoacyl-tRNA synthetase include tyrosine, alanine, leucine,
isoleucine, phenylalanine, methionine,
Examples include α-amino acids such as lysine, serine, and valine, which may be either L-form or D-form. In addition, examples of amino acid derivatives preferably used in the above reaction include glycine, alanine, leucine,
α-amino acids such as isoleucine, phenylalanine, glutamic acid, glutamine, norleucine, cysteine, tyrosine, arginine, valine, lysine, histidine, aspartic acid, asparagine, methionine, tryptophan, threonine, β-alanine, β-aminoisobutyric acid, etc. Examples include esters, thioesters, amides, and hydroxamides of various amino acids such as β-amino acids, nitrogen-containing γ-amino acids such as creatine, γ-amino acids such as piperidic acid, and ε-amino acids such as ε-aminocaproic acid. is not limited to the above-mentioned exemplified compounds as long as it is an amino acid derivative in a free form. As the ester, various esters can be used, from simple hydrocarbon esters such as methyl, ethyl, propyl, cyclohexyl, phenyl, and benzyl to those in which the above amino acids are esterified with the 3'-OH of tRNA. Can be done. Furthermore, as the amide, in addition to free amide, for example, oligopeptides or polypeptides in which different or the same type of amino acids are amide-bonded can also be used. It is also possible to use esters, thioesters, hydroxamides, and etherified oligopeptides and polypeptides. Furthermore, the above amino acid derivatives may be used in the form of an aqueous solution or in a solid state.

次に混合物を埗るには、䟋えばPHないしPH11
奜たしくはPHないしPH10、最適にはPHないし
PH10の緩衝液䞭、アデノシン䞉リン酞又はデオキ
シアデノシン䞉リン酞存圚䞋に、アミノ酞ずアミ
ノアシルtRNAシンテタヌれを含む粗酵玠液ず混
合するこずによ぀お行えばよい。そのずきの混合
の枩床ずしおは、酵玠掻性を維持する芳点から䞀
般に℃から70℃が奜たしく、最適には℃から
30℃で行われる。たた、そのずきに甚いられる緩
衝液ずしおは、アミノ酞、アデノシン䞉リン酞、
デオキシアデノシン䞉リン酞及びアミノアシル−
tRNAシンテタヌれを含む粗酵玠液が溶解し所望
のPHが埗られるものであれば、いかなるものを䜿
甚しおもよい。䟋えば、トリス塩酞緩衝液、ヘペ
ス緩衝液、トリ゚タノヌルアミン緩衝液、マレヌ
ト緩衝液、リン酞緩衝液などがあげられる。さら
に反応を円滑に進行させ、酵玠の倱掻を防ぐこず
を䞻目的ずしお、反応系にマグネシりム、マンガ
ンなどの二䟡カチオン、メルカプト゚タノヌル、
ゞチオスレむトヌルなどのスルフヒドリル化剀、
ピロフオスフアタヌれを単独又は混合しお添加し
おもよい。各添加剀の奜適な濃床ずしおは、二䟡
カチオン0.01〜500、スルフヒドリル化
剀0.001〜100、ピロホスフアタヌれ
0.001ナニツトml〜100ナニツトmlであり、最
適な濃床ずしおは、それぞれ、二䟡カチオン0.1
〜10、スルフヒドリル化剀0.01〜
、ピロホスフアタヌれナニツトml〜10ナ
ニツトmlである。たた、アミノ酞、アミノアシ
ル−tRNAシンテタヌれを含む粗酵玠液及びアデ
ノシン䞉リン酞又はデオキシアデノシン䞉リン酞
の䜿甚量は特に制限されないが、実甚的な収量を
埗るためには、アミノ酞重量郚に察し、アミノ
アシル−tRNAシンテタヌれを含む粗酵玠液103
〜106重量郚アミノアシル−tRNAシンテタヌ
れの濃床ずしおは、10ÎŒM以䞊のものが奜たし
い。の範囲アミノ酞ずアデノシン䞉リン酞又は
デオキシアデノシン䞉リン酞ずのモル比を10
〜100の範囲内で行うのが奜たしい。前蚘の
条件で反応を実斜するず、反応は円滑に進行し、
数秒から30分以内に完結する。
Then to obtain a mixture, e.g. PH5 to PH11
Preferably PH6 to PH10, optimally PH7 to PH10
This can be carried out by mixing amino acids and a crude enzyme solution containing aminoacyl-tRNA synthetase in the presence of adenosine triphosphate or deoxyadenosine triphosphate in a PH10 buffer. The mixing temperature at this time is generally preferably from 0°C to 70°C from the viewpoint of maintaining enzyme activity, and optimally from 0°C to 70°C.
Performed at 30°C. In addition, the buffer used at that time includes amino acids, adenosine triphosphate,
Deoxyadenosine triphosphate and aminoacyl-
Any solution may be used as long as it dissolves the crude enzyme solution containing tRNA synthetase and provides the desired pH. Examples include Tris-HCl buffer, Hepes buffer, triethanolamine buffer, malate buffer, and phosphate buffer. Furthermore, with the main purpose of making the reaction proceed smoothly and preventing enzyme deactivation, divalent cations such as magnesium and manganese, mercaptoethanol, etc.
sulfhydrylating agents such as dithiothreitol,
Pyrophosphatase may be added alone or in combination. Suitable concentrations of each additive include 0.01mM to 500mM of divalent cation, 0.001mM to 100mM of sulfhydrylating agent, and 0.001mM to 100mM of pyrophosphatase.
0.001 unit/ml to 100 units/ml, and the optimal concentration is 0.1 unit/ml for each divalent cation.
mM ~ 10mM, sulfhydrylation agent 0.01mM ~ 1
mM, pyrophosphatase 1 unit/ml to 10 units/ml. In addition, the amount of amino acid, crude enzyme solution containing aminoacyl-tRNA synthetase, and adenosine triphosphate or deoxyadenosine triphosphate used is not particularly limited, but in order to obtain a practical yield, it is necessary to use 1 part by weight of amino acid. Crude enzyme solution containing aminoacyl-tRNA synthetase 10 3
~ 106 parts by weight (the concentration of aminoacyl-tRNA synthetase is preferably 10 ÎŒM or more) The molar ratio of amino acids and adenosine triphosphate or deoxyadenosine triphosphate is 1:10.
It is preferable to carry out within the range of 1:100. When the reaction is carried out under the above conditions, the reaction proceeds smoothly,
It can be completed within a few seconds to 30 minutes.

