JPH0141429B2 - - Google Patents

Info

Publication number
JPH0141429B2
JPH0141429B2 JP55177775A JP17777580A JPH0141429B2 JP H0141429 B2 JPH0141429 B2 JP H0141429B2 JP 55177775 A JP55177775 A JP 55177775A JP 17777580 A JP17777580 A JP 17777580A JP H0141429 B2 JPH0141429 B2 JP H0141429B2
Authority
JP
Japan
Prior art keywords
ingot
atmosphere
heating element
feeder
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55177775A
Other languages
Japanese (ja)
Other versions
JPS57100863A (en
Inventor
Kiichi Narita
Yoshihiro Iwata
Motoo Urayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17777580A priority Critical patent/JPS57100863A/en
Publication of JPS57100863A publication Critical patent/JPS57100863A/en
Publication of JPH0141429B2 publication Critical patent/JPH0141429B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は主に不活性ガス雰囲気中において鋳塊
を凝固させるのに好適する押湯保温方法に関す
る。 鋳塊の鋳造にあたつては溶鋼の冷却凝固収縮に
伴つて生成する引けを軽減し、歩留りをよくする
上から押湯保温が行なわれる。周知の押湯保温技
術のうち、外部からの積極的発熱を利用するもの
に発熱性保温剤中の金属アルミニウムのテルミツ
ト反応を利用するのがある。 これは大気雰囲気中において、金属アルミニウ
ムが当初は保温剤中のFeO,Fe2O3等の酸化剤に
より燃焼し、その後は大気中の酸素に助けられて
燃焼が継続して保温効果をもたらすものである。 このテルミツト反応を利用する押湯保温を不活
性ガス雰囲気中で実施した場合、当初金属アルミ
ニユームが保温剤中の酸化剤と反応して燃焼する
間は保温効果が発揮されるが、その後は酸素の供
給がないことに起因して燃焼が中断し、早い時期
に鋳型内押湯部溶湯への保温効果がなくなり、そ
の結果鋳塊頭部には大きな引けを生成し、歩留り
を低下させるとともに鋳塊軸心部にキヤビテイー
が多発して品質を悪化させる。そこで、Ti,Al
などの活性金属元素を含有する高合金の鋳塊を鋳
造するにあたつては真空雰囲気中で溶湯を溶製
し、鋳型内押湯部溶湯を十分に保温するために通
常大気雰囲気中で注入するか、もしくは不活性ガ
ス雰囲気中で注入し、終了後直ちに雰囲気を大気
にもどす手法が採用されている。しかし、このよ
うな手法では大気にさらされることにより、Ti,
Alなどの活性金属元素が反応して成分濃度が注
入前に比べて鋳塊において著るしく減少し、明確
な含有成分量がコントロールできなくなる。 また、雰囲気を大気にもどす際には取鍋内付着
溶湯の酸化に起因して次回の注入時に介在物が著
るしく増加するなどの悪影響もある。このような
欠点を防止するには鋳塊の凝固が完了するまで、
大気にさらすことなく不活性ガス雰囲気に保持し
つつ鋳型内押湯溶湯を十分に保温する必要があ
り、前記したようなテルミツト反応を利用する押
湯保温剤以外の手法を用い、しかも予定する十分
な保温効果が得られる積極的な加熱手段を講じな
ければならない。 ところで、真空、もしくは不活性ガス雰囲気中
において鋳型内押湯部溶湯を高温に保持するに
は、誘導加熱、電子ビーム、レザー、プラズマト
ーチ、アーク、赤外線などのいくつかの手法があ
り、さらにエレクトロスラグの電気抵抗熱による
加熱も提案されているが、これらは大規模な装置
となるため、容積に制約のある真空溶解炉造塊槽
内には適用しがたい。 次に、モリブデン、タンタル、タングステンな
どの金属材料からなる電気抵抗発熱体による加熱
が考えられるが、前記金属発熱体は1500℃程度の
高温で使用されるため、しかも大気、H2もしく
はAr−H2の還元性雰囲気、あるいは10-3mmHg以
上の減圧雰囲気等にさらされるため、この様な過
酷な使用条件に耐え得ず寿命が短かいなどの難点
があり、工業的には適用が困難である。 他方、シリコネツト、ケラマツクスなどの非金
属材料もやはり1500℃程度の高温では寿命が短か
く、安定化ジルコニアでは導電性を示す1000〜
1200℃まで、例えば、シリコニツトの補助加熱装
置を用いて昇温しなければならず、完全に密閉し
た真空溶解炉造塊槽にはスペース的にも適用困難
である。 本発明は上述の点に鑑みなされたものであつ
て、黒鉛の発熱体が昇温途中の大気、真空、不活
性ガスといつた雰囲気の激変にも容易に耐え、ま
た、1500℃程度の高温での使用でも寿命が長く、
そして鋳型内押湯部溶湯を保持するのに十分なだ
けの発熱量を容易に供給しうる利点をもつている
点に着目し、これを完全密閉した造塊槽内におい
て発熱体に使用して鋳型内押湯溶湯を保温するの
に好適する方法を提供しようとするものである。 以下、本発明の実施例を図示を参照しながら詳
細に説明する。 図において、1は鋳型、2は押湯枠で、この押
湯枠2は断熱レンガ製の筒壁2a内面に内張材2
bが張設され筒壁2a外面には鉢金2cを纒着し
てなり、鋳型1および押湯枠2の組合せ構成は周
知のものである。3は本発明の方法を実施する装
置を示し、押湯枠2上に載る断熱レンガ製の環状
基台4と、該基台4に装着される黒鉛製の有底容
器状の発熱体5と、この発熱体5に結合した電極
6とよりなり、発熱体5の下半部が基台4内に嵌
着されて押湯枠2開口部を覆い、また、発熱体5
内中空部にはセラミツクウールなどの保温材7が
充填される。 なお、図中8は基台4に装着した熱電対で、発
熱体5の温度制御を行なうためのものであり、ま
た9は基台4に装着した湯面検出センサーで、注
入時の溶湯上限を検出する。 次に、本発明の方法を真空雰囲気中で溶解し、
不活性ガス(アルゴン)雰囲気中で注入を行い、
引きつづき同じ雰囲気中で凝固させるTi,Alを
含有する高合金鋳塊を完全密閉された造塊槽内で
鋳造する場合について説明する。 本発明の実施対称は、Ti+Al含有量が0.5%以
上の高合金の鋳塊の鋳造にある。
The present invention mainly relates to a riser heat retention method suitable for solidifying an ingot in an inert gas atmosphere. When casting an ingot, the riser is kept warm in order to reduce the shrinkage that occurs as the molten steel cools and solidifies and shrinks, and to improve the yield. Among the well-known heat retention techniques for a riser, one that utilizes active heat generation from the outside is one that utilizes thermite reaction of metal aluminum in an exothermic heat insulator. This is a process in which metal aluminum is initially burned in the atmosphere by oxidizing agents such as FeO and Fe 2 O 3 in the heat insulating agent, and then the combustion continues with the help of oxygen in the atmosphere, resulting in a heat insulating effect. It is. When heat insulation of a riser using this thermite reaction is performed in an inert gas atmosphere, the heat retention effect is initially exhibited while the metal aluminum reacts with the oxidizing agent in the insulation agent and burns, but after that, the Combustion is interrupted due to lack of supply, and the heat retention effect on the molten metal in the riser part of the mold is lost at an early stage.As a result, a large shrinkage occurs at the head of the ingot, reducing the yield and causing the ingot to melt. Cavities occur frequently in the shaft center, deteriorating quality. Therefore, Ti, Al
When casting high-alloy ingots containing active metal elements such as molten metal, the molten metal is melted in a vacuum atmosphere, and in order to keep the molten metal sufficiently warm in the feeder section of the mold, it is usually poured in an atmospheric atmosphere. Alternatively, a method is adopted in which the injection is carried out in an inert gas atmosphere and the atmosphere is immediately returned to the atmosphere after completion of the injection. However, with this method, Ti,
