JPH01160495A - Method for preparation of l-aspartyl-l-phenylalanine alkyl ester - Google Patents

Method for preparation of l-aspartyl-l-phenylalanine alkyl ester

Info

Publication number
JPH01160495A
JPH01160495A JP62293858A JP29385887A JPH01160495A JP H01160495 A JPH01160495 A JP H01160495A JP 62293858 A JP62293858 A JP 62293858A JP 29385887 A JP29385887 A JP 29385887A JP H01160495 A JPH01160495 A JP H01160495A
Authority
JP
Japan
Prior art keywords
ester
enzyme
aspartic acid
amide
alkyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62293858A
Other languages
Japanese (ja)
Other versions
JPH0751075B2 (en
Inventor
Grant Boston Matthew
マシュー グラント ボストン
Polos Eyre-Cullum
エイルーカラム ジェイ ポーローズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genencor Inc
Original Assignee
Genencor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genencor Inc filed Critical Genencor Inc
Priority to JP62293858A priority Critical patent/JPH0751075B2/en
Publication of JPH01160495A publication Critical patent/JPH01160495A/en
Publication of JPH0751075B2 publication Critical patent/JPH0751075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: To obtain the subject ester in high yield by allowing L-aspartic ester or amide to react with L-phenylalanine alkyl ester in the presence of a specific enzyme, a microorganism containing this enzyme or its immobilized enzyme.
CONSTITUTION: In the presence of (A) (i) an enzyme that can form L-aspartyl-L- phenylalanine alkyl esters by condensation of L-aspartic acid α-ester or L- aspartic acid α-amide with L-phenylalanine alkyl ester, (ii) a microorganism containing the enzyme (i), (iii) said enzyme containing the fractions of said microorganism and (iv) said enzyme immobilized on a solid support, L-aspartic ester or amide is allowed to react with L-phenylalanine alkyl ester.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はL−アスパルチル−L−フェニルアラニンアル
キルエステル(以下rAPMJと略称)の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing L-aspartyl-L-phenylalanine alkyl ester (hereinafter abbreviated as rAPMJ).

(従来の技術および 発明が解決しようとする問題点) APMは近年、甘味剤として注目されているペプチドで
ある。APMもしくはL−アスパルチル−し−フェニル
アラニン(AP)の製造方法には化学的合成法と酵素的
合成法か含まれることはよく知られている。
(Prior art and problems to be solved by the invention) APM is a peptide that has recently attracted attention as a sweetener. It is well known that methods for producing APM or L-aspartyl-phenylalanine (AP) include chemical synthesis methods and enzymatic synthesis methods.

APM製造のための化学的合成法はN末端保護されたL
−アスパラギン酸無水物とL−フェニルアラニンメチル
エステル(PM)とを縮合してN末端保護されたAPM
を得ることからなる。保護基は後に除去される。酵素的
合成法は蛋白質分解酵素の効力をN末端保護されたL−
アスパラギン酸およびPMに及ぼしてN末端保護された
APMもしくはN末端保護されたAPMのPM付加物を
得、次いで保護基を除去してAPMを形成することから
なる。しかしながら、いずれの方法においても保護基の
導入および除去という複雑な工程が要求(GB2,09
2.161 A参照)。
The chemical synthesis method for APM production is N-terminally protected L
- APM protected at the N-terminus by condensing aspartic acid anhydride and L-phenylalanine methyl ester (PM)
It consists of obtaining. The protecting groups are later removed. Enzymatic synthesis methods enhance the potency of proteolytic enzymes with N-terminally protected L-
It consists of applying N-terminally protected APM or a PM adduct of N-terminally protected APM to aspartic acid and PM, and then removing the protecting group to form APM. However, both methods require complicated steps of introducing and removing protecting groups (GB2,09
2.161A).

