JPH0142902B2 - - Google Patents

Info

Publication number
JPH0142902B2
JPH0142902B2 JP56025646A JP2564681A JPH0142902B2 JP H0142902 B2 JPH0142902 B2 JP H0142902B2 JP 56025646 A JP56025646 A JP 56025646A JP 2564681 A JP2564681 A JP 2564681A JP H0142902 B2 JPH0142902 B2 JP H0142902B2
Authority
JP
Japan
Prior art keywords
resin
metal oxide
substrate
weight
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56025646A
Other languages
Japanese (ja)
Other versions
JPS57140339A (en
Inventor
Hideo Kawahara
Koichi Ataka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2564681A priority Critical patent/JPS57140339A/en
Publication of JPS57140339A publication Critical patent/JPS57140339A/en
Publication of JPH0142902B2 publication Critical patent/JPH0142902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Detergent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は基板に被覆された金属酸化物被膜の除
去方法に関する。 古くより、ガラスに電導性、色彩性、装飾性、
鏡面効果等を付与する目的でガラス表面に金属酸
化物被膜を被覆することが広く行なわれてきた。 このような金属酸化物被膜としては電導性を目
的としたSn、In、Znなどの酸化物膜、色彩性、
装飾性、鏡面効果等を目的とするものとして、
Co、Sn、Cu、Fe、Ti、Cr、Ni、Mn、Al、Zn、
V、Mo、Wなどの酸化物膜をあげることができ
る。 これらの金属酸化物被膜は、In2O3膜の如きは
真空蒸着法、あるいはスパツタリング法により製
造され、またその他の多くの金属酸化物被膜は高
温に加熱されたガラス表面に目的とする金属を含
む有機塩の溶液又は蒸気を吹付け、ガラス表面で
有機金属塩を熱分解する熱分解法により製造され
ている。 このように基板表面に被覆された金属酸化物被
膜はその使用目的によつて、該被膜の一部を除去
して使用される。 従来、In2O3又はSnO2よりなる被膜の除去方法
として金属微粉末と酸を用いる化学還元法や、還
元性のある電解質溶液を用いる電解還元法、電弧
を用いる還元法が用いられているが、これらの方
法はCo、Cu、Fe、Ti、Crなどの酸化物被膜を完
全に除去するのが困難であつた。 本発明は従来の金属酸化物被膜を除去する方法
に比して簡単な操作で、しかも基板に強固に付着
した金属酸化物被膜を完全に除去できる方法を提
供する。すなわち本発明はFe、Cr、Co、Ti、
Cu、Ni及びMnの酸化物から選ばれた1種若しく
は2種以上の金属酸化物、又は該金属酸化物に20
重量%以下の酸化錫を含有する金属酸化物からな
る基板に付着した金属酸化物被膜の所望箇所に予
め酸に耐える合成樹脂シートをポリビニルアルコ
ール及びポリアクリル酸エチルのいずれかの熱可
塑性樹脂、又はフエノール樹脂、レゾルシノール
樹脂、エポキシ樹脂、シリコーン樹脂及びゴム系
樹脂のいずれかの熱硬化性樹脂を接着剤として被
覆し、しかる後に80℃以上に保有した硫酸の4重
量%以上の水溶液で処理することにより、該基板
から該熱可塑性樹脂又は該熱硬化性樹脂で被覆さ
れていない該金属酸化物被膜を除去する方法であ
る。 本発明において硫酸が用いられる。 また、本発明において用いられる酸の水溶液、
又は混合液は金属酸化物被膜を除去に要する時間
からして濃度が25乃至50重量%、温度100℃乃至
140℃の範囲で使用されるのが好ましい。 本発明は基板に付着した金属酸化物被膜の所望
箇所に予め酸に耐える合成樹脂シートをポリビニ
ルアルコール及びポリアクリル酸エチルのいずれ
かの熱可塑性樹脂、又はフエノール樹脂、レゾル
シノール樹脂、エポキシ樹脂、シリコーン樹脂及
びゴム系樹脂のいずれかの熱硬化性樹脂を接着剤
として被覆し、しかる後に酸の水溶液、又は酸の
混合溶液で処理することにより、該基板から該熱
可塑性樹脂又は該熱硬化性樹脂で被覆されていな
い金属酸化物被膜を除去することができる。 この場合酸に耐える合成樹脂シートとして10μ
乃至1mm厚の塩化ビニール樹脂、ポリカーボネー
ト樹脂、アクリルニトリル樹脂、カプトン樹脂、
又はポリ四弗化エチレン樹脂シートが好んで用い
られる。また金属酸化物被膜の部分的な除去の
後、有機性被膜を除去することを考えれば、接着
剤として、ポリビニルアルコール又はポリアクリ
ル酸エチルのいずれかの熱可塑性樹脂を用いるの
が好ましい。 本発明によれば簡単な操作で、しかも基板に強
固に付着した金属酸化物被膜の所望箇所を容易に
除去できるので、所定形状の金属酸化物被膜を付
着した基板を容易に得ることができる。 以下、本発明の具体的な実施例について述べ
る。580℃に加熱された板ガラス表面に鉄アセチ
ルアセトネートクロムアセチルアセトネート及び
コバルトアセチルアセトネートを有機溶媒に溶か
した混合溶液を吹き付け重量比でFe2O3が20%、
Cr2O3が30%、Co2O3が50%よりなる金属酸化物
被膜を付着した板ガラスを製造した。 この金属酸化物被膜付着板ガラスを予じめ所定
温度に加熱した各種酸に浸漬した時の被膜の除去
に要する時間を第1表に示した。 第1表によれば、金属酸化物被膜の除去には硫
酸が有効であることがわかる。次に前記金属酸化
物被膜付着板ガラスを98%硫酸に浸漬した時の、
被膜の除去に要する時間を第1図に示した。第1
表から酸溶液の温度を80℃以上にすることにより
被膜除去効果があらわれることが理解できる。
The present invention relates to a method for removing a metal oxide film coated on a substrate. Since ancient times, glass has been valued for its electrical conductivity, color, and decorative properties.
It has been widely used to coat glass surfaces with metal oxide films for the purpose of imparting mirror effects and the like. Such metal oxide films include oxide films of Sn, In, Zn, etc. for electrical conductivity, color properties,
For decorative purposes, mirror effects, etc.
Co, Sn, Cu, Fe, Ti, Cr, Ni, Mn, Al, Zn,
Examples include oxide films of V, Mo, W, and the like. These metal oxide films, such as the In 2 O 3 film, are produced by vacuum evaporation or sputtering, and many other metal oxide films are produced by depositing the desired metal on a glass surface heated to high temperature. It is manufactured by a pyrolysis method in which a solution or vapor containing an organic salt is sprayed and the organic metal salt is thermally decomposed on the glass surface. The metal oxide film coated on the surface of the substrate in this manner is used by removing a portion of the film depending on the intended use. Conventionally, the methods used to remove coatings made of In 2 O 3 or SnO 2 include a chemical reduction method using fine metal powder and acid, an electrolytic reduction method using a reducing electrolyte solution, and a reduction method using an electric arc. However, these methods have difficulty in completely removing oxide films such as Co, Cu, Fe, Ti, and Cr. The present invention provides a method that is simpler than conventional methods for removing metal oxide films and can completely remove metal oxide films that are firmly adhered to substrates. That is, the present invention uses Fe, Cr, Co, Ti,
