JPH0143148B2 - - Google Patents

Info

Publication number
JPH0143148B2
JPH0143148B2 JP56105374A JP10537481A JPH0143148B2 JP H0143148 B2 JPH0143148 B2 JP H0143148B2 JP 56105374 A JP56105374 A JP 56105374A JP 10537481 A JP10537481 A JP 10537481A JP H0143148 B2 JPH0143148 B2 JP H0143148B2
Authority
JP
Japan
Prior art keywords
spring
temperature
pump
shape memory
acts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56105374A
Other languages
Japanese (ja)
Other versions
JPS588257A (en
Inventor
Takao Shindo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carburetor Co Ltd
Original Assignee
Nippon Carburetor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carburetor Co Ltd filed Critical Nippon Carburetor Co Ltd
Priority to JP56105374A priority Critical patent/JPS588257A/en
Publication of JPS588257A publication Critical patent/JPS588257A/en
Publication of JPH0143148B2 publication Critical patent/JPH0143148B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/06Means for enriching charge on sudden air throttle opening, i.e. at acceleration, e.g. storage means in passage way system
    • F02M7/08Means for enriching charge on sudden air throttle opening, i.e. at acceleration, e.g. storage means in passage way system using pumps
    • F02M7/087Means for enriching charge on sudden air throttle opening, i.e. at acceleration, e.g. storage means in passage way system using pumps changing output according to temperature in engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度変化に応じて加速燃料量を自動的
に変え安定した加速性能が得られるようにした気
化器の加速装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a carburetor accelerator device that automatically changes the amount of acceleration fuel in response to temperature changes to provide stable acceleration performance.

(従来技術とその問題点) エンジンの加速運転時において一時的に増大す
る吸入空気量と対応させるため余分の燃料を供給
する加速装置においては、加速ポンプの一動作当
りの燃料吐出量を高温時に少なく低温時に多くし
て常に安定した加速性能が得られるように計つた
ものがある。
(Prior art and its problems) In an accelerator that supplies extra fuel to cope with the temporary increase in the amount of intake air during engine acceleration, the amount of fuel discharged per operation of the accelerator pump is reduced at high temperatures. There are some that are designed to reduce the amount and increase it when the temperature is low so that stable acceleration performance can always be obtained.

従来、加速ポンプ吐出量を調節する手段とし
て、加速ポンプのピストンまたはダイヤフラムか
らなる往復部材とこれらを駆動するリンク機構と
の連結位置を変更することによつてポンプストロ
ークを調整し吐出量を調節するようにしたものが
あるが、手作業で連結位置を変更しなければなら
ないので面倒であるとともに忘れることが多く、
実際には殆んど採用されていない。
Conventionally, as a means of adjusting the discharge amount of an accelerator pump, the pump stroke is adjusted by changing the connection position of the reciprocating member consisting of the piston or diaphragm of the accelerator pump and the link mechanism that drives them, thereby adjusting the discharge amount. There is a way to do this, but you have to change the connection position manually, which is troublesome and often forgotten.
In reality, it is hardly ever adopted.

また、温度変化に応じて長さが変化するように
サーモワツクスを用いた伸縮部分をリンク機構な
どに設ける(特開昭53―81831号公報参照)、低温
時に動作するポンプを有するバイパスを加速燃料
通路に設けて加速ノズルから吸気路へ噴出する燃
料量を温度に応じて調節する(特開昭54―124133
号公報参照)、などにより自動的に調節できるよ
うにしたものもあるが、構造が複雑であり且つ特
別の加工および部品の取付けが必要である。
In addition, link mechanisms are provided with expandable parts using thermowax so that the length changes according to temperature changes (see Japanese Patent Application Laid-Open No. 1981-81831), and a bypass with a pump that operates at low temperatures is installed in the acceleration fuel passage. to adjust the amount of fuel injected from the acceleration nozzle into the intake passage according to the temperature (Japanese Patent Laid-Open No. 124133/1983).
There are some automatic adjustment methods available, such as (see Japanese Patent Publication No. 2003-111001), but the structure is complicated and requires special processing and attachment of parts.

本発明は加速ポンプの往復部材に直接または間
接に作用させたコイル状の戻しばねおよびダンパ
ばねのいずれか一方を形状記憶合金で作つたこと
により、特別の装置や部品およびその取付けのた
めの加工を不要とし、簡単な構成で温度変化によ
つて燃料吐出量が自動的に調節されるようにした
ものである。
The present invention utilizes a shape memory alloy for either the coiled return spring or the damper spring that acts directly or indirectly on the reciprocating member of the accelerator pump. The fuel discharge amount is automatically adjusted according to temperature changes with a simple configuration.