プソイドモナス(Pseudomonas ) 、トル
ロプシス(Torulopsis) 、0−ドトルラ(
Rhodotorula )およびスポロボロミセス(
Sporobolo+oyees)の1つを用いた微生
物的合成法である、保護基を用いないAPMの製造方法
(J P 83/128,796 )も知られているが
、収率が極めて低いために工業的生産には必ずしも適し
ていない。
Pseudomonas, Torulopsis, 0-dotorula (
Rhodotorula ) and Sporobolomyces (
A method for producing APM without using a protecting group (JP 83/128,796) is also known, which is a microbial synthesis method using one of the following: is not necessarily suitable for

微生物もしくはそれに由来する酵素によってL−アスパ
ラギン酸およびPMから直接APMを形成することがで
きる、より直接的な非保護性の経路も用いられている(
特願昭58−75559号)。しかしながら、保護基を
用いずにL−アスパラギン酸を用いてAPMを製造する
際におけるこの方法の問題点はL−アスパラギン酸とP
MからAPMを形成する反応が平衡反応であって、基質
が十分にAPMに変換することが平衡によって妨げられ
、この結果収率が低くなる。後の文献(E P 154
.472)ではアルコールのし一フェニルアラニンエス
テル残基を用いることによって収率がいくらか改善され
たが、反応は依然として平衡に依存し、したがって比較
的低い収率が生じる。
A more direct, non-protective route has also been used in which APM can be formed directly from L-aspartate and PM by microorganisms or enzymes derived therefrom (
(Japanese Patent Application No. 58-75559). However, the problem with this method when producing APM using L-aspartic acid without using a protecting group is that L-aspartic acid and P
The reaction to form APM from M is an equilibrium reaction, and the equilibrium prevents sufficient conversion of the substrate to APM, resulting in low yields. Later literature (E P 154
.. Although the yield was improved somewhat by using the phenylalanine ester residue of the alcohol in 472), the reaction is still equilibrium dependent and thus results in relatively low yields.

(問題点を解決するための手段) 本発明は非障害経路もしくは誘導体化されないアスパラ
ギン酸を用いる経路における平衡の問題を伴うことなく
、生産物の収率を改善するものである。
SUMMARY OF THE INVENTION The present invention improves product yield without the problems of equilibrium in the unhindered pathway or in the pathway using underivatized aspartate.

すなわち、本発明のL−アスパラギン酸αエステル(L
AE)もしくはL−アスパラギン酸αアミド(LAA)
との縮合によってL−アスパルチル−し−フェニルアラ
ニンアルキルエステル(LPAE)を形成することので
きる酵素、該酵素を含有する微生物、該微生物のフラク
ションを含有する該酵素もしくは固体担体上に固定化さ
れた該酵素の存在下で水性溶媒もしくは有機性溶媒もし
くはこれらの混合物からなる溶媒中においてL−アスパ
ラギン酸αエステル(LAE)もしくはL−アスパラギ
ン酸αアミド(LAA)をL−フェニルアラニンアルキ
ルエステル(LPAE)を反応させることからなるL−
アスパルチル−L−フェニルアラニンアルキルエステル
の製造方法に関するものである。
That is, L-aspartic acid α ester (L
AE) or L-aspartic acid alpha amide (LAA)
an enzyme capable of forming L-aspartyl-di-phenylalanine alkyl ester (LPAE) by condensation with a microorganism containing the enzyme, a fraction of the microorganism containing the enzyme or the enzyme immobilized on a solid support; Reacting L-aspartic acid α ester (LAE) or L-aspartic acid α amide (LAA) with L-phenylalanine alkyl ester (LPAE) in an aqueous solvent, an organic solvent, or a mixture thereof in the presence of an enzyme. L- consisting of letting
The present invention relates to a method for producing aspartyl-L-phenylalanine alkyl ester.

本発明はL−アスパラギン酸αエステルもしくはαアミ
ドとL−フェニルアラニンアルキルエステルとを開始物
質とするAPMの製造に関するものである。L−アスパ
ラギン酸のαエステルは当技術分野において公知であり
、例えばj、コヴアックス等CJ、Kovacs et
 al、、 J、Org、Chem、 28.1084
(1981))の方法によって製造することが可能であ
る。好ましいαエステルにはアルコールの残基、置換流
もしくは未置換のフェノール、チオールもしくはアルキ
ルエステルがあるが、他の形態のL−アスパラギン酸α
エステルもしくはαアミドを用いることも可能である。
The present invention relates to the production of APM using L-aspartic acid alpha ester or alpha amide and L-phenylalanine alkyl ester as starting materials. α-esters of L-aspartic acid are known in the art and are described, for example, in J. J., Kovacs et al. CJ, Kovacs et al.
al,, J,Org,Chem, 28.1084
(1981)). Preferred alpha esters include residues of alcohols, substituted or unsubstituted phenols, thiols or alkyl esters, although other forms of L-aspartic acid alpha
It is also possible to use esters or α-amides.

