JPH0142611B2 - - Google Patents

Info

Publication number
JPH0142611B2
JPH0142611B2 JP58167262A JP16726283A JPH0142611B2 JP H0142611 B2 JPH0142611 B2 JP H0142611B2 JP 58167262 A JP58167262 A JP 58167262A JP 16726283 A JP16726283 A JP 16726283A JP H0142611 B2 JPH0142611 B2 JP H0142611B2
Authority
JP
Japan
Prior art keywords
oxide
sintered body
composition sintered
varistor
insulating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58167262A
Other languages
Japanese (ja)
Other versions
JPS6057905A (en
Inventor
Takamichi Momoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP58167262A priority Critical patent/JPS6057905A/en
Publication of JPS6057905A publication Critical patent/JPS6057905A/en
Publication of JPH0142611B2 publication Critical patent/JPH0142611B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された積層型の電圧非直線抵抗器
(以下バリスタと称す)に関する。 一般に電子部品の高密度実装化指向が強く望ま
れる昨今、バリスタにおいても例外でなくこのよ
うな要請にこたえるものとして各種回路基板に直
接ハンダ付けできるようにした内部構造が積層化
した積層型バリスタが提案されている。しかして
従来積層型バリスタとしては特公昭58−23921号
公報に開示されたものがある。すなわち該公報に
開示されたものは第1図および第2図に示すよう
に複数の内部電極1とZnOを主成分とした焼結体
2とが積層構造となつており、前記内部電極1の
外部取り出し電極部3以外を前記焼結体2で囲ま
れた構造からなるものである。しかしてこのよう
な構成になるバリスタの外部取り出し電極部3間
絶縁は第3図に示すように焼結体2の粒界層部
分、すなわちZnOの良導電結晶4間に存在する絶
縁層5で維持するために電界が絶縁層5に集中し
絶縁耐力が低く焼結体2表面での放電劣化が発生
し、さらに耐湿度試験やサージ試験によつて絶縁
層5部分に水分が付着し放電劣化を促進し焼結体
2の表面が変質し低電流領域の漏れ電流が急激に
増大し信頼性に劣る欠点をもつていた。また上記
公報に開示された技術は内部電極1を配した生シ
ートを複数枚積み重ね一体化した後に焼結をする
手段である。すなわち内部電極1と生シートが同
時に焼結が進むことになり生シート中に含まれる
成分の中で特にビスマスは第3図に示すように内
部電極1に拡散することになり内部電極1のほと
んどが高抵抗化部6となり内部電極1の焼結状態
が変化し抵抗値上昇の大きな要因となる点を考慮
し、ビスマスの添加量をBi2O3に換算して0.05モ
ル%以下としたものである。しかしながら反面ビ
スマスの添加量が少ないため電圧非直線性(α)
が小さく、さらに制限電圧比(V10A/V1mA)
が大きくなるなどバリスタ特性そのものが低下す
る欠点をもつていた。 本発明は上記の点に鑑みてなされたもので内部
電極の表裏いずれか一方が焼結後に絶縁体になる
組成物に接し、かつ最外層に絶縁体が位置するよ
うにすることによつて、電圧非直線性、制限電圧
比さらには耐湿性および耐サージ性などの諸特性
がすぐれた積層型の電圧非直線抵抗器を提供する
ことを目的とするものである。 以下本発明について図面を参照して説明する。
すなわち第5図および第6図に示すように複数の
内部電極11とバリスタ組成物焼結体12および
絶縁組成物焼結体13が積層化してなる構造にお
いて前記内部電極11の表裏いずれか一方が絶縁
組成物焼結体13に接し、かつ最外層が絶縁組成
物焼結体13からなり前記内部電極11が外部取
り出し電極14と接続する部分を除いて前記バリ
スタ組成物焼結体12および絶縁組成物焼結体1
3で囲まれている構造としたものであり、その製
造手段の一例につき説明すると、まず焼結後バリ
スタ機能を有する焼結体となる原料として酸化亜
鉛を主成分とし、添加物として酸化ビスマスとそ
のほかに酸化コバルト、酸化マンガン、酸化ニツ
ケル、酸化クロム、酸化マグネシウム、酸化鉛、
酸化アルミニウム、酸化チタン、酸化アンチモ
ン、酸化バリウム、酸化硅素、酸化硼素などの中
から2種類または3種類以上加えボールミルで混
合し乾燥後600〜950℃で仮焼し、しかるのち粉砕
し有機バインダーとともに溶媒中に分散させスラ
リー状とする。つぎにこれをドクター・ブレード
法によつて10μmm〜3mm厚程度の均一な焼結後バ
リスタ機能を有する生シートを形成する。また一
方焼結後絶縁体となる原料として酸化亜鉛を主成
分とし、添加物として酸化銅、酸化リチウム、酸
化カリウム、酸化銀などの酸化亜鉛絶縁体化成分
の中の1種以上を加えボールミルで混合し乾燥後
600〜950℃で仮焼し、しかるのち粉砕し有機バイ
ンダとともに溶媒中に分散させスラリー状とす
る。つぎにこれをドクター・ブレード法によつて
10μm〜500μm厚程度の均一な焼結後絶縁機能を
有する生シートを形成する。しかして前記焼結後
バリスタ機能を有する生シートの上下両面に金、
白金、パラジウム、銀、ロジウムまたはこれらの
内の2つ以上の合金からなる金属ペーストを用い
て所定の大きさにスクリーン印刷によつて内部電
極を形成し上下面に前記焼結後絶縁機能を有する
生シートを積み重ね圧着したのち所定の大きさに
切断し900〜1200℃で0.5〜8時間焼結し内部電極
を導出させた両端に銀電極を塗布し450〜850℃で
焼付けてなるようにしたものである。 以上のような構成になる積層型のバリスタによ
れば第7図に示すように絶縁組成物焼結体13を
構成する結晶粒15自体が絶縁体化しているため
電界は表面全体に分散し絶縁組成物焼結体13表
面での放電劣化はなくすぐれた絶縁効果を発揮で
きると同時に、耐湿およびサージ試験によつて信
頼性が失われることはない。またバリスタ組成物
焼結体12にすぐれたバリスタ特性を得るだけの
ビスマスが添加されていたとしても第8図に示す
ように内部電極11の片面は絶縁組成物焼結体1
3に接しているためビスマス拡散による内部電極