次いで、䞊蚘のようにしお埗られた混合物ずア
ミノ酞誘導䜓ずを混合しお反応させるこずにより
目的のペプチド又はペプチド誘導䜓を埗るこずが
できる。この段階を以埌ペプチド化ず称する。
このずきに甚いる反応混合物は、そのたたペプチ
ド化反応に甚いるこずもできるが、−25フア
ルマシア瀟補−75フアルマシア瀟補など
のゲルクロマトグラフむヌを行うこずによ぀お、
反応埌に混圚するアデノシン䞉リン酞、アデノシ
ン䞀リン酞あるいはピロリン酞等を陀去しお甚い
るこずもできる。たた、ペプチド化反応の枩床ず
しおは、℃から70℃が奜たしく、酵玠の倱掻防
止ず適正な反応速床を埗るずいう芳点から、10℃
から50℃、特に20℃から40℃で行うこずが奜たし
い。PHずしおは、既出の各皮緩衝液等を甚いお、
ないし11奜たしくはないし10、最適にはな
いしで行えばよい。
Next, the mixture obtained as described above and an amino acid derivative are mixed and reacted to obtain the desired peptide or peptide derivative. (This step is hereinafter referred to as peptideization.)
The reaction mixture used at this time can be used as it is for the peptidation reaction, but by performing gel chromatography such as G-25 (manufactured by Pharmacia) or G-75 (manufactured by Pharmacia),
It is also possible to remove adenosine triphosphate, adenosine monophosphate, pyrophosphate, etc. present after the reaction. In addition, the temperature of the peptidation reaction is preferably 0°C to 70°C, and from the viewpoint of preventing enzyme deactivation and obtaining an appropriate reaction rate, 10°C
It is preferable to carry out the reaction at a temperature between 20°C and 40°C, particularly between 20°C and 40°C. For pH, use various buffer solutions mentioned above,
5 to 11, preferably 6 to 10, optimally 7 to 9.