例えば、N末端保護されたLAEもしくはLAA、ある
いはLAEも    ゛しくはLAAのβエステルもし
くはβアミド等を形成するものを用いることができる。
For example, N-terminally protected LAE or LAA, or those that form a β-ester or β-amide of LAE or LAA can be used.

他の好ましい形態はL−アスパラギン酸シアキルエステ
ルであろう。このような化合物は当技術分野において公
知である。次いで、これらの付加基は当技術分野におい
て公知な方法で除去することができる。
Another preferred form would be L-aspartic acid cyakyl ester. Such compounds are known in the art. These additional groups can then be removed by methods known in the art.

αアミドは当技術分野において公知の条件でアスパラギ
ン酸αメチルエステルをメタノール中においてアンモニ
アと反応させることによって製造される。アミドを製造
するためには他の方法も当技術分野において公知であり
、使用可能である。α位のアミド基は例えば、NH3、
Rに芳香族もしくは脂肪族構造が含まれるR−NH2,
R2NHもしくはR3Nから誘導することができる。好
ましいアミドはアスパラギン酸アミドである。好ましい
アルキルエステルはメチルエステルである。
Alpha amides are prepared by reacting aspartic acid alpha methyl ester with ammonia in methanol under conditions known in the art. Other methods for making amides are also known in the art and can be used. The amide group at the α position is, for example, NH3,
R-NH2 in which R contains an aromatic or aliphatic structure,
It can be derived from R2NH or R3N. A preferred amide is aspartic acid amide. A preferred alkyl ester is a methyl ester.

L−フェニルアラニンアルキルエステルは当技術分野に
おいて公知であり、特に低級(1〜6)のアルキルエス
テルはよく知られている。L−フェニルアラニンの好ま
しい低級アルキルエステルはメチルエステルである。
L-phenylalanine alkyl esters are well known in the art, particularly lower (1-6) alkyl esters. A preferred lower alkyl ester of L-phenylalanine is methyl ester.

本発明の製造方法はL−アスパラギン酸のαエステルも
しくはαアミドを縮合して縮合生成物APMを形成する
ことのできる酵素の存在下で水性有機性培地中において
L−アスパラギン酸αエステルもしくはαアミドとL−
フェニルアラニンアルキルエステルとを反応させること
によって実施される。反応は適当な温度、好ましくは2
5〜45℃の範囲の温度において約1〜IO日間行なわ
れる。
The production method of the present invention comprises producing L-aspartic acid alpha esters or alpha amides in an aqueous organic medium in the presence of an enzyme capable of condensing the alpha esters or alpha amides of L-aspartic acid to form the condensation product APM. and L-
This is carried out by reacting with phenylalanine alkyl ester. The reaction is carried out at a suitable temperature, preferably 2
It is carried out at temperatures ranging from 5 to 45°C for about 1 to 10 days.