One or more metal oxides selected from oxides of Cu, Ni and Mn, or 20%
A synthetic resin sheet that is resistant to acids is placed in advance on the desired location of the metal oxide film attached to the substrate made of metal oxide containing tin oxide in an amount of not more than % by weight, using thermoplastic resin such as polyvinyl alcohol or polyethyl acrylate, or Coating with a thermosetting resin such as phenolic resin, resorcinol resin, epoxy resin, silicone resin, or rubber resin as an adhesive, and then treating with an aqueous solution of 4% by weight or more of sulfuric acid kept at 80°C or higher. This is a method of removing the metal oxide film that is not covered with the thermoplastic resin or the thermosetting resin from the substrate. Sulfuric acid is used in the present invention. Furthermore, the aqueous acid solution used in the present invention,
Or, the mixed solution has a concentration of 25 to 50% by weight considering the time required to remove the metal oxide film, and a temperature of 100℃ to 100℃.
Preferably, it is used within a temperature range of 140°C. In the present invention, a synthetic resin sheet that is resistant to acids is preliminarily applied to desired parts of a metal oxide film attached to a substrate using a thermoplastic resin such as polyvinyl alcohol or polyethyl acrylate, or a phenolic resin, a resorcinol resin, an epoxy resin, or a silicone resin. The substrate is coated with a thermosetting resin such as a thermoplastic resin or a rubber resin as an adhesive, and then treated with an aqueous acid solution or a mixed acid solution, thereby removing the thermoplastic resin or the thermosetting resin from the substrate. Uncovered metal oxide coatings can be removed. In this case, the acid-resistant synthetic resin sheet is 10μ.
or 1mm thick vinyl chloride resin, polycarbonate resin, acrylonitrile resin, kapton resin,
Alternatively, a polytetrafluoroethylene resin sheet is preferably used. Further, considering that the organic film is removed after partial removal of the metal oxide film, it is preferable to use a thermoplastic resin such as polyvinyl alcohol or polyethyl acrylate as the adhesive. According to the present invention, a desired portion of a metal oxide coating firmly adhered to a substrate can be easily removed with a simple operation, and a substrate having a metal oxide coating of a predetermined shape can be easily obtained. Hereinafter, specific examples of the present invention will be described. A mixed solution of iron acetylacetonate, chromium acetylacetonate, and cobalt acetylacetonate dissolved in an organic solvent was sprayed onto the surface of a plate glass heated to 580°C, containing 20% Fe 2 O 3 by weight.
A plate glass was produced to which a metal oxide coating consisting of 30% Cr 2 O 3 and 50% Co 2 O 3 was deposited. Table 1 shows the time required to remove the metal oxide coating when the plate glass with the metal oxide coating was immersed in various acids preheated to a predetermined temperature. According to Table 1, it can be seen that sulfuric acid is effective for removing metal oxide films. Next, when the metal oxide coated glass plate was immersed in 98% sulfuric acid,
Figure 1 shows the time required to remove the coating. 1st
From the table, it can be seen that the film removal effect appears when the temperature of the acid solution is 80°C or higher.