11の高抵抗化部16は片側のみで内部電極11
の絶縁組成物焼結体13側は抵抗値上昇などの劣
化はなく内部電極11の劣化による直列抵抗分に
よる制限電圧特性の悪化は完全に防止できる。さ
らに内部電極11の劣化を絶縁組成物焼結体13
側で防止できたことによりバリスタ組成物焼結体
12中のビスマスの量を0.05モル%をはるかに越
えて2モル%まで添加できることが可能であり、
従来構造では得ることのできない効果を得ること
ができる。 つぎに本発明の効果について実施例によつて説
明する。 実施例 1 表1に示す〜のバリスタ組成比により秤量
した原料に純水を加えボールミルで24時間混合し
水分を乾燥させた後600〜950℃で2時間仮焼し、
さらに粉砕し有機バインダ、分散剤、溶媒を加え
スラリーとしドクター・ブレード法によつて焼結
後の厚みが500μmになる生シートを形成し、焼
結後内部電極の上下クロス部分が5×5mmになる
白金からなる内部電極材を印刷した生シートを3
層積層圧着し8×10mmに打ち抜き、900〜1250℃
で2時間焼結し内部電極の取り出し部に外部取り
出し電極として銀電極を塗布し650℃で焼付けて
なる従来例(B)それぞれと、同じく表1に示す〜
のバリスタ組成比により秤量した原料に純水を
加え従来例と同じ方法にてバリスタ組成生シート
を形成し、該生シートとは別に表1の絶縁物組成
比により秤量した原料に純水を加えボールミルで
24時間混合し水分を乾燥した後600〜950℃で2時
間仮焼し、さらに粉砕し有機バインダー、分散
剤、溶媒を加えスラリーとしドクター・ブレード
法によつて厚さ50μmの絶縁組成生シートを形成
し、前記バリスタ組成生シート両面に白金からな
る内部電極材を印刷したバリスタ組成生シート上
下面に絶縁組成生シートを積層圧着し8×10mmに
打ち抜き、900〜1250℃で2時間焼結し内部電極
の取り出し部に外部取り出し電極として銀電極を
塗布し650℃で焼き付けてなる本発明(A)それぞれ
との電圧非直線性(α)と制限電圧比(V10A/
V1mA)の特性を比較した結果表1および第9
図ならびに第10図に示すようになつた。なお第
10図は便宜上ビスマスの添加量に対する(α)
および(V10A/V1mA)特性を示した。
The present invention relates to an improved multilayer voltage nonlinear resistor (hereinafter referred to as a varistor). Nowadays, there is a strong desire for high-density packaging of electronic components, and varistors are no exception to this demand.Laminated varistors, which have a laminated internal structure that can be directly soldered to various circuit boards, are now available. Proposed. However, as a conventional multilayer varistor, there is one disclosed in Japanese Patent Publication No. 58-23921. That is, as shown in FIGS. 1 and 2, the device disclosed in the publication has a laminated structure of a plurality of internal electrodes 1 and a sintered body 2 mainly composed of ZnO, and the internal electrodes 1 have a laminated structure. It has a structure in which the sintered body 2 surrounds the parts other than the external electrode part 3. However, as shown in FIG. 3, the insulation between the external electrode parts 3 of the varistor with such a configuration is the grain boundary layer part of the sintered body 2, that is, the insulation layer 5 existing between the highly conductive crystals 4 of ZnO. In order to maintain the electric field, the electric field is concentrated on the insulating layer 5, resulting in low dielectric strength and discharge deterioration on the surface of the sintered body 2. Furthermore, moisture adheres to the insulating layer 5 during humidity resistance tests and surge tests, causing discharge deterioration. The problem is that the surface of the sintered body 2 changes in quality and the leakage current in the low current region increases rapidly, resulting in poor reliability. Further, the technique disclosed in the above-mentioned publication is a means of stacking and integrating a plurality of green sheets on which internal electrodes 1 are arranged, and then sintering them. In other words, the internal electrode 1 and the raw sheet are sintered at the same time, and among the components contained in the raw sheet, bismuth