反応はおよそ4〜9のPHで行なわれる。好ましいpH
は約8である。開始反応物の実際の量は当然、APMを
形成するために反応するおよその化学量に比例するもの
であり、最適の結果を得るためにはどのような相対濃度
においてもこのような量が好ましい。しかしながら、い
ずれかの反応物の量を増減することも可能であり、また
複数のL−アスパラギン酸エステルもしくはアミドもし
くは複数のL−フェニルアラニンアルキルエステルを選
択することも可能である。選択される酵素は好ましくは
L−アスパラギン酸のαエステル結合もしくはαアミド
結合に対する特異性を有しており、好ましくはL−フェ
ニルアラニンアルキルエステルの(特にエステル)結合
および他のし一アスノ(ラギン酸結合もしくはAPM生
成物を加水分解しないものである。好ましい酵素はシグ
マケミカル社(Sigma CheIIlical C
o、)および黄色ブドウ球菌(Staphylococ
cus aureus )株V 8 (G、R,Dra
peau、(197g) Canadian Jour
nal of Biochemistry 56534
−44 )の突然変異体および遺伝子変異形から得られ
る細胞外プロテアーゼである。この酵素は以下のN末端
アミノ酸配列: Val  lie Leu Pro Asn Asn 
Asp Arg HisPro Val Thr Ty
r Ile Gin Val Glu AlaVal 
Gly Lys Asp Thr Leu Leu T
hr AsnHis Ala Leu Lys Ala
 Phe Pro Ser AlaThr Ala G
lu Glu lie Thr Lys Tyr Se
r 1Pro Asn Glu Glu Asn Ly
s Hls Ile Gly 1Ala Glu Th
r Glu Val Asn Glu Asn Ile
 ’Gin Ile Thr Asp Thr Thr
 Asn Gly )Iis Thr AlaPro 
Thr Gly Thr Phe Ile Ala S
er Gly Val ValLys His Val
 Val Asp Ala Thr His Gly 
Asp Pr。
The reaction takes place at a pH of approximately 4-9. preferred pH
is approximately 8. The actual amount of starting reactant is of course proportional to the approximate stoichiometric amount that reacts to form the APM, and such amounts are preferred at any relative concentration for optimal results. . However, it is also possible to increase or decrease the amount of either reactant, and it is also possible to select multiple L-aspartic acid esters or amides or multiple L-phenylalanine alkyl esters. The enzyme selected preferably has specificity for the alpha ester or alpha amide bond of L-aspartic acid, preferably for the (especially ester) bond of L-phenylalanine alkyl ester and for other A preferred enzyme is one that does not hydrolyze the binding or APM product.
) and Staphylococcus aureus
cus aureus) strain V8 (G, R, Dra
peau, (197g) Canadian Jour
nal of Biochemistry 56534
-44) is an extracellular protease obtained from mutants and gene variants of . This enzyme has the following N-terminal amino acid sequence: Val lie Leu Pro Asn Asn
Asp Arg HisPro Val Thr Ty
r Ile Gin Val Glu AlaVal
Gly Lys Asp Thr Leu Leu T
hr AsnHis Ala Leu Lys Ala
Phe Pro Ser AlaThr Ala G
lu Glu lie Thr Lys Tyr Se
r 1Pro Asn Glu Glu Asn Ly
s Hls Ile Gly 1Ala Glu Th
r Glu Val Asn Glu Asn Ile
'Gin Ile Thr Asp Thr Thr
Asn Gly) Iis Thr AlaPro
Thr Gly Thr Phe Ile Ala S
er Gly Val Val ValLys His Val
Val Asp Ala Thr His Gly
Asp Pr.

11e Asn Gln Asp Asn Tyr P
ro Asn Gly Gly PheGly Glu
 Gly Asp Leu Ala lie Val 
Lys phe 5erGlu Val Val Ly
s Pro Ala Thr Met Ser Asn
 AsnThr Val Thr Gly Tyr P
ro Gly Asp Lys Pro Va1Asp
 Leu Ser Thr Thr Gly Gly 
Asn Ser 11ie Gly lie l1is
 Trp Gly Gly Val Pr。
11e Asn Gln Asp Asn Tyr P
ro Asn Gly Gly PheGly Glu
Gly Asp Leu Ala lie Val
Lys phe 5erGlu Val Val Ly
s Pro Ala Thr Met Ser Asn.
AsnThr Val Thr Gly Tyr P
ro Gly Asp Lys Pro Va1Asp
Leu Ser Thr Thr Thr Gly Gly
Asn Ser 11ie Gly lie l1is
Trp Gly Gly Val Pr.

Asn Val Arg Asn Phe Leu L
ys Gln AsnPro Asn Asn Pro
 Asp Asn Pro Asp AsnGlu P
ro Asn Asn Pro Asp Asn Pr
o Asn 。
Asn Val Arg Asn Phe Leu L
ys Gln AsnPro Asn Asn Pro
Asp Asn Pro Asp AsnGlu P
ro Asn Asn Pro Asp Asn Pr
oAsn.