Active metal elements such as Al react, and the component concentration in the ingot significantly decreases compared to before injection, making it impossible to clearly control the content of the components. Furthermore, when the atmosphere is returned to the atmosphere, there is an adverse effect such as a significant increase in inclusions during the next injection due to oxidation of the molten metal adhering to the ladle. To prevent such defects, wait until the solidification of the ingot is completed.
It is necessary to keep the molten feeder in the mold sufficiently warm while keeping it in an inert gas atmosphere without exposing it to the atmosphere. Proactive heating methods must be used to achieve a heat-retaining effect. By the way, there are several methods to maintain the molten metal in the mold riser at a high temperature in a vacuum or in an inert gas atmosphere, such as induction heating, electron beam, laser, plasma torch, arc, and infrared rays. Heating of slag using electrical resistance heat has also been proposed, but these require large-scale equipment and are difficult to apply in a vacuum melting furnace agglomeration tank with limited capacity. Next, heating using an electrical resistance heating element made of a metal material such as molybdenum, tantalum, or tungsten can be considered, but since the metal heating element is used at a high temperature of about 1500°C, it is also possible to heat it with an electric resistance heating element made of a metal material such as molybdenum, tantalum, or tungsten. Since it is exposed to a reducing atmosphere of 2 or a reduced pressure atmosphere of 10 -3 mmHg or more, it cannot withstand such harsh usage conditions and has a short lifespan, making it difficult to apply industrially. be. On the other hand, non-metallic materials such as silicone net and Keramax also have short lifespans at high temperatures of around 1500°C, and stabilized zirconia exhibits conductivity at temperatures of 1000°C to 1000°C.
The temperature must be raised to 1200°C using, for example, a siliconite auxiliary heating device, which is difficult to apply in a completely sealed vacuum melting furnace or agglomeration tank due to space considerations. The present invention was developed in view of the above points, and the graphite heating element easily withstands drastic changes in the atmosphere during heating, such as air, vacuum, and inert gas, and also has a high temperature of about 1500°C. It has a long life even when used in
We focused on the fact that it has the advantage of easily supplying enough heat to hold the molten metal in the riser section of the mold, and used it as a heating element in a completely sealed agglomeration tank. It is an object of the present invention to provide a method suitable for keeping the temperature of the molten metal in the mold feeder. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, 1 is a mold, 2 is a feeder frame, and this feeder frame 2 has a lining material on the inner surface of a cylinder wall 2a made of insulating bricks.
b is stretched, and a bowl metal 2c is attached to the outer surface of the cylindrical wall 2a, and the combination structure of the mold 1 and the feeder frame 2 is well known. 3 shows an apparatus for implementing the method of the present invention, which includes an annular base 4 made of insulating bricks placed on the feeder frame 2, a heating element 5 in the form of a bottomed container made of graphite attached to the base 4; , and an electrode 6 coupled to the heating element 5. The lower half of the heating element 5 is fitted into the base 4 to cover the opening of the riser frame 2, and the heating element 5
The inner hollow part is filled with a heat insulating material 7 such as ceramic wool. In the figure, 8 is a thermocouple attached to the base 4, which is used to control the temperature of the heating element 5, and 9 is a molten metal level detection sensor attached to the base 4, which measures the upper limit of molten metal during pouring. Detect. Next, the method of the present invention is dissolved in a vacuum atmosphere,
Injection is performed in an inert gas (argon) atmosphere,
Next, we will explain the case where a high alloy ingot containing Ti and Al that is solidified in the same atmosphere is cast in a completely sealed agglomeration tank. The object of the present invention is the casting of high-alloy ingots with a Ti+Al content of 0.5% or more.