反応混合物ずアミノ酞誘導䜓ずの混合比ずしお
䟋えば、容量で0.1〜100の範囲で行えば
よい。たた、この時甚いるアミノ酞誘導䜓の濃床
ずしおは10から10Mの範囲であるが、これを
さらに䜎くしお甚いるこずもできる。
The mixing ratio of the reaction mixture and the amino acid derivative may be, for example, in the range of 1:0.1 to 1:100 in terms of volume. Further, the concentration of the amino acid derivative used at this time is in the range of 10mM to 10M, but it can also be used at a lower concentration.

䞊蚘条件でペプチド化は、数秒から数日で完結
し、目的のペプチド又はペプチド誘導䜓を埗るこ
ずができる。
Under the above conditions, peptidation is completed in a few seconds to several days, and the desired peptide or peptide derivative can be obtained.

本発明によ぀お埗られるペプチド誘導䜓は、䟋
えば血圧降䞋䜜甚等のあるブラゞキニンや内・倖
分泌抑制䜜甚等のある゜マトスタチンなどの各皮
ホルモン及び抗生物質ペプチド、呈味ペプチドの
ような他の生物孊的掻性物質ずしお有甚である。
The peptide derivatives obtained by the present invention have various hormones such as bradykinin, which has a hypotensive effect, somatostatin, which has an endocrine and exocrine suppressive effect, and other biologically active substances, such as antibiotic peptides and taste peptides. Useful as a substance.

本発明によれば、䞊蚘有甚ペプチド又はペプチ
ド誘導䜓を保護基を甚いるこずなく、安䟡に補造
するこずができ、さらにより高収量で補造できる
ため、工業的に極めお有甚である。
According to the present invention, the above-mentioned useful peptide or peptide derivative can be produced at low cost without using a protecting group, and can be produced in a higher yield, so that it is extremely useful industrially.

以䞋本発明を実斜䟋により具䜓的に説明する。 The present invention will be specifically explained below using examples.

実斜䟋、比范䟋 バチルス・ステアロサヌモフむルス菌䜓Kg
を、倍量の100トリス・塩酞緩衝液PH
7.5に懞濁し、ダむノミルを甚いお现胞を砎砕
埌、遠心分離により䞍溶物を陀去し、チロシンに
特異的なチロシン−tRNAシンテタヌれを含む粗
抜出液を埗た。あらかじめメルカプト゚タ
ノヌル゚チレンゞアミン四酢酞ナトリりム
及び0.1ホスホプニルスルホニルフルオリ
ドを含む50リン酞緩衝液PH7.0で平衡化
したリン酞セルロヌスワツトマン瀟補を充填
したカラムに、䞊蚘の粗抜出液をずおし、塩化カ
リりムを䞊蚘緩衝液に加えた溶液で、線速床60
cm・h-1で溶出せしめるず、チロシル−tRNAシ
ンテタヌれが溶出した。この区分を集め、濃瞮、
脱塩を行぀た結果、80以䞊の高い収率でチロシ
ンに特異的なチロシル−tRNAシンテタヌれを含
む粗酵玠液を埗た。䞊蚘操䜜をすべお℃で行぀
た。
Example 1, Comparative Example 1 Bacillus stearothermophilus cells 6Kg
of 100mM Tris-HCl buffer (PH
7.5), the cells were disrupted using Dynomill, and insoluble materials were removed by centrifugation to obtain a crude extract containing tyrosine-tRNA synthetase specific for tyrosine. The above solution was added to a column filled with phosphocellulose (manufactured by Watmann) equilibrated in advance with 50 mM phosphate buffer (PH7.0) containing 5 mM mercaptoethanol, 2 mM sodium ethylenediaminetetraacetate, and 0.1 mM phosphophenylsulfonyl fluoride. A solution of potassium chloride added to the above buffer was passed through the crude extract at a linear velocity of 60
When eluted at cm·h −1 , tyrosyl-tRNA synthetase was eluted. Collect and concentrate this division,
As a result of desalting, a crude enzyme solution containing tyrosine-specific tyrosyl-tRNA synthetase was obtained with a high yield of over 80%. All the above operations were performed at 4°C.

