JPH0141938B2 - - Google Patents

Info

Publication number
JPH0141938B2
JPH0141938B2 JP58246646A JP24664683A JPH0141938B2 JP H0141938 B2 JPH0141938 B2 JP H0141938B2 JP 58246646 A JP58246646 A JP 58246646A JP 24664683 A JP24664683 A JP 24664683A JP H0141938 B2 JPH0141938 B2 JP H0141938B2
Authority
JP
Japan
Prior art keywords
pulse
sample
phase
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58246646A
Other languages
Japanese (ja)
Other versions
JPS60140148A (en
Inventor
Teruaki Fujito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP24664683A priority Critical patent/JPS60140148A/en
Publication of JPS60140148A publication Critical patent/JPS60140148A/en
Publication of JPH0141938B2 publication Critical patent/JPH0141938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、核磁気共鳴測定方法に関し、特に固
体試料を測定する際に用いて好適な測定方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear magnetic resonance measurement method, and particularly to a measurement method suitable for use in measuring solid samples.

核磁気共鳴装置においては、通常、第1図aに
示すように試料に90゜パルス(観測核の磁化を90゜
倒すための高周波パルス)を照射し、その直後に
生じる自由誘導減衰信号(FID信号)を検出し、
フーリエ変換することにより試料のNMRスペク
トルを得ている。その際、90゜パルスの立ち下が
り部分で多少のリークLが発生することは避けら
れず、その間FID信号の検出(サンプリング)を
行うことができない。試料が液体の場合は、FID
信号の減衰が比較的ゆつくりで長時間発生してい
るため、そのリークが収まつてからFID信号をサ
ンプリングしても影響が少ないが、試料が固体の
場合、FID信号の減衰が早いため、リークが収ま
つてから観測したのでは、FID信号の前半のかな
りの部分がサンプリングできないことになり、フ
ーリエ変換後得られるスペクトルにはデータ欠落
による影響が大きく現われてしまうし、欠落をな
くそうとするとリークによる影響を大きく受けた
データとなり、フーリエ変換後得られるスペクト
ルにはリークによる影響が極めて大きく現われる
結果となる。
In a nuclear magnetic resonance apparatus, a sample is normally irradiated with a 90° pulse (a high-frequency pulse to tilt the magnetization of the observed nucleus by 90°) as shown in Figure 1a, and the free induction decay signal (FID signal),
The NMR spectrum of the sample is obtained by Fourier transformation. At this time, it is inevitable that some leakage L will occur at the trailing edge of the 90° pulse, and the FID signal cannot be detected (sampled) during that period. If the sample is liquid, FID
Since signal attenuation occurs relatively slowly and over a long period of time, sampling the FID signal after the leakage has subsided has little effect. However, if the sample is solid, the FID signal attenuates quickly. If the observation is performed after the leak has subsided, a large portion of the first half of the FID signal cannot be sampled, and the spectrum obtained after Fourier transform will be greatly affected by the missing data, and it is difficult to eliminate the missing data. This results in data that is greatly affected by leakage, and the spectrum obtained after Fourier transformation is extremely influenced by leakage.

そこで、これを解消するため、ソリツドエコー
法と呼ばれる測定法が用いられている。この方法
は、第1図bに示すように、90゜パルスを照射し
てから試料によつて決まる所定期間τ後に再結像
パルス(例えば90゜パルス)を照射し、その再結
像パルスを照射してからτ後に発生するエコー信
号をサンプリングし、このエコー信号をフーリエ
変換してスペクトルを得るものである。この方法
によれば、サンプリングまでにτの期間が挿入さ
れるため、リークによる影響を受けることを少な
くすることができる。
Therefore, in order to solve this problem, a measurement method called the solid echo method is used. This method, as shown in Figure 1b, involves irradiating a 90° pulse, then irradiating a reimaging pulse (e.g., a 90° pulse) after a predetermined period τ determined by the sample. The echo signal generated τ after irradiation is sampled, and the echo signal is Fourier-transformed to obtain a spectrum. According to this method, a period of τ is inserted before sampling, so that the influence of leakage can be reduced.