【表】 更に前記金属酸化物被膜付着基板ガラスを種々
の濃度の硫酸に浸漬した時の被膜の除去に要する
時間を第2表に示した。第2表から酸濃度を重量
比で少なくとも4%以上にすることにより被膜除
去効果があらわれることが理解できる。
[Table] Furthermore, Table 2 shows the time required to remove the film when the glass substrate to which the metal oxide film was attached was immersed in sulfuric acid of various concentrations. It can be seen from Table 2 that the film removal effect appears by increasing the acid concentration to at least 4% by weight.

【表】【table】

【表】 また更に前記金属酸化物被膜付着板ガラスの所
望箇所に予め塩化ビニール樹脂シートを各種接着
剤を介して被覆し、しかる後に140℃の温度に保
持した、98重量%の硫酸液に浸漬した時のマスク
効果を第3表に示した。第3表によればポリビニ
ルアルコール、ポリアクリル酸エチル、フエノー
ル樹脂、レゾシノール樹脂、エポキシ樹脂、シリ
コン樹脂、ゴム系樹脂にマスク効果があり、他の
樹脂は酸液中で接着力を失い、マスク効果を示さ
なかつた。
[Table] Furthermore, a vinyl chloride resin sheet was coated in advance on the desired portions of the metal oxide coated plate glass via various adhesives, and then immersed in a 98% by weight sulfuric acid solution maintained at a temperature of 140°C. Table 3 shows the mask effect at the time. According to Table 3, polyvinyl alcohol, polyethyl acrylate, phenolic resin, resorcinol resin, epoxy resin, silicone resin, and rubber-based resin have a masking effect, while other resins lose their adhesive strength in acid solution and have a masking effect. did not show.