Asn Ser Asp Asn Pro Asp A
la AlaGly Ser Pro Val Phe
 Asn Glu Lys Asn Gly ValA
sn Pro Asp Asn Pro Asp As
n Gly Asp Asn Asnを有している。
Asn Ser Asp Asn Pro Asp A
la AlaGly Ser Pro Val Phe
Asn Glu Lys Asn Gly ValA
sn Pro Asp Asn Pro Asp As
It has n Gly Asp Asn Asn.

また、比活性、反応速度、反応特異性Kcat %Km
、有機溶媒および温度に対する安定性等を変化させるこ
とのできるような、コドン中における部位特異的変化、
すなわち自然発生的もしくはランダンな突然変異もしく
は改変以外の変化を酵素にもたらすことができることも
当技術分野においては公知である。特定コドンにおける
部位特異的変化のためのこのような修飾は当技術分野に
おいて公知であり、酵素を選択する際に本発明の一部を
なすものと意図される。重要な部位特異性変化は、例え
ば酵素の触媒残基の近傍、酵素の面、他のアミノ酸、も
しくはアミノ酸の外側部分等、活性部位もしくはその近
傍で生じる。加えて、酵素を安定化するためにジスルフ
ィド結合を導入することもできる。また、酵素を含有す
る微生物もしくは酵素を含有する微生物のフラクション
を使用することもできる。また、固定化酵素を用いるこ
ともできる。
In addition, specific activity, reaction rate, reaction specificity Kcat %Km
, site-specific changes in codons that can alter their stability to organic solvents and temperature, etc.
It is also known in the art that changes other than spontaneous or random mutations or modifications can be made to enzymes. Such modifications for site-specific changes in particular codons are known in the art and are intended to be part of this invention in selecting an enzyme. Important site-specific changes occur at or near the active site, eg, near the catalytic residue of the enzyme, at the face of the enzyme, at other amino acids, or at external portions of amino acids. Additionally, disulfide bonds can be introduced to stabilize the enzyme. It is also possible to use enzyme-containing microorganisms or fractions of enzyme-containing microorganisms. Furthermore, immobilized enzymes can also be used.

適当な選択された酵素の存在下におけるLAEもしくは
LAAとPAEの酵素反応によって縮合生成物APMが
得られる。
Enzymatic reaction of LAE or LAA with PAE in the presence of an appropriately selected enzyme yields the condensation product APM.

他の態様においても同一の反応および条件が用いられる
が、N末端保護基あるいはβエステルもしくはβアミド
を有するL−アスパラギン酸αエステルもしくはαアミ
ドが使用される。保護基あるいはβエステルもしくはア
ミドはAPM生成物から除去することができる。
In other embodiments, the same reactions and conditions are used, but an L-aspartic acid alpha ester or alpha amide with an N-terminal protecting group or a beta ester or beta amide is used. Protecting groups or beta esters or amides can be removed from the APM product.

微生物もしくは微生物のフラクションに由来する酵素を
用いる場合、このような微生物は通常の培地を用いて得
ることができる。さらに、細胞増殖工程の開始時もしく
はその途中で反応物を添加することも可能である。
When using enzymes derived from microorganisms or fractions of microorganisms, such microorganisms can be obtained using customary media. Furthermore, it is also possible to add the reactants at the beginning or during the cell growth process.

微生物のために用いる培地は通常の炭素源および窒素源
ならびに無機イオンを含有する普通のものである。さら
に、ビタミンやアミノ酸等の有機栄養物質の微量の添加
もしばしば望ましい結果をもたらす。
The media used for the microorganisms are conventional, containing conventional carbon and nitrogen sources and inorganic ions. Additionally, the addition of trace amounts of organic nutritional substances such as vitamins and amino acids often provides desirable results.

ここで用いるのに適当な炭素源にはグルコースやシュク
ロースのような炭水化物、酢酸のような有機酸、および
アルコールが含まれる。ここで用いるのに適当な窒素源
にはアンモニアガス、アンモニア水およびアンモニウム
塩が含まれる。無機イオンは必要に応じて、例えばマグ
ネシウムイオン、リン酸イオン、カリウムイオンおよび
鉄イオンから適当に選択される。
Carbon sources suitable for use herein include carbohydrates such as glucose and sucrose, organic acids such as acetic acid, and alcohols. Suitable nitrogen sources for use herein include ammonia gas, aqueous ammonia and ammonium salts. The inorganic ion is appropriately selected from, for example, magnesium ion, phosphate ion, potassium ion, and iron ion, if necessary.