ところが、この方法を用いても、τが短い場
合、リークによるエコー信号の歪みが発生してし
まうことは避けられない。そこで、近時、第1図
cに示すように、最初の90゜パルスの中に含まれ
る高周波の位相が0゜である測定と、第1図dに示
すように同じく180゜である測定を行うことによ
り、位相が反転したエコー信号Ec,Edを得、こ
の2つのエコー信号の差を求めることが提案され
ている。この提案方法によれば、位相が同じであ
るリークによる信号は差をとることによつて除去
されるため、上述した問題点を解決することがで
きる。
However, even if this method is used, if τ is short, distortion of the echo signal due to leakage cannot be avoided. Therefore, recently, as shown in Figure 1c, the phase of the high frequency included in the first 90° pulse is 0°, and the phase of the high frequency wave included in the first 90° pulse is 180°, as shown in Figure 1d. It has been proposed to obtain echo signals Ec and Ed whose phases are inverted by doing this, and to obtain the difference between these two echo signals. According to this proposed method, signals due to leakage having the same phase are removed by taking the difference, so the above-mentioned problem can be solved.

しかしながら、多くの核磁気共鳴装置にとつ
て、FID信号を加算して積算する機能は標準的に
装備しているものの、減算を行う機能は備えてお
らる、新たに減算機能を付加することは、コンピ
ユータプログラムの改造等多大な手間及び費用が
かかつてしまうことになる。
However, although many nuclear magnetic resonance instruments are equipped with a function to add and integrate FID signals as standard, they also have a function to subtract, and it is not possible to add a new subtraction function. , a great deal of effort and expense is required for modifying the computer program.

本発明は、この点に鑑みてなされたものであ
り、核磁気共鳴装置が通常備えている加算機能を
用いてリークによる影響を除去することのできる
測定方法を提供することを目的としている。
The present invention has been made in view of this point, and it is an object of the present invention to provide a measurement method that can eliminate the influence of leakage by using the addition function that nuclear magnetic resonance apparatuses normally have.

本発明は、試料に観測核の磁化を90゜倒すため
の高周波パルスを照射してから所定時間τ後に再
結像パルスを照射し、該再結像パルスを照射して
からτ後に発生するエコー信号を検出するように
した核磁気共鳴測定方法において、最初に照射す
る90゜パルスの高周波位相が等しく、それに続い
て照射される再結像パルスの高周波位相が互いに
180゜異なる2種の測定を同じ回数行い、得られた
エコー信号を積算した後フーリエ変換するように
したことを特徴としている。以下、図面を用いて
本発明の一実施例を詳説する。
The present invention irradiates a sample with a high-frequency pulse to tilt the magnetization of the observation nucleus by 90 degrees, then irradiates a reimaging pulse after a predetermined time τ, and echoes generated after τ after irradiation with the reimaging pulse. In a nuclear magnetic resonance measurement method that detects signals, the radio frequency phases of the first irradiated 90° pulse are equal, and the radio frequency phases of the subsequent reimaging pulse are equal to each other.
It is characterized by performing two types of measurements at 180° angles the same number of times, integrating the obtained echo signals, and then subjecting them to Fourier transformation. Hereinafter, one embodiment of the present invention will be explained in detail using the drawings.