【表】【table】

【表】 また更に98重量%の硫酸に各種金属酸化物被膜
付着板ガラスを浸漬した時の、被膜除去に要する
時間を第4表に示した。第4表からSnO2を含有
する被膜の場合はその含有割合が20%以下の金属
酸化物被膜及びその他の金属酸化物被膜は除去可
能なことが明らかである。
[Table] Furthermore, Table 4 shows the time required to remove the coating when glass plates coated with various metal oxide coatings were immersed in 98% by weight sulfuric acid. It is clear from Table 4 that in the case of a film containing SnO 2 , metal oxide films with a SnO 2 content of 20% or less and other metal oxide films can be removed.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は被膜除去溶液の温度と被膜除去時間の
関係を示す図である。
FIG. 1 is a diagram showing the relationship between the temperature of the film removal solution and the film removal time.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe、Cr、Co、Ti、Cu、Ni及びMnの酸化物
から選ばれた1種若しくは2種以上の金属酸化
物、又は該金属酸化物に20重量%以下の酸化錫を
含有する金属酸化物からなる基板に付着した金属
酸化物被膜の所望箇所に予め酸に耐える合成樹脂
シートをポリビニルアルコール及びポリアクリル
酸エチルのいずれかの熱可塑性樹脂、又はフエノ
ール樹脂、レゾルシノール樹脂、エポキシ樹脂、
シリコーン樹脂及びゴム系樹脂のいずれかの熱硬
化性樹脂を接着剤として被覆し、しかる後に80℃
以上に保有した硫酸の4重量%以上の水溶液で処
理することにより、該基板から該熱可塑性樹脂又
は該熱硬化性樹脂で被覆されていない該金属酸化
物被膜を除去する方法。
1 One or more metal oxides selected from oxides of Fe, Cr, Co, Ti, Cu, Ni, and Mn, or a metal oxide containing 20% by weight or less of tin oxide in the metal oxide A synthetic resin sheet that is resistant to acids is placed in advance on the desired location of the metal oxide film attached to the substrate made of material, using thermoplastic resin such as polyvinyl alcohol or polyethyl acrylate, or phenol resin, resorcinol resin, epoxy resin, etc.
Coat with thermosetting resin such as silicone resin or rubber resin as adhesive, and then heat to 80°C.
A method of removing the metal oxide film not covered with the thermoplastic resin or the thermosetting resin from the substrate by treating with an aqueous solution containing 4% by weight or more of sulfuric acid as described above.
JP2564681A 1981-02-24 1981-02-24 Removing method for metallic oxide film Granted JPS57140339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2564681A JPS57140339A (en) 1981-02-24 1981-02-24 Removing method for metallic oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2564681A JPS57140339A (en) 1981-02-24 1981-02-24 Removing method for metallic oxide film

Publications (2)

Publication Number Publication Date
JPS57140339A JPS57140339A (en) 1982-08-30
JPH0142902B2 true JPH0142902B2 (en) 1989-09-18

Family

ID=12171586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2564681A Granted JPS57140339A (en) 1981-02-24 1981-02-24 Removing method for metallic oxide film

Country Status (1)