(問題点を解決するための手段) 本発明は加速ポンプのポンプ室の容積を増大さ
せる方向へ働くコイル状の戻しばねとポンプ室の
容積を減少させる方向へ働くコイル状のダンパば
ねとを具えている気化器の加速装置において、前
記戻しばねとダンパばねのいずれか一方が形状記
憶合金で作られており、且つ形状記憶合金で作ら
れているばねは低温時にポンプストロークを大き
くし高温時にポンプストロークを小さくするよう
にコイル長が伸縮する構成としたことにより前記
問題点を解決するための手段とした。
(Means for Solving the Problems) The present invention includes a coil-shaped return spring that acts in the direction of increasing the volume of the pump chamber of an acceleration pump, and a coil-shaped damper spring that acts in the direction of decreasing the volume of the pump chamber. In the accelerator device for a carburetor, either the return spring or the damper spring is made of a shape memory alloy, and the spring made of the shape memory alloy increases the pump stroke at low temperatures and the pump stroke at high temperatures. The coil length is expanded and contracted so as to reduce the stroke, thereby solving the above problem.

形状記憶効果を有する材料即ち形状記憶合金
は、熱弾性形のマルテンサイト変態によつて温度
の変化に伴い可逆的に形状を変化する材料として
知られており、材料である合金を逆変態終了温度
Afよりも高い温度で熱処理して原形状を記憶さ
せ、これをマルテンサイト変態終了温度Mfより
も低い温度において所望の形状に加工変形させる
ことにより、転移温度範囲で原形状と変形形状と
の間で可逆的に形状が変化することも知られてい
る。コイル状のばねを形状記憶合金で作つた場
合、記憶させた原形状を前記Mfよりも低い温度
で圧縮してコイル長が短かくなるように変形する
と、このばねは温度上昇に伴つて伸長し温度低下
に伴つて収縮する。反対に引伸してコイル長が長
くなるように変形すると、このばねは温度上昇に
伴つて収縮し温度低下に伴つて伸長する。
A material with a shape memory effect, that is, a shape memory alloy, is known as a material that reversibly changes shape with changes in temperature due to thermoelastic martensitic transformation.
By heat-treating at a temperature higher than Af to memorize the original shape, and processing and deforming it into the desired shape at a temperature lower than the martensitic transformation end temperature Mf, the transition between the original shape and the deformed shape is achieved within the transition temperature range. It is also known that the shape changes reversibly. When a coiled spring is made of a shape memory alloy, if the original memorized shape is compressed at a temperature lower than the Mf and deformed so that the coil length becomes shorter, the spring will elongate as the temperature rises. Shrinks as temperature decreases. Conversely, when the spring is stretched and deformed so that the coil length becomes longer, the spring contracts as the temperature rises and expands as the temperature falls.

第1図は形状記憶合金によつて作られたコイル
状のばねの転移温度の最低TLと最高THおよびそ
の間における温度T1,T2,T3での変形量と荷重
との関係を表わす特性曲線図であつて、温度の高
い領域では変形量がごく僅かであり(同図a)、
低い限られた温度領域のみでばねが実用上有効な
大きさの変形をするにとどまることが判る。この
ばねに対向して形状記憶効果を有しない金属材料
で作つたバイアスばねの荷重を作用させると、ば
ねは線Sに沿つて変形しその変形量はbであつて
転位温度の最低TLからTHまでの全温度領域で実
用上有効な大きさの変形を行なう。バイアスばね
の初期荷重またはばね特性を変えると、線Sと平
行な線に沿つて変形が行われる。また、温度変化
の際に昇温時と降温時とでは同一変形量に到達す
るときの温度が相違するが、バイアスばねはこの
ヒステレシスによる差を減少または解消するのに
も役立つ。
Figure 1 shows the relationship between the minimum T L and maximum transition temperature T H of a coiled spring made of shape memory alloy, and the amount of deformation and load at temperatures T 1 , T 2 , and T 3 between them. This is a characteristic curve diagram showing that the amount of deformation is very small in the high temperature region (Figure a).
It can be seen that the spring deforms to a practically effective amount only in a limited low temperature range. When the load of a bias spring made of a metal material without shape memory effect is applied to this spring, the spring deforms along the line S, and the amount of deformation is b, starting from the lowest T L of the dislocation temperature. A practically effective deformation occurs in the entire temperature range up to T H. Changing the initial load or spring characteristics of the bias spring results in a deformation along a line parallel to line S. Furthermore, when the temperature changes, the temperature at which the same amount of deformation is reached is different when the temperature is raised and when the temperature is lowered, and the bias spring also helps to reduce or eliminate the difference due to hysteresis.