第2図は、本発明にかかる方法を実施するため
の核磁気共鳴装置の一例を示す。図において1は
静磁場を発生するための磁石、2は該静磁場内に
配置される試料管、3は試料管2の周囲に配置さ
れる試料コイルである。4は観測核の共鳴周波数
を持つ高周波を発生する発振器で、該発振器で生
成された高周波は、4位相回路5において0゜、
90゜、180゜、270゜と90゜ずつ異なる4種の位相が与
えられ、その内の1つが選択回路6によつて取出
され、ゲート7を介して高周波パルスとして前記
試料コイル3へ送られて試料に照射される。
FIG. 2 shows an example of a nuclear magnetic resonance apparatus for carrying out the method according to the invention. In the figure, 1 is a magnet for generating a static magnetic field, 2 is a sample tube placed in the static magnetic field, and 3 is a sample coil placed around the sample tube 2. 4 is an oscillator that generates a high frequency having the resonance frequency of the observation nucleus, and the high frequency generated by the oscillator is transmitted to the 4-phase circuit 5 at 0°,
Four types of phases differing by 90 degrees are given: 90 degrees, 180 degrees, and 270 degrees, and one of them is extracted by the selection circuit 6 and sent to the sample coil 3 as a high frequency pulse through the gate 7. irradiates the sample.

該高周波パルス照射にもとづく核磁気共鳴によ
つて試料コイル3に誘起された共鳴信号は、ゲー
ト8を介して復調回路9へ送られ、該復調回路9
において前記発振器4から送られる高周波に基づ
いて復調が行われる。復調によつて得られたFID
信号は、A−D変換器10によつてデジタル信号
に変換された後積算回路11へ送られて積算され
る。該積算回路11において所定回数積算されて
得られた積算データは、コンピユータ12へ送ら
れてフーリエ変換処理を受ける。13は予め定め
られたシーケンスに従つて選択回路6、ゲート
7,8、A−D変換器10の動作を制御するパル
スプログラマである。
The resonance signal induced in the sample coil 3 by nuclear magnetic resonance based on the high-frequency pulse irradiation is sent to the demodulation circuit 9 via the gate 8.
Demodulation is performed based on the high frequency signal sent from the oscillator 4. FID obtained by demodulation
The signal is converted into a digital signal by an A-D converter 10 and then sent to an integration circuit 11 for integration. The integrated data obtained by integrating the data a predetermined number of times in the integrating circuit 11 is sent to the computer 12 and subjected to Fourier transform processing. 13 is a pulse programmer that controls the operations of the selection circuit 6, gates 7, 8, and A-D converter 10 according to a predetermined sequence.

上述の如き構成において、測定は偶数回例えば
2回行われ、パルスプログラマ13の制御で、2
回の測定においてゲート7は第3図aに示すタイ
ミングでON−OFFされ、ゲート8とA−D変換
器10は第3図bのタイミングでON−OFF及び
サンプリングを行う。従つて、試料には第1図
b,c,dと同様に2つの90゜パルスが間隔τで
照射されるが、本発明ではこの時、1回目の測定
と2回目の測定で再結像パルス内の高周波の位相
を180゜異ならせている。即ち、選択回路5から取
出される高周波の位相は、例えば第3図cに示す
ように、1回目の測定の際は第1パルスの位相が
0゜で再結像パルスの位相が90゜、2回目の測定の
際は第3図dに示すように、第1パルスの位相が
0゜で再結像パルスの位相が270゜となるように切替
えられる。従つて、試料には、1回目の測定では
第3図eに示すような高周波パルスが照射され、
2回目の測定では第3図fに示すような高周波パ
ルスが照射されることになる。第3図e,fから
リーク部分Lの位相が逆転していることが分る。
しかしながら、第1パルスの位相は2回の測定で
同じため、エコー信号の位相は2回の測定で同じ
である。従つて、積算回路11において2回の測
定で得られたエコー信号を積算回路11において
加算すれば、位相の同じエコー信号成分は2倍に
なり、2回の測定で位相が逆転しているリークに
より影響を受けた信号成分はキヤンセルされる結
果となる。従つて、τの小さな試料であつてもリ
ークによる悪影響を除くことが可能となる。しか
も、積算機構は従来の加算によるもので良く、減
算を行うように改造する必要はない。
In the configuration as described above, the measurement is performed an even number of times, for example, twice, and under the control of the pulse programmer 13, the measurement is performed twice.
In each measurement, the gate 7 is turned on and off at the timing shown in FIG. 3a, and the gate 8 and the A-D converter 10 are turned on and off and sampling is performed at the timing shown in FIG. 3b. Therefore, the sample is irradiated with two 90° pulses at an interval τ as shown in Fig. 1b, c, and d, but in the present invention, at this time, reimaging is performed in the first and second measurements. The high-frequency waves within the pulses have a 180° phase difference. That is, as shown in FIG. 3c, for example, the phase of the high frequency signal taken out from the selection circuit 5 is the same as that of the first pulse during the first measurement.
At 0°, the phase of the reimaging pulse is 90°, and during the second measurement, the phase of the first pulse is 90°, as shown in Figure 3d.
At 0°, the phase of the reimaging pulse is switched to 270°. Therefore, in the first measurement, the sample is irradiated with a high-frequency pulse as shown in Figure 3e,
In the second measurement, a high frequency pulse as shown in FIG. 3f is applied. It can be seen from FIGS. 3e and 3f that the phase of the leakage portion L is reversed.
However, since the phase of the first pulse is the same in the two measurements, the phase of the echo signal is the same in the two measurements. Therefore, if the echo signals obtained in two measurements are added in the integration circuit 11, the echo signal components with the same phase will be doubled, and the leakage signal whose phase is reversed in the two measurements will be doubled. The result is that signal components affected by this are canceled. Therefore, even if the sample has a small τ, it is possible to eliminate the adverse effects caused by leakage. Moreover, the integrating mechanism may be a conventional addition mechanism, and there is no need to modify it to perform subtraction.