このようにリン酞基を有する陜むオン亀換暹脂
で凊理しお埗たチロシル−tRNAシンテタヌれを
含む粗酵玠液玔床、塩化マグネシり
ム0.4、アデノシン䞉リン酞二ナトリりム塩0.1
、−チロシンmgピロホスフアタヌれベヌ
リンガヌ・マンハむム瀟補200ナニツト及びゞ
チオスレむトヌル0.01mgを200mlの20ヘペス
緩衝液PH8.0に溶解し、℃で15分間混合させお
混合物を埗た。埗られた混合物に−プニルア
ラニンメチル゚ステルを加え、反応系をPH
8.0に維持した状態でよく混合し、反応枩床を30
℃に保぀お日攟眮しお反応させた。
6 g of crude enzyme solution containing tyrosyl-tRNA synthetase (purity 8%) obtained by treatment with a cation exchange resin having a phosphate group, 0.4 g of magnesium chloride, and 0.1 g of adenosine triphosphate disodium salt.
g, 1 mg of L-tyrosine, 200 units of pyrophosphatase (manufactured by Boehringer Mannheim) and 0.01 mg of dithiothreitol were dissolved in 200 ml of 20 mM Hepes buffer pH 8.0 and mixed for 15 minutes at 4°C to obtain a mixture. Ta. 4 g of L-phenylalanine methyl ester was added to the resulting mixture, and the reaction system was adjusted to pH
Mix well while maintaining the temperature at 8.0, and reduce the reaction temperature to 30.
The mixture was kept at ℃ and allowed to react for one day.

次いで埗られた反応液にアセトン200mlを加え
沈殿を濟別埌、䞊枅を゚バポレヌタヌにお玄20ml
に濃瞮し、ボンダパツクC18カラムりオヌタヌ
ズ瀟補に䟛し、アセトニトリル50リン酞
カリ氎溶液、8515、PHを展開溶媒ずしお甚い
お分離し、−チロシル−−プニルアラニン
メチル゚ステルを0.4mg埗た。
Next, 200 ml of acetone was added to the resulting reaction solution, the precipitate was filtered off, and about 20 ml of the supernatant was collected using an evaporator.
Concentrated to Obtained 0.4 mg.

その元玠分析C19H22N2O4342.39は、 蚈算倀 66.65 6.48 8.18 枬定倀 66.71 6.37 8.23 であ぀た。 The elemental analysis (C 19 H 22 N 2 O 4 = 342.39) was as follows: Calculated values (%) C = 66.65 H = 6.48 N = 8.18 Measured values (%) C = 66.71 H = 6.37 N = 8.23.

次に比范のため、バチルス・ステアロサヌモフ
むルスKgから、䞊蚘ず同様の方法で粗抜出液を
埗、続いお陰むオン亀換暹脂のDEAE−セルロヌ
スカラムクロマトグラフむヌ、ヒドロキシアパタ
むトカラムクロマトグラフむヌ、DEAE−セフア
デツクスカラムクロマトグラフむヌ、硫酞アンモ
ニりムによる分別沈殿法、ヒドロキシアパタむト
グラフむヌ、DEAE−セフアデツクスカラムクロ
マトグラフむヌ及びセフアデツクス−150カラ
ムクロマトグラフむヌ法で単䞀に粟補したチロシ
ル−tRNAシンテタヌれを甚い、䞊蚘ず同様にし
お−チロシル−−プニルアラニンメチル゚
ステルを0.1mg埗た。
Next, for comparison, a crude extract was obtained from 6 kg of Bacillus stearothermophilus in the same manner as above, and then anion exchange resin DEAE-cellulose column chromatography, hydroxyapatite column chromatography, DEAE -Tyrosyl-tRNA synthetase purified to a single form using Cephadex column chromatography, fractional precipitation with ammonium sulfate, hydroxyapatiteography, DEAE-Sephadex column chromatography, and Cephadex G-150 column chromatography. 0.1 mg of L-tyrosyl-L-phenylalanine methyl ester was obtained in the same manner as above.

実斜䟋、比范䟋 バチルス・ステアロサヌモフむルス菌䜓55Kgを
甚い、実斜䟋ず同様にしお埗た粗抜出液を、あ
らかじめメルカプト゚タノヌル、゚
チレンゞアミン四酢酞ナトリりム及び0.1ホ
スホプニルスルホニルフルオリドを含む20
リン酞緩衝液PH7.5で平衡化したリン酞セレ
ツクスバむオ−ラツド瀟補に加え、30分撹拌
し、数分攟眮埌、䞊枅を陀去し、塩化ナトリりム
を䞊蚘緩衝液に加えた溶液で溶出させるず、チロ
シル−tRNAシンテタヌれが溶出した。䞊蚘操䜜
をすべお30℃䞋で行぀た。
Example 2, Comparative Example 2 Using 55 kg of Bacillus stearothermophilus cells, a crude extract obtained in the same manner as in Example 1 was mixed in advance with 5 mM mercaptoethanol, 2 mM sodium ethylenediaminetetraacetate, and 0.1 mM phosphophenylsulfonyl. 20mM containing fluoride
Add to Phosphate Selex (manufactured by Bio-Rad) equilibrated with phosphate buffer (PH7.5), stir for 30 minutes, leave for several minutes, remove the supernatant, and add sodium chloride to the above buffer. Tyrosyl-tRNA synthetase was eluted by elution with a diluted solution. All the above operations were performed at 30°C.