本発明においては、形状記憶効果を有しない金
属材料で作つたばねがバイアスばねとして働く。
In the present invention, a spring made of a metal material that does not have a shape memory effect acts as a bias spring.

尚、本発明は最初に述べたように温度殊にエン
ジン温度によつて加速燃料量を調節することを目
的としており、そのために形状記憶効果を有する
材料の熱弾性的マルテンサイト変態による相の転
位現象を利用して加速ポンプのストロークを温度
に応じて制御するものであつて、形状記憶合金で
作つたばねは前記Mf以下の温度とAf以上の温度
との間で使用するほか、MfとAfとの間の適当な
温度領域で使用することもある。更に、形状記憶
合金で作つたばねは、その設置場所と作用の方向
とに応じて原形状に対し例えば降温時にコイル長
が収縮し或いは伸長するように加工変形させたも
のを選択して用いることは言うまでもない。
As stated at the beginning, the purpose of the present invention is to adjust the amount of accelerated fuel depending on the temperature, especially the engine temperature, and for this purpose, phase dislocation due to thermoelastic martensitic transformation of a material having a shape memory effect is performed. This phenomenon is used to control the stroke of the accelerator pump depending on the temperature, and springs made of shape memory alloys are used between temperatures below Mf and above Af, as well as between Mf and Af. It may also be used in a suitable temperature range between . Furthermore, depending on the installation location and direction of action, springs made of shape memory alloys can be selected and used by processing and deforming the original shape so that, for example, the coil length contracts or expands when the temperature drops. Needless to say.

(実施例) 図面を参照して本発明の実施例を説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第2図はピストン式の加速ポンプに本発明を実
施した場合を示すものであつて、図示しない絞り
弁とリンク機構により連動させたポンプアーム1
と加速ポンプ2のピストン3に連設したピストン
杆4との間に補助杆5が挿入され、ピストン杆4
と補助杆5とは互いに軸線方向可動に連結されて
いるとともにこれらに設けたばね受4a,5aの
間にコイル状のダンパばね6が装入されている。
加速ポンプ2のポンプ室7は燃料の入口8および
出口9を有し、且つコイル状の戻しばね10が装
入されている。
FIG. 2 shows a case in which the present invention is implemented in a piston-type accelerator pump, and shows the pump arm 1 which is linked by a throttle valve (not shown) and a link mechanism.
An auxiliary rod 5 is inserted between the piston rod 4 connected to the piston 3 of the acceleration pump 2, and the piston rod 4
and the auxiliary rod 5 are connected to each other so as to be movable in the axial direction, and a coiled damper spring 6 is inserted between spring supports 4a and 5a provided thereon.
The pump chamber 7 of the accelerator pump 2 has a fuel inlet 8 and an outlet 9 and is fitted with a coiled return spring 10 .

ダンパばね6はピストン3にポンプ室7の容積
減少方向へ作用し、戻しばね10はピストン3に
ポンプ室7の容積増大方向へ作用しており、ポン
プアーム1は絞り弁の開度増大時にピストン3を
押してポンプ室5の燃料を出口9から図示しない
加速ノズルへ送ることは従来と同じである。
The damper spring 6 acts on the piston 3 in the direction of decreasing the volume of the pump chamber 7, the return spring 10 acts on the piston 3 in the direction of increasing the volume of the pump chamber 7, and the pump arm 1 acts on the piston 3 in the direction of increasing the volume of the pump chamber 7. 3 to send the fuel in the pump chamber 5 from the outlet 9 to an accelerating nozzle (not shown) is the same as in the conventional case.

本実施例では、ダンパばね6に通常の金属材料
で作つたものを用い、戻しばね10に前記Afよ
りも高い温度で熱処理しMfよりも低い温度で引
伸して加工変形させたものを用いた。或いはダン
パばね6に前記Afよりも高い温度で熱処理しMf
よりも低い温度で圧縮して加工変形したものを用
い、戻しばね10に通常の金属材料で作つたもの
を用いても同じである。
In this embodiment, the damper spring 6 was made of a normal metal material, and the return spring 10 was heat-treated at a temperature higher than Af and stretched at a temperature lower than Mf to deform the spring. Alternatively, the damper spring 6 may be heat-treated at a temperature higher than the above Af.
The same effect can be achieved even if the return spring 10 is made of a normal metal material and is compressed and deformed at a lower temperature.