in particular is diffused into the internal electrode 1 as shown in FIG. 3, and most of the internal electrode 1 is Considering that this becomes the high resistance part 6 and changes the sintering state of the internal electrode 1, which is a major factor in increasing the resistance value, the amount of bismuth added is set to 0.05 mol% or less in terms of Bi 2 O 3 . It is. However, due to the small amount of bismuth added, voltage nonlinearity (α)
is small, and the limiting voltage ratio (V10A/V1mA)
This had the disadvantage that the varistor characteristics themselves deteriorated, such as an increase in . The present invention has been made in view of the above points, and by making one of the front and back sides of the internal electrode contact a composition that becomes an insulator after sintering, and the insulator being located in the outermost layer, The object of the present invention is to provide a multilayer voltage nonlinear resistor that has excellent characteristics such as voltage nonlinearity, limiting voltage ratio, moisture resistance, and surge resistance. The present invention will be explained below with reference to the drawings.
That is, as shown in FIGS. 5 and 6, in a structure in which a plurality of internal electrodes 11, a varistor composition sintered body 12, and an insulating composition sintered body 13 are laminated, either the front or back of the internal electrodes 11 is The varistor composition sintered body 12 and the insulating composition are in contact with the insulating composition sintered body 13, and the outermost layer is made of the insulating composition sintered body 13, and the inner electrode 11 is connected to the external lead-out electrode 14. Sintered body 1
The structure is surrounded by 3, and to explain an example of its manufacturing method, first, zinc oxide is the main component as a raw material that becomes a sintered body with varistor function after sintering, and bismuth oxide and bismuth oxide as additives. In addition, cobalt oxide, manganese oxide, nickel oxide, chromium oxide, magnesium oxide, lead oxide,
Add two or more of aluminum oxide, titanium oxide, antimony oxide, barium oxide, silicon oxide, boron oxide, etc., mix in a ball mill, dry and calcinate at 600-950℃, then crush and combine with an organic binder. Disperse in a solvent to form a slurry. Next, this is sintered to a uniform thickness of about 10 μm to 3 mm by a doctor blade method to form a green sheet having a varistor function. On the other hand, after sintering, the main ingredient is zinc oxide as a raw material that becomes an insulator, and one or more of the zinc oxide insulating components such as copper oxide, lithium oxide, potassium oxide, and silver oxide are added as additives and processed in a ball mill. After mixing and drying
It is calcined at 600 to 950°C, then crushed and dispersed in a solvent together with an organic binder to form a slurry. Next, this is done using the doctor blade method.