このリン酞基を有する陜むオン亀換暹脂で凊理
しお埗たチロシル−tRNAシンテタヌれを含む粗
酵玠液45玔床11、塩化マグネシりム150
mg、アデノシン䞉リン酞二ナトリりム塩300mg、
−チロシンmg、ピロホスフアタヌれベヌリ
ンガヌマンハむム瀟補200ナニツト及びゞチオ
スレむトヌル0.01mgを200mlの25リン酞緩衝
液PH8.5に溶解し、℃で20分間反応させたのち、
反応混合物を−75フアルマシア瀟補カラム
に䟛し、ヘペス緩衝液にお溶出し、ボむド容の画
分300mlを集め反応混合物を単離した。単離した
混合物に−バリンメチル゚ステル1.0を加え、
反応系をPH8.5に維持した状態でよく混合し、反
応枩床を20℃に保぀お30分間反応させた。
45 g of crude enzyme solution containing tyrosyl-tRNA synthetase (purity 11%) obtained by treatment with this cation exchange resin having a phosphate group, 150 g of magnesium chloride
mg, adenosine triphosphate disodium salt 300 mg,
9 mg of L-tyrosine, 200 units of pyrophosphatase (manufactured by Boehringer Mannheim) and 0.01 mg of dithiothreitol were dissolved in 200 ml of 25 mM phosphate buffer pH 8.5 and reacted at 4°C for 20 minutes.
The reaction mixture was applied to a G-75 (manufactured by Pharmacia) column, eluted with Hepes buffer, and 300 ml of void volume fractions were collected to isolate the reaction mixture. Add 1.0 g of D-valine methyl ester to the isolated mixture,
The reaction system was mixed well while maintaining the pH at 8.5, and the reaction was carried out for 30 minutes while maintaining the reaction temperature at 20°C.

次いで埗られた反応液をアセトンを加え、
沈殿を濟別埌、䞊枅を゚バポレヌタヌにお玄30ml
に濃瞮し、ボンダパツクC18カラムに䟛し、実斜
䟋ず同様に分離しお、−チロシル−−バリ
ンメチル゚ステル14.6mgを埗た。
Next, 1 part of acetone was added to the resulting reaction solution,
After filtering the precipitate, remove the supernatant using an evaporator to approximately 30ml.
The residue was concentrated, applied to a Bondapak C18 column, and separated in the same manner as in Example 1 to obtain 14.6 mg of L-tyrosyl-D-valine methyl ester.

その元玠分析C15H22N2O4294.36は 蚈算倀 61.21 7.53 9.52 枬定倀 61.41 7.50 9.39 であ぀た。 The elemental analysis (C 15 H 22 N 2 O 4 =294.36) was as follows: Calculated values (%): C=61.21 H=7.53 N=9.52 Measured values (%): C=61.41 H=7.50 N=9.39.

次に比范のため、䞊蚘ず同じ菌䜓量を甚い、比
范䟋ず同様にしお埗たチロシル−tRNAシンテ
タヌれで反応を行぀お−チロシル−−バリン
メチル゚ステルを3.6mg埗た。
Next, for comparison, using the same amount of bacterial cells as above, a reaction was carried out with tyrosyl-tRNA synthetase obtained in the same manner as in Comparative Example 1 to obtain 3.6 mg of L-tyrosyl-D-valine methyl ester.