【表】 〓0.08 0.40/1.00 1.00/2.00 〓0.040
〓0.030 24.0/27.0 13.50/16.00
(〓0.020)
(〓0.005)
[Table] 〓0.08 0.40/1.00 1.00/2.00 〓0.040
〓0.030 24.0/27.0 13.50/16.00
(〓0.020)
(〓0.005)

【表】【table】

【表】 注入後の鋳塊の凝固はつぎのような状況のもと
で進行するものと仮定する。 (i) 第1段階 押湯保温材は、注入終了後15mm間燃焼する。こ
の時期には溶湯は過熱状態に保持され、鋳塊軸心
部で等軸晶帯は生成されない。 (ii) 第2段階 押湯保温剤の燃焼が終了すると、直ちに溶湯の
過熱が消滅し、鋳塊軸心部で等軸晶帯の生成が始
まる。注入終了後60mmで鋳塊本体の凝固が完了す
る。この時期の後半に、鋳塊上部、軸心部でキヤ
ビテイーの発現する危険性がある。 (iii) 第3段階 その後、押湯部の凝固がはじまり、注入終了後
75mmで鋳塊全体の凝固が完了する。この時期には
鋳塊頭部に大きな引け巣の生じる危険性がある。 供給電力の大きさは、基本的には大気雰囲気中
で使用する通常の押湯保温剤の熱的特性を基準に
し、次のような範囲の値を設定して実施した。 (i) 第1段階:12.5KVA〜50KVA (ii) 第2段階:6KVA〜25KVA (iii) 第3段階:第2段階の値から、零にまで下げ
ていく。 供給電力の設定値によつて、鋳塊内部性状に次
のような傾向が見出された。なお、第1段階およ
び第2段階の途中における供給電力は一定の値に
保つた。 第1段階で供給電力を大きくすると、鋳塊本
体、軸心部でキヤビテイーの発現頻度が大きくな
り、反対に小さくすると鋳塊本体内の成分偏折が
著るしくなる。 第2段階で供給電力を大きくすると、鋳塊本体
内の成分偏折が著るしくなり、反対に小さくする
と鋳塊本体、軸心部でキヤビテイーの発現頻度が
大きくなる。 第3段階で供給電力を零に落とす時期が早い
と、押湯部内部の凝固収縮孔が大きくなり、その
時期が遅いと鋳塊上表面が大きく凹むようにな
る。 いうまでもなく、鋳塊で発現を防止せねばなら
ない主要な欠陥は材料により異なるので、したが
つて、各々の材料に応じて各段階の供給電力の大
きさを適当に設定する必要がある。 斯くして不活性ガス雰囲気中において押湯の保
温が予定通りに、しかも、発熱量をコントロール
して合理的に行なうことができて鋳塊上表面の引
け巣の生成も最小に止めることができる。 以上説明したように本発明の方法によれば、黒
鉛の発熱体に対する通電発熱により鋳型内押湯部
溶湯を保温するから、大気、真空、不活性ガスと
いつた雰囲気の激変にも容易に耐え、長寿命にし
て充分な保温効果が得られ、しかも装置はコンパ
クトにしてスペース的に制限のある真空溶解炉造
塊槽内にて実施するのに都合がよく、また、鋳塊
はその含有成分量が自由にコントロールできて品
質が保証され、歩留りも一段と向上し得る効果を
奏する。
[Table] It is assumed that the solidification of the ingot after pouring proceeds under the following conditions. (i) First stage The feeder heat insulation material burns for 15mm after the injection is completed. During this period, the molten metal is kept in a superheated state, and equiaxed crystal bands are not generated at the center of the ingot axis. (ii) Second stage As soon as the combustion of the feeder heat insulating agent is completed, the superheat of the molten metal disappears, and the formation of equiaxed crystal zones begins at the center of the ingot axis. Solidification of the ingot body is completed 60mm after the end of injection. In the latter half of this period, there is a risk that cavities will develop in the upper part of the ingot and in the shaft center. (iii) 3rd stage After that, solidification of the feeder starts and after the injection is completed.
Solidification of the entire ingot is completed at 75mm. During this period, there is a risk of large shrinkage cavities forming in the ingot head. The magnitude of the supplied power was basically based on the thermal characteristics of a normal feeder heat insulating agent used in the atmosphere, and the value was set within the following range. (i) 1st stage: 12.5KVA to 50KVA (ii) 2nd stage: 6KVA to 25KVA (iii) 3rd stage: Lower the value from the 2nd stage to zero. The following trends were found in the internal properties of the ingot depending on the set value of the supplied power. Note that the power supply during the first stage and the second stage was kept at a constant value. If the power supply is increased in the first stage, the frequency of cavities occurring in the ingot body and the shaft center will increase, and if it is decreased, conversely, component polarization within the