After uniform sintering, a green sheet having an insulating function with a thickness of about 10 μm to 500 μm is formed. After sintering, gold is applied to both the upper and lower surfaces of the raw sheet having a varistor function.
Internal electrodes are formed by screen printing to a predetermined size using a metal paste made of platinum, palladium, silver, rhodium, or an alloy of two or more of these, and the upper and lower surfaces have the insulation function after sintering. After stacking and crimping the raw sheets, they were cut to a specified size and sintered at 900 to 1200°C for 0.5 to 8 hours to bring out the internal electrodes. Silver electrodes were applied to both ends and baked at 450 to 850°C. It is something. According to the laminated varistor having the above structure, as shown in FIG. 7, the crystal grains 15 constituting the insulating composition sintered body 13 themselves are insulators, so the electric field is dispersed over the entire surface, resulting in insulation. There is no discharge deterioration on the surface of the composition sintered body 13, and an excellent insulating effect can be exhibited, and at the same time, reliability is not lost in moisture resistance and surge tests. Furthermore, even if enough bismuth is added to the varistor composition sintered body 12 to obtain excellent varistor properties, as shown in FIG.
3, the high resistance part 16 of the internal electrode 11 due to bismuth diffusion is only on one side, and the internal electrode 11
On the side of the insulating composition sintered body 13, there is no deterioration such as an increase in resistance value, and deterioration of the limiting voltage characteristics due to the series resistance due to deterioration of the internal electrodes 11 can be completely prevented. Furthermore, the deterioration of the internal electrode 11 can be prevented by using the insulating composition sintered body 13.
By being able to prevent this on the side, it is possible to add the amount of bismuth in the varistor composition sintered body 12 far beyond 0.05 mol% to 2 mol%,
Effects that cannot be obtained with conventional structures can be obtained. Next, the effects of the present invention will be explained using examples. Example 1 Pure water was added to the raw materials weighed according to the varistor composition ratio of ~ shown in Table 1, mixed in a ball mill for 24 hours, dried the moisture, and then calcined at 600 to 950°C for 2 hours.
It is further crushed, an organic binder, a dispersant, and a solvent are added to form a slurry, which is then sintered using the doctor blade method to form a raw sheet with a thickness of 500 μm. After sintering, the upper and lower cross sections of the internal electrodes are 5 x 5 mm. 3 raw sheets printed with internal electrode material made of platinum
Laminated and crimped, punched to 8 x 10 mm, heated to 900-1250℃
Table 1 shows the conventional example (B) in which the electrodes were sintered for 2 hours, a silver electrode was applied to the lead-out part of the internal electrode as an external lead-out electrode, and then baked at 650°C.
Add pure water to the raw material weighed according to the varistor composition ratio to form a varistor composition raw sheet in the same manner as in the conventional example, and separately from the raw sheet, add pure water to the raw material weighed according to the insulator composition ratio shown in Table 1. in a ball mill
After mixing for 24 hours and drying the water, it was calcined for 2 hours at 600 to 950℃, and then crushed and an organic binder, dispersant, and solvent were added to form a slurry, which was then made into a 50 μm thick insulating composition green sheet using the doctor blade method. The varistor composition raw sheet with internal electrode material made of platinum printed on both sides of the varistor composition raw sheet was laminated and crimped with insulating composition raw sheets on the upper and lower surfaces, punched into 8 x 10 mm, and sintered at 900 to 1250°C for 2 hours. Voltage nonlinearity (α) and limiting voltage ratio (V10A/
Tables 1 and 9 of the results comparing the characteristics of V1mA)
It became as shown in the figure and Fig. 10. For convenience, Figure 10 shows (α) with respect to the amount of bismuth added.
and (V10A/V1mA) characteristics.