実斜䟋、比范䟋 パン酵母から実斜䟋ず同様の操䜜で埗た粗抜
出液を、あらかじめ、10メルカプト゚タノヌ
ル、20゚チレンゞアミン四酢酞ナトリりム及
び0.1ホスホプニルスルホニルフルオリド
を含む50リン酞緩衝液PH7.0で平衡化し
たリン酞セルロヌスセルバ瀟補を充填したカ
ラムに通し、塩化カリりムを䞊蚘緩衝液に加えた
溶液で、線速床10cm・h-1で溶出せしめるず、メ
チオニル−tRNAシンテタヌれを含む粗酵玠液が
溶出し、これを凍結也燥しお粉末状の粗酵玠暙品
を埗た。
Example 3, Comparative Example 3 A crude extract obtained from baker's yeast in the same manner as in Example 1 was pretreated with 50mM phosphoric acid containing 10mM mercaptoethanol, 20mM sodium ethylenediaminetetraacetate, and 0.1mM phosphophenylsulfonyl fluoride. When passed through a column packed with cellulose phosphate (manufactured by Selva) equilibrated with a buffer solution (PH7.0) and eluted with a solution of potassium chloride added to the above buffer solution at a linear velocity of 10 cm h -1 , A crude enzyme solution containing methionyl-tRNA synthetase was eluted, and this was lyophilized to obtain a powdered crude enzyme preparation.

このリン酞基を有する陜むオン亀換暹脂で凊理
しお埗たメチオニル−tRNAシンテタヌれを含む
粗酵玠暙品玔床10、塩化マグネシりム
20mg、アデノシン䞉リン酞二ナトリりム塩40mg、
−メチオニンmg、ピロホスフアタヌれベヌ
リンガヌ・マンハむム瀟補10ナニツト及びメル
カプト゚タノヌル20Όを30mlの50M2−
ゞメチルむミダゟヌル緩衝液PH9.0に加えお反応
系をPH9.0に維持した状態で実斜䟋ず同様に反
応させた埌、実斜䟋ず同様に反応混合物を単離
し、これに−ロむシン゚チル゚ステルを固
䜓のたた加えお20℃で時間反応させた。埗られ
た反応物にアセトン20mlを加え生じた沈殿を濟別
し、゚バポレヌタヌにお玄10mlに濃瞮埌、実斜䟋
ず同様に分離し、−メチオニル−−ロむシ
ン゚チル゚ステルを1.8mg埗た。
2 g of crude enzyme preparation containing methionyl-tRNA synthetase (purity 10%) obtained by treatment with this cation exchange resin having a phosphate group, magnesium chloride
20mg, adenosine triphosphate disodium salt 40mg,
1 mg of D-methionine, 10 units of pyrophosphatase (manufactured by Boehringer Mannheim) and 20Ό of mercaptoethanol were mixed in 30ml of 50mM2,5-
After adding dimethylimidazole buffer solution PH 9.0 and reacting in the same manner as in Example 2 while maintaining the reaction system at PH 9.0, the reaction mixture was isolated in the same manner as in Example 2, and L-leucine ethyl 1 g of ester was added in solid form and reacted at 20°C for 5 hours. 20 ml of acetone was added to the resulting reaction product, the resulting precipitate was filtered, concentrated to about 10 ml using an evaporator, and separated in the same manner as in Example 1 to obtain 1.8 mg of D-methionyl-L-leucine ethyl ester. .

その元玠分析C13H26N2O3S1290.43は、 蚈算倀 53.77 9.02 9.64 枬定倀 53.80 8.90 9.75 であ぀た。 The elemental analysis (C 13 H 26 N 2 O 3 S 1 = 290.43) was as follows: Calculated value (%) C = 53.77 H = 9.02 N = 9.64 Measured value (%) C = 53.80 H = 8.90 N = 9.75 .

次に比范のため、䞊蚘で埗た粗抜出液をリン酞
基を有する陜むオン亀換暹脂で凊理するこずなく
そのたた甚い、䞊蚘ず同様の方法で反応を行぀お
−メチオニル−−ロむシン゚チル゚ステルを
0.2mg埗た。
Next, for comparison, the crude extract obtained above was used as it was without being treated with a cation exchange resin having a phosphate group, and the reaction was carried out in the same manner as above to obtain D-methionyl-L-leucine ethyl ester. of
Obtained 0.2 mg.

実斜䟋に比べるず粗抜出液䞭に存圚する他の
酵玠などの圱響による副反応のためか、収率は䜎
䞋する傟向にあ぀た。
Compared to Example 3, the yield tended to decrease, probably due to side reactions caused by other enzymes present in the crude extract.