尚、上記2回の測定を1サイクルとして測定を
繰返し行つて積算を繰返せば、積算効果が更にあ
がることは言うまでもない。その際、再結像パル
スの位相を180゜異ならせた2種の測定を必ずしも
交互に行う必要はなく、要するに2種の測定を同
じ回数行つて得られたエコー信号を積算すれば良
い。
It goes without saying that if the above two measurements are taken as one cycle and the measurements are repeated and the integration is repeated, the integration effect will be further improved. At this time, it is not necessarily necessary to alternately perform two types of measurements in which the phases of the reimaging pulses are different by 180 degrees; in short, it is sufficient to perform the two types of measurements the same number of times and integrate the echo signals obtained.

又、再結像パルスとしては、90゜パルスに限ら
ず45゜パルスや180゜パルスを使用することが可能
であるし、位相も90゜と270゜ではなく、0゜と180゜を
選んでも良く、要するに2種の測定で再結像パル
スの位相が180゜異なれば良い。
In addition, the re-imaging pulse is not limited to the 90° pulse, but can also be a 45° pulse or a 180° pulse, and even if the phases are selected to be 0° and 180° instead of 90° and 270°. In short, it is sufficient that the phases of the reimaging pulses differ by 180° in the two types of measurements.

又、厳密に言えば、第1のパルスの立ち下がり
部分にもリークが生じているが、第1図及び第3
図では省略されている。
Strictly speaking, leakage also occurs at the falling edge of the first pulse, but as shown in Figures 1 and 3,
It is omitted in the figure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の問題点を説明するための図、第
2図は本発明にかかる方法を実施するための核磁
気共鳴装置の一例を示す図、第3図は第2図の装
置の動作を説明するための図である。 1:磁石、2:試料管、3:試料コイル、4:
高周波発振器、5:4位相回路、6:選択回路、
7,8:ゲート、9:復調回路、10:A−D変
換器、11:積算回路、12:コンピユータ、1
3:パルスプログラマ。
FIG. 1 is a diagram for explaining conventional problems, FIG. 2 is a diagram showing an example of a nuclear magnetic resonance apparatus for carrying out the method according to the present invention, and FIG. 3 is an operation of the apparatus shown in FIG. 2. FIG. 1: Magnet, 2: Sample tube, 3: Sample coil, 4:
High frequency oscillator, 5: 4-phase circuit, 6: selection circuit,
7, 8: Gate, 9: Demodulation circuit, 10: A-D converter, 11: Integration circuit, 12: Computer, 1
3: Pulse programmer.