ingot body will become significant. If the supplied power is increased in the second stage, component polarization within the ingot body will become significant, while if it is decreased, the frequency of cavities occurring in the ingot body and axial center portion will increase. If the power supply is reduced to zero early in the third stage, the solidification shrinkage pores inside the feeder become large, and if the time is delayed, the upper surface of the ingot will be greatly depressed. Needless to say, the major defects that must be prevented from occurring in the ingot vary depending on the material, and therefore it is necessary to appropriately set the magnitude of the power supply at each stage depending on each material. In this way, the heat retention of the riser in an inert gas atmosphere can be carried out as planned and rationally by controlling the calorific value, and the formation of shrinkage cavities on the upper surface of the ingot can be minimized. . As explained above, according to the method of the present invention, the temperature of the molten metal in the riser part of the mold is maintained by the heat generated by energizing the graphite heating element, so it can easily withstand drastic changes in the atmosphere such as air, vacuum, and inert gas. , it has a long life and sufficient heat retention effect, and the equipment is compact and can be conveniently carried out in a vacuum melting furnace agglomeration tank where space is limited. The amount can be controlled freely, quality is guaranteed, and yield can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの方法を実施する装置の要部縦断面図
である。 1……鋳型、2……押湯枠、3……装置、4…
…基台、5……発熱体、6……電極、7……保温
材、8……熱電対、9……湯面検出センサー。
The drawing is a longitudinal sectional view of a main part of an apparatus for carrying out this method. 1...Mold, 2...Riser frame, 3...Device, 4...
... base, 5 ... heating element, 6 ... electrode, 7 ... heat insulating material, 8 ... thermocouple, 9 ... hot water level detection sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 押湯枠上にこれを覆う如くして黒鉛発熱体を
配装し、該発熱体に対する通電加熱により鋳型内
押湯部溶湯を保温しつつ、不活性ガスまたは真空
雰囲気下で、鋳塊を鋳造する方法であつて、鋳造
時、溶湯の過熱段階、鋳塊本体の凝固段階、押湯
部の凝固段階の各段階において、黒鉛発熱体の通
電加熱量を制御することを特徴とする押湯保温に
よる鋳造方法。
1. A graphite heating element is arranged on the feeder frame so as to cover it, and the ingot is heated in an inert gas or vacuum atmosphere while keeping the molten metal in the riser part of the mold warm by heating the heating element with electricity. A method for casting a feeder, characterized in that the amount of electrical heating of a graphite heating element is controlled at each stage of casting: superheating the molten metal, solidifying the ingot body, and solidifying the feeder part. Casting method using heat retention.
JP17777580A 1980-12-15 1980-12-15 Method for heat insulation of riser Granted JPS57100863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17777580A JPS57100863A (en) 1980-12-15 1980-12-15 Method for heat insulation of riser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17777580A JPS57100863A (en) 1980-12-15 1980-12-15 Method for heat insulation of riser