実斜䟋、比范䟋 りサギの肝臓からホモゞナむザヌを䜿぀お、実
斜䟋ず同様の操䜜でセリル−tRNAシンテタヌ
れを含む粗抜出液を埗た。あらかじめ、ゞ
チオスレむトヌル、゚チレンゞアミン四酢
酞ナトリりム及び0.1ホスホプニルスルホ
ニルフルオリドを含む25むミダゟヌル緩衝液
PH7.5で平衡化したリン酞セルロヌスワツト
マン瀟補に䞊蚘粗抜出液を加え、時間撹拌
し、静眮埌、䞊枅を陀去した。これを塩化カリり
ムを䞊蚘緩衝液に加えた溶液で溶出せしめるず、
セリル−tRNAシンテタヌれが溶出した。
Example 4, Comparative Example 4 A crude extract containing seryl-tRNA synthetase was obtained from rabbit liver in the same manner as in Example 1 using a homogenizer. The above crude extract was added to cellulose phosphate (manufactured by Watmann) which had been equilibrated in advance with 25mM imidazole buffer (PH7.5) containing 1mM dithiothreitol, 2mM sodium ethylenediaminetetraacetate and 0.1mM phosphophenylsulfonyl fluoride. The mixture was added, stirred for 1 hour, and left to stand, and then the supernatant was removed. When this is eluted with a solution of potassium chloride added to the above buffer,
Seryl-tRNA synthetase was eluted.

こうしお埗たセリル−tRNAシンテタヌれを含
む粗酵玠液玔床10、塩化マグネシりム
50mg、デオキシアデノシン䞉リン酞二ナトリりム
å¡©50mg、−セリンmg、ピロホスフアタヌれ
ベヌリンガヌマンハむム瀟補200ナニツト及び
ゞチオスレむトヌル0.01mgを甚いお、実斜䟋ず
同様に反応させ、−25フアルマシア瀟補カ
ラムを甚いお反応混合物を埗た。次いで、これに
β−アラニルアミドを加え、反応系をPH9.0
に維持した状態で混合し、50℃で10分間反応させ
た。埗られた反応液をボンダパツクC18カラムに
より実斜䟋ず同様に分離し、−セリル−β−
アラニルアミド1.3mgを埗た。
3 g of crude enzyme solution containing seryl-tRNA synthetase (purity 10%) obtained in this way, magnesium chloride
50 mg of deoxyadenosine triphosphate disodium salt, 1 mg of L-serine, 200 units of pyrophosphatase (manufactured by Boehringer Mannheim), and 0.01 mg of dithiothreitol. A reaction mixture was obtained using a 25 (manufactured by Pharmacia) column. Next, 4 g of β-alanylamide was added to this, and the reaction system was adjusted to pH 9.0.
The mixture was mixed at 50°C for 10 minutes. The obtained reaction solution was separated using a Bondapak C18 column in the same manner as in Example 1, and L-seryl-β-
1.3 mg of alanilamide was obtained.

その元玠分析C6H13N3O3175.19は、 蚈算倀 41.14 7.48 23.99 枬定倀 41.10 7.43 24.05 であ぀た。 The elemental analysis (C 6 H 13 N 3 O 3 = 175.19) was as follows: Calculated values (%) C = 41.14 H = 7.48 N = 23.99 Measured values (%) C = 41.10 H = 7.43 N = 24.05.

次に比范のため、䞊蚘で埗た粗抜出液をリン酞
基を有する陜むオン亀換暹脂で凊理するこずなく
そのたた甚いお、䞊蚘ず同様の方法で反応を行぀
お−セリル−β−アラニルアミド0.2mgを埗た。
Next, for comparison, the crude extract obtained above was used as it was without being treated with a cation exchange resin having a phosphoric acid group, and the reaction was carried out in the same manner as above to produce 0.2 L-seryl-β-alanylamide. I got mg.

実斜䟋に比べるず、収率は䜎䞋する傟向にあ
぀た。
Compared to Example 4, the yield tended to decrease.