Claims (1)

【特許請求の範囲】[Claims] 1 試料に観測核の磁化を90゜倒すための高周波
パルスを照射してから所定時間τ後に再結像パル
スを照射し、該再結像パルスを照射してからτ後
に発生するエコー信号を検出するようにした核磁
気共鳴測定方法において、最初に照射する90゜パ
ルスの高周波位相が等しく、それに続いて照射さ
れる再結像パルスの高周波位相が互いに180゜異な
る2種の測定を夫々同じ回数行い、得られたエコ
ー信号を積算した後フーリエ変換するようにした
ことを特徴とする核磁気共鳴測定方法。
1. After irradiating the sample with a high-frequency pulse to tilt the magnetization of the observation nucleus by 90 degrees, irradiate the re-imaging pulse after a predetermined time τ, and detect the echo signal that occurs τ after the re-imaging pulse is irradiated. In the nuclear magnetic resonance measurement method, two types of measurements are performed the same number of times, in which the radio frequency phase of the first irradiated 90° pulse is equal and the radio frequency phase of the subsequent reimaging pulse is 180° different from each other. A nuclear magnetic resonance measurement method characterized in that the echo signals obtained are integrated and then subjected to Fourier transformation.
JP24664683A 1983-12-28 1983-12-28 Nuclear magnetic resonance measuring method Granted JPS60140148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24664683A JPS60140148A (en) 1983-12-28 1983-12-28 Nuclear magnetic resonance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24664683A JPS60140148A (en) 1983-12-28 1983-12-28 Nuclear magnetic resonance measuring method

Publications (2)

Publication Number Publication Date
JPS60140148A JPS60140148A (en) 1985-07-25
JPH0141938B2 true JPH0141938B2 (en) 1989-09-08

Family

ID=17151504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24664683A Granted JPS60140148A (en) 1983-12-28 1983-12-28 Nuclear magnetic resonance measuring method

Country Status (1)

Country Link
JP (1) JPS60140148A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8621322D0 (en) * 1986-09-04 1986-10-15 Mcdonald P J Imaging solids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MAGNETIC RESONANCE=1977 *

Also Published As

Publication number Publication date
JPS60140148A (en) 1985-07-25

Similar Documents

Publication Publication Date Title
US5289127A (en) Correction of signal distortion in an NMR apparatus
JPH0350535B2 (en)
JP3808601B2 (en) Magnetic resonance diagnostic equipment
WO1987005201A1 (en) Method of selective excitation in nmr imaging
JPS61100645A (en) Method of inspecting sample body in nuclear magnetic resonance manner
US5248942A (en) Method of exciting a sample for nmr tomography
US4697148A (en) Process for the excitation of a sample for NMR tomography
JPS60211343A (en) Measuring method of nuclear magnetic resonance
US4766377A (en) Phase correction method in two-dimensional NMR spectroscopy
JPH0141938B2 (en)
JPS6031069A (en) Examination apparatus using nuclear magnetic resonance
US4689561A (en) Nuclear magnetic resonance spectroscopy
JPH01221153A (en) Mri device
EP0148362A1 (en) Method of obtaining pseudofiltering effect in process of accumulation and nuclear magnetic resonance spectrometry utilizing same
JP2970704B2 (en) Multidimensional nuclear magnetic resonance measurement method
JP3462905B2 (en) MRI equipment
JP3127932B2 (en) MRI equipment
JP2961229B1 (en) Magnetic resonance imaging system using gradient of radio wave magnetic field strength
JP2895611B2 (en) Semi-selective decoupling method by jump return pulse
JPS60151547A (en) Inspecting apparatus by means of nuclear magnetic resonance
JPH0382445A (en) Mr imaging
JPS60119452A (en) Method for measuring nuclear magnetic resonance
JP2003144411A (en) Magnetic resonance imaging device
JPS61210933A (en) Method for measuring two-dimensional nuclear magnetic resonance
JPH042909B2 (en)