【表】 表1および第9図および第10図から明らかな
ように従来例(B)はビスマス添加量が0.05モル%で
(α)および(V10A/V1mA)特性が最もよく
0.05モル%を越えると両特性とも劣化の傾向にあ
るのに対し、本発明(A)のものはビスマス添加量と
して0.05モル%を越えた方が(α)および
(V10A/V1mA)特性がよくなる傾向を示し2.0
モル%添加量においてもなんら問題なく良好な結
果を示しすぐれたバリスタ特性を得るだけのビス
マス添加を保証しながら内部電極へのビスマス拡
散を制御することによる内部電極の抵抗値上昇を
防止できることを実証した。 実施例 2 つぎにバリスタ組成を同一にし絶縁組成を種々
変えた場合の本発明(A)の実施結果を表2に示し
た。なお試料〜〓〓の製造条件、形状等は実施例
1の本発明(A)の説明で述べたとおりである。
[Table] As is clear from Table 1 and Figures 9 and 10, the conventional example (B) has the best (α) and (V10A/V1mA) characteristics when the amount of bismuth added is 0.05 mol%.
If the bismuth content exceeds 0.05 mol%, both properties tend to deteriorate, whereas in the case of the present invention (A), the (α) and (V10A/V1mA) characteristics become better when the amount of bismuth added exceeds 0.05 mol%. trend 2.0
We demonstrated that it is possible to prevent an increase in the resistance value of the internal electrodes by controlling the bismuth diffusion to the internal electrodes while ensuring that the amount of bismuth added is sufficient to obtain excellent varistor characteristics. did. Example 2 Next, Table 2 shows the results of implementing the present invention (A) when the varistor composition was the same and the insulation composition was varied. Note that the manufacturing conditions, shape, etc. of samples ~〓〓 are as described in the explanation of the present invention (A) in Example 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 複数の内部電極とバリスタ組成物焼結体およ
び絶縁組成物焼結体を積層化してなる構造におい
て、前記内部電極の表裏いずれか一方が前記絶縁
組成物焼結体に接し、かつ最外層が絶縁組成物焼
結体からなり、前記内部電極の外部取り出し電極
と接続する部分を除いて前記バリスタ組成物焼結
体および絶縁組成物焼結体で囲まれていることを
特徴とする積層型電圧非直線抵抗器。 2 バリスタ組成物焼結体が酸化亜鉛を主成分と
し添加物として酸化ビスマスとそのほかに酸化コ
バルト、酸化マンガン、酸化ニツケル、酸化クロ
ム、酸化マグネシウム、酸化鉛、酸化アルミニウ
ム、酸化チタン、酸化アンチモン、酸化銀、酸化
バリウム、酸化硅素、酸化硼素などの中の数種類
を添加したものからなることを特徴とする特許請
求の範囲第1項記載の積層型電圧非直線抵抗器。 3 絶縁組成物焼結体が酸化亜鉛を主成分とし、
添加物として酸化銅、酸化リチウム、酸化カリウ
ム、酸化銀などの中から1種以上を添加したもの
からなることを特徴とする特許請求の範囲第1項
または第2項記載の積層型電圧非直線抵抗器。
[Scope of Claims] 1. In a structure in which a plurality of internal electrodes, a varistor composition sintered body, and an insulating composition sintered body are laminated, either the front or back of the internal electrode is connected to the insulating composition sintered body. The outermost layer is made of an insulating composition sintered body, and is surrounded by the varistor composition sintered body and the insulating composition sintered body except for the portion connected to the external lead-out electrode of the internal electrode. Characteristic multilayer voltage nonlinear resistor. 2. The varistor composition sintered body contains zinc oxide as a main component and additives such as bismuth oxide, cobalt oxide, manganese oxide, nickel oxide, chromium oxide, magnesium oxide, lead oxide, aluminum oxide, titanium oxide, antimony oxide, and other additives. 2. The multilayer voltage nonlinear resistor according to claim 1, wherein the multilayer voltage nonlinear resistor is made of a material to which several types of silver, barium oxide, silicon oxide, boron oxide, etc. are added. 3 The insulating composition sintered body contains zinc oxide as a main component,
The laminated voltage nonlinear device according to claim 1 or 2, characterized in that it contains one or more additives selected from copper oxide, lithium oxide, potassium oxide, silver oxide, etc. Resistor.