Claims (1)

【特蚱請求の範囲】[Claims]  アミノ酞からペプチド又はペプチド誘導䜓を
合成するに際し、生物现胞を砎砕しお埗た粗抜出
液をリン酞基を有する陜むオン亀換暹脂で凊理し
おアミノアシル−tRNAシンテタヌれを含む粗酵
玠液を埗、埗られた粗酵玠液を反応系に加えお合
成するこずを特城ずするペプチド又はペプチド誘
導䜓の合成法。
1. When synthesizing peptides or peptide derivatives from amino acids, a crude extract obtained by crushing biological cells is treated with a cation exchange resin having a phosphate group to obtain a crude enzyme solution containing aminoacyl-tRNA synthetase. A method for synthesizing a peptide or a peptide derivative, which comprises adding the obtained crude enzyme solution to a reaction system.
JP57090426A 1982-01-26 1982-05-27 Synthesis of peptide or peptide derivative Granted JPS58209992A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57090426A JPS58209992A (en) 1982-05-27 1982-05-27 Synthesis of peptide or peptide derivative
DE8383300362T DE3361649D1 (en) 1982-01-26 1983-01-25 Process for synthesizing peptides or peptide derivatives
DK28283A DK28283A (en) 1982-01-26 1983-01-25 PROCEDURE FOR SYNTHETIZING PEPTIDES OR PEPTIDE DERIVATIVES
EP83300362A EP0086053B1 (en) 1982-01-26 1983-01-25 Process for synthesizing peptides or peptide derivatives
CA000420242A CA1194440A (en) 1982-01-26 1983-01-26 Process for synthesizing peptides or peptide derivatives
US06/461,307 US4572894A (en) 1982-01-26 1983-01-26 Process for synthesizing peptides or peptide derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57090426A JPS58209992A (en) 1982-05-27 1982-05-27 Synthesis of peptide or peptide derivative

Publications (2)

Publication Number Publication Date
JPS58209992A JPS58209992A (en) 1983-12-07
JPH0143558B2 true JPH0143558B2 (en) 1989-09-21

Family

ID=13998275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57090426A Granted JPS58209992A (en) 1982-01-26 1982-05-27 Synthesis of peptide or peptide derivative

Country Status (1)

Country Link
JP (1) JPS58209992A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058960A1 (en) 2002-12-26 2004-07-15 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptide
EP1870454B1 (en) 2005-03-18 2009-12-09 Kyowa Hakko Bio Co., Ltd. Process for producing dipeptides
RU2012129311A (en) 2012-07-11 2014-01-20 ЗакрытПе акцОПМерМПе ПбществП " НаучМП-ОсслеЎПвательскОй ОМстОтут АЎжОМПЌПтП-ГеМетОка" (ЗАО "АГРИ") DNA ENCODING A DIPEPTIDE-SYNTHESIS FARMER (OPTIONS), BACTERIA OF THE GENUS ESCHERICHIA AND METHOD FOR PRODUCING DIPEPTIDES USING ITS USE

Also Published As

Publication number Publication date
JPS58209992A (en) 1983-12-07

Similar Documents

Publication Publication Date Title
Meister 22. Glutathione Synthesis
EP1874948B1 (en) Process for the production of y-glutamylcysteine
Ronzio et al. Preparation and characterization of sheep brain glutamine synthetase
US4572894A (en) Process for synthesizing peptides or peptide derivatives
Van Der Werf et al. 5-Oxo-L-prolinase (L-pyroglutamate hydrolase). Purification and catalytic properties.
JPH0143558B2 (en)
JPH029800B2 (en)
JPH0143557B2 (en)
JPH0453515B2 (en)
JPH0453512B2 (en)
Silverberg et al. [48] 6-Phospho-d-gluconate dehydrogenase from sheep liver
JPS6170998A (en) Synthesis of peptide or peptide derivative
JPH0453514B2 (en)
JPH0722515B2 (en) Process for producing peptide or peptide derivative
JPS62151194A (en) Production of peptide or derivative thereof
JPS6296097A (en) Production of peptide or peptide derivative
AU2006228996B2 (en) Process for the production of gamma-glutamylcysteine
Vedavathi et al. A novel low molecular weight alanine aminotransferase from fasted rat liver
JPH0471906B2 (en)
JPH0453513B2 (en)
Inoue et al. Inactivation of renal gamma-glutamyl transferase by 6-diazo-5-oxo-L-norleucylglycine, an inactive precursor of affinity-labeling reagent.
JPH0532027B2 (en)
JPH05284983A (en) Production of l-gamma-glutamyl-lower alkylamide
JPH0254077B2 (en)
JPH01160495A (en) Method for preparation of l-aspartyl-l-phenylalanine alkyl ester