培養はpH4〜9、好ましくは約pH8の好気条件下に
おいて25〜45℃の範囲内の適当な温度において約1
〜10日間行なわれる。
Cultivation is carried out under aerobic conditions at pH 4-9, preferably at about pH 8, at a suitable temperature within the range of 25-45°C.
It will be held for ~10 days.

本発明に使用可能な微生物には、培養終了後に得られる
全培養溶液、培養溶液から分離された微生物もしくは洗
浄された微生物が含まれる。また、使用可能な微生物は
凍結乾燥したり、アセトン乾燥したり、トルエン、表面
活性剤等と接触させたり、超音波にさらしたり、機械的
に粉砕したり、これらの細胞処理物質から得られた、酵
素活性を有する酵素蛋白質フラクションとすることがで
きる。また、これらの微生物の固定化した細胞、処理し
た細胞の不溶化した物質等を用いることもできる。
Microorganisms that can be used in the present invention include the whole culture solution obtained after completion of culture, microorganisms separated from the culture solution, or washed microorganisms. In addition, usable microorganisms can be obtained by freeze-drying, drying with acetone, contacting with toluene, surfactants, etc., exposing to ultrasound, mechanically crushing, or using these cell-treated materials. , an enzyme protein fraction having enzymatic activity. Furthermore, immobilized cells of these microorganisms, insolubilized substances of treated cells, etc. can also be used.

水性培地としては、水、バッファー、およびエタノール
のような有機溶媒を含有するものを用いることができる
。さらに、微生物の増殖に必要な栄養素、酸化防止剤、
表面活性剤、補酵素、ヒドロキシルアミン、金属イオン
、およびDMSO等の有機溶媒も必要に応じて水性培地
に添加することができる。
As an aqueous medium, one containing water, a buffer, and an organic solvent such as ethanol can be used. In addition, nutrients and antioxidants necessary for the growth of microorganisms,
Surfactants, coenzymes, hydroxylamine, metal ions, and organic solvents such as DMSO can also be added to the aqueous medium as needed.

全培養溶液、培養細胞もしくは上記微生物の処理した細
胞物資が反応物に作用を及ぼすように該反応物に直接接
触させられる場合、水性培地は反応物および培養溶液、
培養細胞もしくは処理した細胞物質を溶解もしくは懸濁
することによって調製され、好ましくは10〜70℃の
温度およびpH4〜9に調節され、しばらく静置される
か撹拌される。
When the whole culture solution, cultured cells or treated cell material of said microorganism is brought into direct contact with the reactant so as to affect said reactant, the aqueous medium contains the reactant and the culture solution,
It is prepared by dissolving or suspending cultured cells or treated cell material, preferably adjusted to a temperature of 10 to 70°C and a pH of 4 to 9, and allowed to stand for a while or stirred.

このようにして製造されたAPMは公知の分離法によっ
て分離・精製することができる。得られたAPMはアミ
ノ酸分析器で測定される。
APM produced in this manner can be separated and purified by known separation methods. The obtained APM is measured with an amino acid analyzer.

以下、実施例によって本発明を説明するが、この実施例
は説明の目的のみのために含まれるものであって、本発
明を限定しようとするものではない。したがって、当業
者は不必要な実験を行なうことなく他の酵素を選択した
り、適当な反応条件を採用することが可能である。
The present invention will now be described by way of examples, but these examples are included for illustrative purposes only and are not intended to limit the invention. Therefore, those skilled in the art can select other enzymes or adopt appropriate reaction conditions without unnecessary experimentation.

