JPH0142512B2 - - Google Patents

Info

Publication number
JPH0142512B2
JPH0142512B2 JP57207284A JP20728482A JPH0142512B2 JP H0142512 B2 JPH0142512 B2 JP H0142512B2 JP 57207284 A JP57207284 A JP 57207284A JP 20728482 A JP20728482 A JP 20728482A JP H0142512 B2 JPH0142512 B2 JP H0142512B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic flux
superconducting
quantum
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57207284A
Other languages
Japanese (ja)
Other versions
JPS5996785A (en
Inventor
Hidekazu Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP57207284A priority Critical patent/JPS5996785A/en
Publication of JPS5996785A publication Critical patent/JPS5996785A/en
Publication of JPH0142512B2 publication Critical patent/JPH0142512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 本発明は、超伝導薄膜の残留量子磁束を除去す
る方法とこの方法を実施するための装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing residual quantum flux in superconducting thin films and an apparatus for implementing this method.

超伝導薄膜は、超低磁場を必要とする物性実
験、磁場測定器のドリフトのない較正などに広く
使用されている。
Superconducting thin films are widely used in physical property experiments that require ultra-low magnetic fields and in drift-free calibration of magnetic field measuring instruments.

従来、超伝導薄膜にトラツプされている残留量
子磁束を除去する方法として、ヒートフラツシユ
(Heat Flush)法がある。超伝導薄膜を一方の端
部から徐々に液体ヘリウム内に浸漬してゆくと、
薄膜にトラツプされている量子磁束は冷却されて
いる部分から冷却されていない部分(常伝導の部
分)に向つて移動し、薄膜の端部から残留量子磁
束を排出する。
Conventionally, there is a heat flush method as a method for removing residual quantum magnetic flux trapped in superconducting thin films. When a superconducting thin film is gradually immersed in liquid helium from one end,
The quantum magnetic flux trapped in the thin film moves from the cooled part to the uncooled part (normally conductive part), expelling the residual quantum magnetic flux from the edge of the thin film.

このヒートフラツシユ法は、現在のところ超伝
導薄膜から残留量子磁束を除去する優れた方法と
して知られているが、残留量子磁束を完全に除去
することはできない。
Although this heat flash method is currently known as an excellent method for removing residual quantum magnetic flux from superconducting thin films, it cannot completely remove residual quantum magnetic flux.

本発明者は超伝導薄膜の微小領域をレーザー光
で加熱し、この加熱領域を薄膜の端部に向つて移
動させることにより残留量子磁束を除去できるこ
とを見出した。このレーザー光加熱により従来の
ヒートフラツシユ法に比べて熱勾配が格段(約30
倍)に大きくなり、そのため残留量子磁束を効果
的に除去できるものと考えられる。
The present inventor has discovered that residual quantum magnetic flux can be removed by heating a minute region of a superconducting thin film with laser light and moving this heated region toward the edge of the thin film. This laser light heating creates a much greater thermal gradient (approximately 30
It is considered that the residual quantum magnetic flux can be effectively removed.

本発明はこの知見に基づくものであつて、冷却
している超伝導薄膜の微小領域(膜厚の二乗程度
の面積)を加熱して常伝導化し、この加熱領域を
薄膜の端に向つて移動することにより、その常伝
導化領域に含まれる量子磁束を薄膜外に排出させ
る。
The present invention is based on this knowledge, and involves heating a micro region (an area approximately the square of the film thickness) of a cooling superconducting thin film to make it normal conductive, and moving this heated region toward the edge of the thin film. By doing so, the quantum magnetic flux contained in the normal conduction region is discharged to the outside of the thin film.

添付図面により本発明を説明する。 The invention will be explained with reference to the accompanying drawings.

第1図は本発明の方法を実施するための装置の
一例を示す。1は超伝導薄膜であつて、内径50
mm、長さ150mmのステンレス製円筒内壁に厚さ
50μmの鉛の薄層をメツキ又はスパツタリングに
より形成している。2は冷却手段であつて、液体
ヘリウムを充填するデユアージヤーである。3は
駆動手段(図示せず)により上下方向にも回転方
向にも動ける走査装置である(スキヤンスピード
10mm/sec、位置決定精度±50μm)。4はオプチ
カルフアイバーであつて、走査装置の先端の一方
の端に取付けられ、アルゴンイオンレーザー源
(図示せず)からのレーザー光を導入する。5は
量子磁束検知手段であつて、走査装置の先端の他
方の端に取付けた超伝導量子干渉素子(SQUID)
5′に接続されている。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. 1 is a superconducting thin film with an inner diameter of 50
mm, length 150mm stainless steel cylinder inner wall thickness
A thin layer of 50 μm lead is formed by plating or sputtering. Reference numeral 2 is a cooling means, which is a dual jar filled with liquid helium. 3 is a scanning device that can be moved both vertically and rotationally by a driving means (not shown) (scan speed
10mm/sec, positioning accuracy ±50μm). An optical fiber 4 is attached to one end of the tip of the scanning device and introduces laser light from an argon ion laser source (not shown). 5 is a quantum magnetic flux detection means, which is a superconducting quantum interference device (SQUID) attached to the other end of the tip of the scanning device.
5'.