Publications (2)

Publication Number Publication Date
JPS57100863A JPS57100863A (en) 1982-06-23
JPH0141429B2 true JPH0141429B2 (en) 1989-09-05

Family

ID=16036892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17777580A Granted JPS57100863A (en) 1980-12-15 1980-12-15 Method for heat insulation of riser

Country Status (1)

Country Link
JP (1) JPS57100863A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023983A (en) * 1983-07-16 1985-02-06 昭和電炉興業株式会社 Heater
KR20030087109A (en) * 2002-05-06 2003-11-13 현대자동차주식회사 System for heating riser and gravity casting method using the same
CN101979181B (en) * 2010-10-21 2013-04-10 施小建 Large-scale propeller riser resistance heating device
JP2013049082A (en) * 2011-08-31 2013-03-14 Honda Motor Co Ltd Apparatus and method for casting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245529A (en) * 1975-10-08 1977-04-11 Fuoseko Japan Rimitetsudo Yuug Plates for keeping warm of riser top surface
JPS5437032A (en) * 1977-08-30 1979-03-19 Nippon Kokan Kk Method of controlling steel ingot
JPS5564958A (en) * 1978-11-06 1980-05-16 Sumitomo Metal Ind Ltd Feeder heat retaining method by induction heating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245529A (en) * 1975-10-08 1977-04-11 Fuoseko Japan Rimitetsudo Yuug Plates for keeping warm of riser top surface
JPS5437032A (en) * 1977-08-30 1979-03-19 Nippon Kokan Kk Method of controlling steel ingot
JPS5564958A (en) * 1978-11-06 1980-05-16 Sumitomo Metal Ind Ltd Feeder heat retaining method by induction heating

Also Published As

Publication number Publication date
JPS57100863A (en) 1982-06-23

Similar Documents

Publication Publication Date Title
JPH0141429B2 (en)
US5193607A (en) Method for precision casting of titanium or titanium alloy
US3608618A (en) Electroslag ingot production
JPS6211945B2 (en)
EP0457502B1 (en) Method and apparatus for precision casting
US2893085A (en) Methods of casting steel bodies
JP5203680B2 (en) Metal electroslag remelting process and ingot mold used therefor
SU341323A1 (en) Method of electroslag casting of ingots
JPS6352983B2 (en)
US2912731A (en) Method for casting group iv metals
JP3149556B2 (en) Method and apparatus for producing melting stock for precision casting
JP3681292B2 (en) Gas bubbling method for crucible induction furnace
US3908736A (en) Methods of producing large steel ingots
JP2763039B2 (en) Crucible for arc melting of highly active metals
JPH0647505A (en) Method for starting continuous casting
JPS63112043A (en) Manufacture of ingot in electron beam dissolution
US2946105A (en) Casting metals
SU124076A1 (en) Method of casting metal
JPS632209Y2 (en)
JPH02169173A (en) Casting method
KR810000573B1 (en) Method of producing ingots of unalloyed and alloyed steels
JPS6117352A (en) Riser heating method by electroslag
JPH0631408A (en) Dummy bar chuck and starting method for casting hollow cast billet
JPH05202435A (en) Melting method for refractory metal
JPS61169139A (en) Continuous casting device