(実 施 例) 実施例I L−フェニルアラニンメチルエステルおよびL−アスパ
ラギン酸αメチルエステルのそれぞれの水溶液を製造し
、pH8,0に調節した。次いで、これらの溶液をジメ
チルスルフオキシド(DMSO)と混合してL−フェニ
ルアラニンメチルエステル、L−アスパラギン酸αメチ
ルエステルおよびDMSOの最終濃度をそれぞれ0.1
 M、 0.5 Mおよび50%とした。次いで前述の
v8酵素溶液を最終濃度0.5 #Ig/rrdlとな
るように添加し、反応混合物は室温で24時間静置した
。APMに転換したPMに基づく生成物はHPLCによ
る分析によれば約33%であった。
(Example) Example I Aqueous solutions of L-phenylalanine methyl ester and L-aspartic acid α-methyl ester were prepared and adjusted to pH 8.0. These solutions were then mixed with dimethyl sulfoxide (DMSO) to give a final concentration of L-phenylalanine methyl ester, L-aspartic acid alpha methyl ester, and DMSO of 0.1 each.
M, 0.5 M and 50%. Next, the v8 enzyme solution described above was added to a final concentration of 0.5 #Ig/rrdl, and the reaction mixture was left standing at room temperature for 24 hours. The product based on PM converted to APM was approximately 33% as analyzed by HPLC.

Claims (7)

【特許請求の範囲】[Claims] (1)L−アスパラギン酸αエステルもしくはL−アス
パラギン酸αアミドとL−フェニルアラニンアルキルエ
ステルとの縮合によってL−アスパルチル−L−フェニ
ルアラニンアルキルエステルを形成することのできる酵
素、該酵素を含有する微生物、微生物のフラクションを
含有する該酵素、もしくは固体担体上に固定化された該
酵素の存在下で溶媒培地中においてL−アスパラギン酸
αエステルもしくはL−アスパラギン酸αアミドをL−
フェニルアラニンアルキルエステルと反応させることか
らなるL−アスパルチル−L−フェニルアラニンアルキ
ルエステルの製造方法。
(1) An enzyme capable of forming L-aspartyl-L-phenylalanine alkyl ester by condensation of L-aspartic acid α ester or L-aspartic acid α amide and L-phenylalanine alkyl ester, a microorganism containing the enzyme, L-aspartate alpha ester or L-aspartate alpha amide is reacted with L-aspartate alpha ester or L-aspartate alpha amide in a solvent medium in the presence of the enzyme containing a fraction of the microorganism or the enzyme immobilized on a solid support.
A method for producing L-aspartyl-L-phenylalanine alkyl ester, which comprises reacting with phenylalanine alkyl ester.
(2)前記酵素がアミノ酸配列: 【遺伝子配列があります。】 のN末端を有するものであることを特徴とする特許請求
の範囲第1項記載の製造方法。
(2) Amino acid sequence of the enzyme: [There is a gene sequence. 10. The method according to claim 1, wherein the N-terminus is:
(3)L−アスパラギン酸メチルエステルを用いること
を特徴とする特許請求の範囲第L項記載の製造方法。
(3) The manufacturing method according to claim L, characterized in that L-aspartic acid methyl ester is used.
(4)L−フェニルアラニンメチルエステルを用いるこ
とを特徴とする特許請求の範囲第1項記載の製造方法。
(4) The manufacturing method according to claim 1, characterized in that L-phenylalanine methyl ester is used.
(5)前記L−アスパラギン酸αエステルもしくはL−
アスパラギン酸αアミドがN末端保護されており、その
保護基は生成物から除去することを特徴とする特許請求
の範囲第1項記載の製造方法。
(5) The L-aspartic acid α ester or L-
2. The method according to claim 1, wherein the aspartic acid α-amide is N-terminally protected, and the protecting group is removed from the product.
(6)前記L−アスパラギン酸αエステルもしくはαア
ミドがβエステルもしくはβアミドでもあり、L−アス
パルチル−L−フェニルアラニンアルキルエステルを産
出するために該βエステルもしくはβアミドを除去する
ことを特徴とする特許請求の範囲第1項記載の製造方法
(6) The L-aspartic acid α ester or α amide is also a β ester or β amide, and the β ester or β amide is removed to produce L-aspartyl-L-phenylalanine alkyl ester. A manufacturing method according to claim 1.
(7)前記酵素がL−フェニルアラニンアルキルエステ
ルよりも前記L−アスパラギン酸αエステルもしくはα
アミドに対して大きな特異性を有していることを特徴と
する特許請求の範囲第1項記載の製造方法。
(7) The enzyme is more preferably the L-aspartic acid α ester or α than the L-phenylalanine alkyl ester.
The manufacturing method according to claim 1, characterized in that it has a high specificity for amides.
JP62293858A 1987-11-20 1987-11-20 Method for producing L-aspartyl-L-phenylalanine alkyl ester Expired - Lifetime JPH0751075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62293858A JPH0751075B2 (en) 1987-11-20 1987-11-20 Method for producing L-aspartyl-L-phenylalanine alkyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62293858A JPH0751075B2 (en) 1987-11-20 1987-11-20 Method for producing L-aspartyl-L-phenylalanine alkyl ester