Country Link
JP (1) JPS57140339A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720791A (en) * 1994-08-03 1998-02-24 Minolta Co., Ltd. Method of producing an optical lens element
JP3456804B2 (en) * 1995-07-31 2003-10-14 旭電化工業株式会社 Method and apparatus for manufacturing oxide etching products
US6406639B2 (en) 1996-11-26 2002-06-18 Nippon Sheet Glass Co., Ltd. Method of partially forming oxide layer on glass substrate
EP0955276A4 (en) 1996-11-26 2001-05-09 Nippon Sheet Glass Co Ltd Method for partly forming oxide layer
EP1322567B1 (en) * 2000-09-11 2008-11-12 Cardinal CG Company Temporary protective covers
US6921579B2 (en) 2000-09-11 2005-07-26 Cardinal Cg Company Temporary protective covers
US6902813B2 (en) 2001-09-11 2005-06-07 Cardinal Cg Company Hydrophilic surfaces carrying temporary protective covers
EP1773729B1 (en) 2004-07-12 2007-11-07 Cardinal CG Company Low-maintenance coatings
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
EP3387163B1 (en) 2015-12-11 2020-04-29 Cardinal CG Company Method of coating both sides of a substrate
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129528A (en) * 1974-06-11 1976-03-12 Choo Komori FUNMATSUSENISOSENINO SEIZOHO
JPS5310617A (en) * 1976-06-15 1978-01-31 Nippon Sheet Glass Co Ltd Production of semireflective glass by applying hybrid molecules for covering
JPS556586A (en) * 1978-06-19 1980-01-18 Akzo Nv Spinning die for producing multifilament yarn having matrix * filament structure
JPS5521970A (en) * 1978-08-05 1980-02-16 Hiroshi Takahashi Golf practice base
JPS5580482A (en) * 1978-12-11 1980-06-17 Seiko Epson Corp Manufacturing of electrochromic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129528A (en) * 1974-06-11 1976-03-12 Choo Komori FUNMATSUSENISOSENINO SEIZOHO
JPS5310617A (en) * 1976-06-15 1978-01-31 Nippon Sheet Glass Co Ltd Production of semireflective glass by applying hybrid molecules for covering
JPS556586A (en) * 1978-06-19 1980-01-18 Akzo Nv Spinning die for producing multifilament yarn having matrix * filament structure
JPS5521970A (en) * 1978-08-05 1980-02-16 Hiroshi Takahashi Golf practice base
JPS5580482A (en) * 1978-12-11 1980-06-17 Seiko Epson Corp Manufacturing of electrochromic material

Also Published As

Publication number Publication date
JPS57140339A (en) 1982-08-30

Similar Documents

Publication Publication Date Title
CA1154329A (en) Metal-resin composite and process for its production
JPH0142902B2 (en)
EP3385405A1 (en) Chromium-free surface-treated tinplate, production method and surface treating agent therefor
JPH0841625A (en) Metallic substrate having vapor-deposited layer and adhesionaccelerating layer
US3476668A (en) Electrophoretic coating process in a medium containing a resin,plus powdered plastic material
DE2911698A1 (en) PROCESS TO MAKE THE SURFACE OF AN OBJECT REMAINABLE WATER AND ALUMINUM OBJECTS WITH A SURFACE MADE REMAINABLE
US2535794A (en) Method of preparing ferrous metal objects for the application of synthetic resins
KR100297179B1 (en) A method for electrodepositing copper or copper alloy foil with chromium-zinc ion to impart discoloration resistance to the foil and a basic electrolyte solution for electrodepositing a discoloration preventing film on copper or copper alloy foil.
US3773544A (en) Fluorocarbon polymer coated substrate
US3968270A (en) Process for preparation of metal coatings
US3227636A (en) Method of bonding coatings
US2056399A (en) Coating process and coated article
US4313983A (en) Process for depositing latex films on metal surfaces
US2993847A (en) Aluminum treating process
GB2045646A (en) Organic titanate of metal surfaces
DE2425223A1 (en) PROCESS FOR IMPROVING THE ADHESION OF METALLIC COATINGS ON THE SURFACE OF A PLASTIC SUBSTRATE
US1770828A (en) Art of protectively treating metals
JPS6332868B2 (en)
JP2770241B2 (en) Manufacturing method of conductive coated black plated steel sheet
DE2754248C2 (en) Composite material for the manufacture of printed circuits
DE2809534A1 (en) METHOD FOR TREATMENT OF GALVANIZED SURFACES
DE2342801B2 (en) Process for coating oxidized, inorganic substrates with polyimide
JPS5928639B2 (en) Fukugohi Fukukinzokubanno Seizouhouhou
DE2145905B2 (en) Process for the production of surface metallized insulating materials by electroless metal deposition
US4206169A (en) Metal film coated with an autodeposited coating