この第1図の装置を用いて次の操作手順により
超伝導薄膜1から残留量子磁束を除去する。
Using the apparatus shown in FIG. 1, residual quantum magnetic flux is removed from the superconducting thin film 1 by the following operating procedure.

円筒容器を液体ヘリウムで冷却する。この場
合、ヒートフラツシユ法を用いて冷却すること
により、残留量子磁束をできるだけ減らしてお
くのがよい。
Cool the cylindrical container with liquid helium. In this case, it is preferable to reduce residual quantum magnetic flux as much as possible by cooling using a heat flash method.

この冷却している円筒容器にトラツプされて
いる残留量子磁束の位置及び量子数を、超伝導
量子干渉素子5′により検出し、小型計算機
(図示せず)に記憶する。
The position and quantum number of the residual quantum magnetic flux trapped in the cooled cylindrical container are detected by the superconducting quantum interference element 5' and stored in a small computer (not shown).

つぎに、残留量子磁束の存在する領域をレー
ザー光(直径約50μmのスポツト)で加熱して
常伝導化し、この加熱領域(スポツト)を走査
装置3を用いて容器の開放端まで誘導する。
Next, the region where the residual quantum magnetic flux exists is heated with laser light (a spot with a diameter of about 50 μm) to make it normal conductive, and this heated region (spot) is guided to the open end of the container using the scanning device 3.

超伝導量子干渉素子5′を用いて残留量子磁
束の分布を調べ、当初の分布と比較し、必要に
応じて、の操作を繰り返し、残留量子磁束
を排除する。
The distribution of the residual quantum magnetic flux is investigated using the superconducting quantum interference element 5', compared with the initial distribution, and if necessary, the operation is repeated to eliminate the residual quantum magnetic flux.

上記の如く、本発明は冷却している超伝導磁気
遮蔽体の微小領域をレーザー光で加熱して常伝導
スポツトを形成するので、熱勾配が格段に大きく
とれ、残留量子磁束を確実にその加熱領域(常伝
導スポツト)にとられることができ、そしてこれ
を薄膜の端部に向つて連れ出すことにより、残留
量子磁束を薄膜から確実に排除できる。
As described above, the present invention uses a laser beam to heat a micro region of a superconducting magnetic shield that is being cooled to form a normal conduction spot, so the thermal gradient can be made significantly larger, and the residual quantum magnetic flux can be reliably heated. region (normal conduction spot), and by bringing it out towards the edge of the thin film, the residual quantum flux can be reliably expelled from the thin film.

本発明によつて残留量子磁束を完全に排除され
た超伝導薄膜が、新たな量子磁束を発生する場合
には、磁気モノポールの通過以外にあり得ないの
で、そのような薄膜と組合せれば第1図の装置は
モノポール検出器としても有用である。
If a superconducting thin film from which residual quantum magnetic flux has been completely eliminated according to the present invention can generate new quantum magnetic flux, it can only occur through the passage of a magnetic monopole, so if it is combined with such a thin film, The device of FIG. 1 is also useful as a monopole detector.

なお、本発明に用いる超伝導薄膜の形状は応用
目的に応じて適宜選択すればよく、例えばモノポ
ール検出器として使用する場合には板状でもよ
い。また、薄膜は鉛以外に、例えば錫、インジウ
ム、半田、ニオブなど超伝導材料から適宜選択で
きる。又、薄膜とせずに超伝導材料自体をレーザ
ー加熱走査に適した形にして使用してもよい。
Note that the shape of the superconducting thin film used in the present invention may be appropriately selected depending on the application purpose; for example, when used as a monopole detector, it may be plate-shaped. Further, the thin film can be appropriately selected from superconducting materials other than lead, such as tin, indium, solder, and niobium. Alternatively, the superconducting material itself may be used in a form suitable for laser heating scanning without forming it into a thin film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の一
例を示す。 (図中の符号)、1……超伝導薄膜(円筒容器
の内壁に形成)、2……冷却手段(デユア・ジヤ
ー)、3……走査装置、4……オプチカルフアイ
バー、5……量子磁束検知手段。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. (Symbols in the figure), 1... Superconducting thin film (formed on the inner wall of the cylindrical container), 2... Cooling means (dua-jaa), 3... Scanning device, 4... Optical fiber, 5... Quantum magnetic flux Detection means.