Publications (2)

Publication Number Publication Date
JPH01160495A true JPH01160495A (en) 1989-06-23
JPH0751075B2 JPH0751075B2 (en) 1995-06-05

Family

ID=17800066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62293858A Expired - Lifetime JPH0751075B2 (en) 1987-11-20 1987-11-20 Method for producing L-aspartyl-L-phenylalanine alkyl ester

Country Status (1)

Country Link
JP (1) JPH0751075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058212A (en) * 2003-01-24 2005-03-10 Ajinomoto Co Inc METHOD FOR PRODUCING alpha-L-ASPARTYL-L-PHENYLALANINE-beta-ESTER AND METHOD FOR PRODUCING alpha-L-ASPARTYL-L-PHENYLALANINE-alpha-METHYL ESTER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012087153A1 (en) 2010-12-23 2012-06-28 Marine Bioproducts As Enrichment of marine oils with omega-3 polyunsaturated fatty acids by lipase-catalysed hydrolysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058212A (en) * 2003-01-24 2005-03-10 Ajinomoto Co Inc METHOD FOR PRODUCING alpha-L-ASPARTYL-L-PHENYLALANINE-beta-ESTER AND METHOD FOR PRODUCING alpha-L-ASPARTYL-L-PHENYLALANINE-alpha-METHYL ESTER

Also Published As

Publication number Publication date
JPH0751075B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
FI91167B (en) New transaminase, its preparation and use
US4080259A (en) Process of preparing L and D α-amino acids by enzyme treatment of DL-α-amino acid amide
JP2011139667A (en) DIPEPTIDE HAVING PROLINE OR beta-ALANINE AT N-TERMINUS AND METHOD FOR ENZYMATICALLY SYNTHESIZING CYCLIC DIPEPTIDE THEREOF
EP0124313B1 (en) Process for the production of l-aspartyl-l-phenylalanine methyl ester or l-aspartyl-l-phenylalanine
LU85096A1 (en) ENZYMATIC SYNTHESIS OF L-SERINE
JP4529338B2 (en) DNA encoding hydantoinase, DNA encoding N-carbamyl-L-amino acid hydrolase, recombinant DNA, transformed cell, protein production method and optically active amino acid production method
JPH01160495A (en) Method for preparation of l-aspartyl-l-phenylalanine alkyl ester
EP0269390B1 (en) Enzymatic l-aspartyl-l-phenylalanine alkyl ester production
EP0154472B1 (en) Process for the production of l-aspartyl-l-phenylalanine ester
JPS58209991A (en) Synthesis of peptide or peptide derivative
Miller et al. Chemical stability and metabolic utilization of asparagine peptides
Presecan et al. Preparation of 15N-labeled l-alanine by immobilized l-alanine dehydrogenase: Differential incorporation of 15N in bacterial proteins
JPH0822228B2 (en) Amino acid amide hydrolase and use thereof
JPH0471906B2 (en)
JPH01104192A (en) Method of bonding with vibrioricin
JPH0143557B2 (en)
JPS6224076B2 (en)
JP2505487B2 (en) Racemization of optically active lysine
GB1577087A (en) Enzyme preparation having l-amino acyl amidase activity
JP3016647B2 (en) Preparation of L-serine solution
JPH0453512B2 (en)
KR0122284B1 (en) Novel microorganism having heat-resistant d-hydantoinase activity
JP2001120295A (en) Method for producing d-(3'-pyridyl)-alanine
JPH0453515B2 (en)
JPS6043393A (en) Preparation of l-phenylalanine