これらにより、低温時に戻しばね10のコイル
長が伸長し或いはダンパばね6のコイル長が収縮
してポンプストロークを大きくし、加速ポンプ2
の燃料吐出量を増加させる。
As a result, the coil length of the return spring 10 is expanded or the coil length of the damper spring 6 is contracted at low temperatures, increasing the pump stroke and increasing the acceleration pump 2.
Increases fuel discharge amount.

第3図はダイヤフラム式の加速ポンプに本発明
を実施した場合を示すものであつて、この加速ポ
ンプ11はエンジンの吸入負圧が導入される負圧
室12とポンプ室13とがダイヤフラム14で仕
切られ、負圧室12にコイル状のダンパばね15
が装入されているとともに、燃料の入口16およ
び出口17を有するポンプ室13にコイル状の戻
しばね18が装入されている。
FIG. 3 shows a case in which the present invention is implemented in a diaphragm type acceleration pump. In this acceleration pump 11, a negative pressure chamber 12 into which engine suction negative pressure is introduced and a pump chamber 13 are connected by a diaphragm 14. A coiled damper spring 15 is installed in the partitioned negative pressure chamber 12.
A coiled return spring 18 is inserted into the pump chamber 13, which has a fuel inlet 16 and an outlet 17.

ダンパばね15はダイヤフラム14にポンプ室
13の容積減少方向へ作用し、戻しばね18はダ
イヤフラム14にポンプ室13の容積増大方向へ
作用しており、絞り弁の開度増大時に吸入負圧が
低下してダイヤフラム14がポンプ室13の方へ
撓むことによつて燃料を出口177から図示しな
い加速ノズルへ送ることは従来と同じである。
The damper spring 15 acts on the diaphragm 14 in the direction of decreasing the volume of the pump chamber 13, and the return spring 18 acts on the diaphragm 14 in the direction of increasing the volume of the pump chamber 13, so that when the opening of the throttle valve increases, the suction negative pressure decreases. The diaphragm 14 then deflects toward the pump chamber 13 to send fuel from the outlet 177 to an accelerating nozzle (not shown), as in the conventional case.

本実施例では、ダンパばね15に前記Afより
も高い温度で熱処理しMfよりも低い温度で圧縮
して加工変形したものを用い、戻しばね18に通
常の金属材料で作つたものを用いた。或いはダン
パばね15に通常の金属材料で作つたものを用
い、戻しばね18に前記Afよりも高い温度で熱
処理しMfよりも低い温度で伸長して加工変形し
たものを用いてもよい。
In this embodiment, the damper spring 15 was heat-treated at a temperature higher than Af and compressed at a temperature lower than Mf to be deformed, and the return spring 18 was made of a normal metal material. Alternatively, the damper spring 15 may be made of a normal metal material, and the return spring 18 may be heat-treated at a temperature higher than Af and then stretched and deformed at a temperature lower than Mf.

これらにより、低温時に戻しばね18のコイル
長が伸長し或いはダンパばね15のコイル長が収
縮してポンプストロークを大きくし、加速ポンプ
11の燃料吐出量も増大させる。
As a result, the coil length of the return spring 18 is expanded or the coil length of the damper spring 15 is contracted at low temperatures, increasing the pump stroke and increasing the fuel discharge amount of the acceleration pump 11.

(発明の効果) 本発明によると、戻しばねとダンパばねのいず
れか一方を形状記憶合金で作つたものであるか
ら、加速ポンプの燃料吐出量を手作業によらない
ことは勿論、特別の装置や部品およびその取付け
のための加工を不要とし、従来のばねと置き換え
るだけで温度に応じ自動的に調節し安定した加速
性能を得ることができるのである。また、形状記
憶合金で作つたコイル状のばねは熱により形状を
変えるバイメタル、サーモワツクスなどに比べ温
度変化による長さの変化量を大きくでき、且つ動
作の信頼性が高いという利点を有している。更
に、通常の金属材料で作られているもう一方のば
ねは形状記憶合金で作つたばねに対するバイアス
ばねとして働きヒステレシスを減少乃至解消して
一定温度で形状変化を正確に一定に行なわせ安定
した加速性能を与えることができる。
(Effects of the Invention) According to the present invention, since either the return spring or the damper spring is made of a shape memory alloy, it is not necessary to manually adjust the fuel discharge amount of the accelerator pump, and a special device is not required. This eliminates the need for springs, parts, and processing for their attachment, and by simply replacing conventional springs, it can automatically adjust according to temperature and provide stable acceleration performance. In addition, coiled springs made from shape memory alloys have the advantage of being able to change length due to temperature changes larger than bimetals, thermowaxes, etc. whose shape changes with heat, and are highly reliable in operation. . Furthermore, the other spring made of ordinary metal material acts as a bias spring for the spring made of shape memory alloy, reducing or eliminating hysteresis, allowing accurate and constant shape change at a constant temperature, and stable acceleration. can give performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は形状記憶合金の特性図、第2図および
第3図は本発明の異なる実施例を示す縦断面図で
ある。 2,11…加速ポンプ、3…ピストン、6,1
5…ダンパばね、7,13…ポンプ室、10,1
8…戻しばね、14…ダイヤフラム。
FIG. 1 is a characteristic diagram of a shape memory alloy, and FIGS. 2 and 3 are longitudinal sectional views showing different embodiments of the present invention. 2,11...acceleration pump, 3...piston, 6,1
5... Damper spring, 7, 13... Pump chamber, 10, 1
8...Return spring, 14...Diaphragm.