Claims (1)

【特許請求の範囲】 1 冷却している超伝導薄膜の微小領域を加熱し
て常伝導化し、この加熱領域を前記の薄膜の端に
向つて移動することにより、加熱領域に含まれて
いる量子磁束を薄膜から排出することを特徴とす
る超伝導磁気薄膜の残留量子磁束の除去方法。 2 超伝導薄膜を冷却する手段、薄膜の微小領域
を加熱する手段、量子磁束を検知する手段及び前
記の加熱手段と前記の量子磁束検知手段とを薄膜
表面に沿つて動かす手段を備えたことを特徴とす
る超伝導薄膜の残留量子磁束の除去装置。 3 前記の超伝導薄膜が一端で開放している円筒
容器の内壁に形成されている特許請求の範囲第2
項に記載の装置。 4 レーザー光により加熱する特許請求の範囲第
1項に記載の方法。 5 前記の量子磁束検知手段が超伝導量子干渉素
子を含む特許請求の範囲第2項に記載の装置。
[Claims] 1. By heating a minute region of a superconducting thin film that is being cooled to make it normal conductive, and moving this heated region toward the edge of the thin film, the quanta contained in the heated region are A method for removing residual quantum magnetic flux from a superconducting magnetic thin film, characterized by ejecting magnetic flux from the thin film. 2. A means for cooling the superconducting thin film, a means for heating a minute region of the thin film, a means for detecting quantum magnetic flux, and a means for moving the heating means and the quantum magnetic flux detecting means along the surface of the thin film. Features: A device for removing residual quantum magnetic flux from superconducting thin films. 3. Claim 2, wherein the superconducting thin film is formed on the inner wall of a cylindrical container that is open at one end.
The equipment described in section. 4. The method according to claim 1, which involves heating with laser light. 5. The device according to claim 2, wherein the quantum magnetic flux sensing means includes a superconducting quantum interference device.
JP57207284A 1982-11-25 1982-11-25 Method for removing residual quantum magnetic flux of superconductive thin film and device therefor Granted JPS5996785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207284A JPS5996785A (en) 1982-11-25 1982-11-25 Method for removing residual quantum magnetic flux of superconductive thin film and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207284A JPS5996785A (en) 1982-11-25 1982-11-25 Method for removing residual quantum magnetic flux of superconductive thin film and device therefor

Publications (2)

Publication Number Publication Date
JPS5996785A JPS5996785A (en) 1984-06-04
JPH0142512B2 true JPH0142512B2 (en) 1989-09-13

Family

ID=16537244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207284A Granted JPS5996785A (en) 1982-11-25 1982-11-25 Method for removing residual quantum magnetic flux of superconductive thin film and device therefor

Country Status (1)

Country Link
JP (1) JPS5996785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433180A1 (en) * 1989-12-15 1991-06-19 Fujitsu Limited Device for eliminating trap of magnetic flux in a superconduction circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240539A (en) * 1994-02-25 1995-09-12 Chodendo Sensor Kenkyusho:Kk Trapped magnetic flux removing method of superconductive magnetic shielding body
JP3962385B2 (en) 2004-03-11 2007-08-22 株式会社日立製作所 Immunoassay device and immunoassay method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433180A1 (en) * 1989-12-15 1991-06-19 Fujitsu Limited Device for eliminating trap of magnetic flux in a superconduction circuit

Also Published As

Publication number Publication date
JPS5996785A (en) 1984-06-04

Similar Documents

Publication Publication Date Title
EP0469083B1 (en) Transient spectroscopic method and apparatus for in-process analysis of molten metal
Zyung et al. Ultrafast imaging of 0.532‐μm laser ablation of polymers: Time evolution of surface damage and blast wave generation
Kaur et al. Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films
JP2006260780A (en) Ionization method of needle-like sample surface layer by using both ultrashort pulse laser convergence and high voltage application, and analytical method of needle-like sample surface layer using it
JPH0142512B2 (en)
JP2022183085A (en) Method and device for preparing samples for imaging under cryogenic conditions or diffraction experiments under cryogenic conditions in electron microscope
Tanimoto et al. Laser plasma generation from a deuterium ice pellet freely falling within a superconducting magnetic bottle
GB1011173A (en) Improvements in and relating to the making and testing of thin film articles
Dreyfus et al. Energy deposition at insulator surfaces below the ultraviolet photoablation threshold
JPH05508969A (en) Improved frequency prototype using optically cooled atomic flow
Bobkowski et al. Particle emission debris from a KrF laser–plasma x‐ray source
Starinskiy et al. Dynamics of nanosecond-laser-induced melting of tin in vacuum, air, and water
Serkov et al. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation
Feinberg An experimental study of hot plasma in contact with a cold wall
US3668386A (en) Apparatus for measuirng height of a molten metal pool
Shui et al. Laser-driven flier impact experiments at the SG-III prototype laser facility
Katayama et al. Microfocused X‐ray transmission real‐time observation of laser welding phenomena
US3409773A (en) Infrared image detector using cryogenic liquid
US4597933A (en) Radiative opacity and emissivity measuring device
Min'ko et al. Effects of quasi-cw millisecond neodymium laser radiation pulses on metals
Essien et al. Enhanced imaging of a pulsed Nd: YAG metal vapor plume
JPS59110784A (en) Method for oxidizing metal surface
Melle et al. Thermal analysis of laser‐induced damage in a transparent dielectric (DKDP)
HO et al. o ANISOTROPIC MOLECULES IN NEAT AND MIXED BINARY LIQUIDS
Prokoshev et al. Transient laser-induced thermochemical processes on metal surfaces and their visualisation with a laser image amplifier