JP58167262A 1983-09-09 1983-09-09 Laminated voltage nonlinear resistor Granted JPS6057905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58167262A JPS6057905A (en) 1983-09-09 1983-09-09 Laminated voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58167262A JPS6057905A (en) 1983-09-09 1983-09-09 Laminated voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS6057905A JPS6057905A (en) 1985-04-03
JPH0142611B2 true JPH0142611B2 (en) 1989-09-13

Family

ID=15846473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58167262A Granted JPS6057905A (en) 1983-09-09 1983-09-09 Laminated voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS6057905A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072203A (en) * 1983-09-29 1985-04-24 株式会社東芝 Voltage/current nonlinear resistor
JPS61158901U (en) * 1985-03-23 1986-10-02
JPS62282409A (en) * 1986-05-30 1987-12-08 松下電器産業株式会社 Voltage-dependent nonlinear resistor
JP2633838B2 (en) * 1986-09-20 1997-07-23 株式会社村田製作所 High temperature thermistor
JPS63281402A (en) * 1987-05-13 1988-11-17 Murata Mfg Co Ltd Thermistor
JPH0831361B2 (en) * 1986-12-15 1996-03-27 株式会社村田製作所 Thermistor element
US5234641A (en) * 1988-05-06 1993-08-10 Avx Corporation Method of making varistor or capacitor
JPH0214501A (en) * 1988-07-01 1990-01-18 Matsushita Electric Ind Co Ltd Voltage nonlinear resistor
JP4715248B2 (en) * 2005-03-11 2011-07-06 パナソニック株式会社 Multilayer ceramic electronic components
JP4683068B2 (en) * 2008-04-21 2011-05-11 Tdk株式会社 Multilayer chip varistor
DE102020122299B3 (en) 2020-08-26 2022-02-03 Tdk Electronics Ag Multilayer varistor and method for producing a multilayer varistor

Also Published As

Publication number Publication date
JPS6057905A (en) 1985-04-03

Similar Documents

Publication Publication Date Title
US5369390A (en) Multilayer ZnO varistor
JP2002246207A (en) Voltage nonlinear resistor and porcelain composition
JPH0142611B2 (en)
JP3254399B2 (en) Multilayer chip varistor and method of manufacturing the same
CN1983468A (en) Varistor and method of producing varistor
JP3008567B2 (en) Chip type varistor
JP3924563B2 (en) Multilayer chip varistor
US6627119B2 (en) Chip type varistor and method of manufacturing the same
JPH0142612B2 (en)
JP3832071B2 (en) Multilayer varistor
JPH10229004A (en) Chip-type varistor
JP7196831B2 (en) Laminated coil parts
JP2983096B2 (en) Manufacturing method of laminated voltage non-linear resistor
JPH0214501A (en) Voltage nonlinear resistor
JPH0536503A (en) Laminated varistor
JPS62122103A (en) Manufacture of laminated chip varistor
JP2666605B2 (en) Stacked varistor
JP3377372B2 (en) Stacked voltage non-linear resistor
JP3606467B2 (en) Manufacturing method of multilayer voltage nonlinear resistor
JPS62282409A (en) Voltage-dependent nonlinear resistor
JPH0613206A (en) Laminated varistor
JPH0373121B2 (en)
JP2886724B2 (en) Manufacturing method of laminated voltage non-linear resistor
JP2644731B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JPH0377647B2 (en)