Claims (1)

【特許請求の範囲】[Claims] 1 加速ポンプのポンプ室の容積を増大させる方
向へ働くコイル状の戻しばねとポンプ室の容積を
減少させる方向へ働くコイル状のダンパばねとを
具えている気化器の加速装置において、前記戻し
ばねとダンパばねのいずれか一方が形状記憶合金
で作られており、且つ形状記憶合金で作られてい
るばねは低温時にポンプストロークを大きくし高
温時にポンプストロークを小さくするようにコイ
ル長が伸縮する構成とされていることを特徴とす
る加速装置。
1. In a carburetor accelerator device comprising a coiled return spring that acts in a direction to increase the volume of a pump chamber of an acceleration pump and a coiled damper spring that acts in a direction to decrease the volume of the pump chamber, the return spring Either one of the damper spring and the damper spring is made of a shape memory alloy, and the spring made of the shape memory alloy has a configuration in which the coil length expands and contracts so that the pump stroke becomes larger when the temperature is low and the pump stroke becomes smaller when the temperature is high. An accelerator device characterized by:
JP56105374A 1981-07-06 1981-07-06 Accelerator of carburretor Granted JPS588257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56105374A JPS588257A (en) 1981-07-06 1981-07-06 Accelerator of carburretor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56105374A JPS588257A (en) 1981-07-06 1981-07-06 Accelerator of carburretor

Publications (2)

Publication Number Publication Date
JPS588257A JPS588257A (en) 1983-01-18
JPH0143148B2 true JPH0143148B2 (en) 1989-09-19

Family

ID=14405912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56105374A Granted JPS588257A (en) 1981-07-06 1981-07-06 Accelerator of carburretor

Country Status (1)

Country Link
JP (1) JPS588257A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173540U (en) * 1986-04-23 1987-11-04

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381831A (en) * 1976-12-28 1978-07-19 Toyota Motor Corp Device for accelerator pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121826U (en) * 1975-03-28 1976-10-02
JPS55125947U (en) * 1979-03-02 1980-09-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381831A (en) * 1976-12-28 1978-07-19 Toyota Motor Corp Device for accelerator pump

Also Published As

Publication number Publication date
JPS588257A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
US20070295016A1 (en) Method for controlling an expansion valve and expansion valve, in particular for vehicle air-conditioning systems operated with CO2 as the refrigerant
JP4149558B2 (en) Volume control valve for variable capacity compressor
US6065451A (en) Bypass valve with constant force-versus-position actuator
EP0691468B1 (en) Temperature adjusting automatic choke system
US4984542A (en) Thermal throttle actuator
US5417367A (en) Device for opening a pipe and an application of said device
JPH0143148B2 (en)
GB1591649A (en) Internal combustion engine with a device for regulating idling speed
JP3754193B2 (en) Volume control valve for variable capacity compressor
US6305179B1 (en) Expansion valve of refrigerating cycle consisting of capacity variable compressor
JP2002515564A (en) Fuel system damper with vacuum bias
JPH0151907B2 (en)
JPH0143147B2 (en)
US20030083799A1 (en) Sliding mode controlling apparatus and sliding mode controlling method
JPH0861810A (en) Refrigerant control valve
JP4352087B2 (en) Volume control valve for variable capacity compressor
US4239181A (en) Valve positioner and method of making the same
EP1188914A2 (en) Fuel limitation device for engine with supercharger
JP3873068B2 (en) Fuel injection valve and its manufacturing method
JPH0143150B2 (en)
JPH06264842A (en) Injection valve
JPH11107930A (en) Capacity control valve for variable displacement compressor
JPH0422143Y2 (en)
JP2511347B2 (en) Gas proportional valve
JPH109720A (en) Thermal expansion valve