JPH0141135B2 - - Google Patents

Info

Publication number
JPH0141135B2
JPH0141135B2 JP57003125A JP312582A JPH0141135B2 JP H0141135 B2 JPH0141135 B2 JP H0141135B2 JP 57003125 A JP57003125 A JP 57003125A JP 312582 A JP312582 A JP 312582A JP H0141135 B2 JPH0141135 B2 JP H0141135B2
Authority
JP
Japan
Prior art keywords
tellurium
catalyst
reaction
reactor
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57003125A
Other languages
Japanese (ja)
Other versions
JPS58121261A (en
Inventor
Tomu Sasaki
Yutaka Kyomya
Toshio Nakamura
Hiroshi Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP57003125A priority Critical patent/JPS58121261A/en
Publication of JPS58121261A publication Critical patent/JPS58121261A/en
Publication of JPH0141135B2 publication Critical patent/JPH0141135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔〕 発明の背景 本発明は、テルルを含有する金属酸化物触媒を
用いての有機化合物のアンモ酸化法の改良に関す
る。 テルル含有金属酸化物触媒としては多くのもの
が知られている。たとえば、特公昭37―11008号
公報記載のモリブデンとテルルの酸化物からなる
触媒、特公昭41―7774号公報記載のモリブデン、
テルルおよび亜鉛の酸化物からなる触媒、特公昭
42―18447号公報記載のテルルおよびセリウムの
酸化物からなる触媒、特公昭43―6045号公報記載
のモリブデン、テルル、マンガン、およびリンの
酸化物からなる触媒、特公昭46―2804号公報記載
の鉄、アンチモン、バナジウム、モリブデン、タ
ングステンおよびテルルの酸化物からなる触媒、
特開昭54―141724号公報記載のモリブデン、テル
ル、アンチモン、コバルトおよびリンの酸化物か
らなる触媒、特公昭55―16971号公報記載のモリ
ブデン、テルルおよびタングステン、バナジウム
等の酸化物からなる触媒、などが、有機化合物の
アンモ酸化反応に有用なことが知られている。 これら有機化合物のアンモ酸化反応において
は、触媒の種類または使用条件により、程度の差
異はあるものの、長期の反応使用において活性の
低下が認められることが多い。 このような活性低下の原因は様々であり、その
対策もいろいろな角度から検討されている。テル
ルを含有する金属酸化物においてもこのような現
象は時折発生しており、活性の低下と共に触媒中
のテルル含量の減少が並行して起ることがある。
反応中に触媒が不可逆的還元をうけ、その結果と
して、比較的蒸気圧の大きいテルル単体、テルル
水素化物、有機テルル化合物、テルル水和物など
として逃散するということが想定される。しか
し、活性の低下とテルル含量の減少とは直接的な
関係をもたない場合も多く、原因は必ずしも明ら
かになつているわけではない。 原因はどうであれ、実用的見地からは、劣化し
にくい触媒の開発または劣化しにくい触媒使用法
の確立および劣化した触媒の再生ということが重
要である。 劣化した触媒の再生法としては、種々の方法が
提案されているが、いずれも触媒を反応器から取
出したのち、各種の処理をするというものが多
い。たとえば、特公昭52―42552号公報記載のテ
ルルを含有するアンチモン含有酸化物触媒の再生
法、特開昭54―62193号公報記載のテルルを含有
する鉄―アンチモン系酸化物触媒の再生法などで
ある。 これらの方法を用いて劣化触媒の再生を行なう
場合は、反応を一旦停止させて、触媒を反応器か
ら抜き出すことが必要であり、その間の生産停止
による経済的損失は大きい。 反応を行ないながら、あるいは反応を停止する
にしても、反応器から触媒を抜き出さずに、なん
らかの方法で触媒の性能の回復をはかることがで
きれば非常に有利である。 〔〕 発明の概要 要 旨 本発明は、これらテルル含有の金属酸化物のア
ンモ酸化触媒について、上記の点に解決を与える
ために、反応を行ないながら、反応系外から反応
器へ蒸気相で連続的または間歇的に、テルル成分
を送入することによつて目的を達成しようとする
ものである。 このため、本発明によるテルル含有金属酸化物
触媒の活性向上方法は、この触媒を用いて、300
℃ないし500℃の温度で有機化合物のアンモ酸化
法を行なう方法において、テルル単体またはテル
ル化合物を蒸気相で反応器へ連続的または間歇的
に送入すること、を特徴とするものである。 効 果 本発明によれば、テルル含有金属酸化物触媒の
目的生成物の選択性向上、経時変化の減少、ある
いは劣化触媒の目的生成物の選択性の改善などを
計ることができる。また、この発明の方法は、反
応を行ないながら安全に行なうことができるの
で、工業的には極めて実施し易く、かつ経済的で
ある。 そして、本発明の方法は、固定層反応にも流動
層反応にも適用できるが、とくに流動反応の場合
に効果が大きい。テルル成分の送入は、いずれの
場合にあつても、連続的でも、あるいは間歇的で
あつてもよい。反応成績を照し合せつつ適宜に選
択することができる。 固定層に比べ流動層反応の場合の方が効果が大
きい理由は明らかではないが、固定層反応の場合
には、反応器の軸方向に、触媒に沈着したテルル
成分濃度に分布が生じるが、流動層反応の場合に
は、触媒が反応器内で十分に混合されるので、触
媒のテルル成分の濃度に大きな偏りがなくなり平
均化されることが重要な点かもしれない。 本発明が効果を発揮するメカニズムは必ずしも
明らかになつていない。しかし、反応帯域に送入
されたテルル単体、またはテルル化合物は、一部
あるいは大部分が、触媒上に沈着し、これが触媒
の副生成物、例えば、二酸化炭素、一酸化炭素、
青酸などの生成活性サイトを被毒し、これらの生
成を抑制することによつて、相対的な目的生成物
の選択性を高めるという推定が可能かもしれな
い。 また、本発明の効果の発現はすみやかであり、
かつ、その効果の持続性も良好である。 〔〕 発明の具体的説明 1 テルル含有金属酸化物触媒 本発明で用いるテルル含有金属酸化物触媒は、
前述の特許公報などに示されている各種の、有機
化合物のアンモ酸化触媒、あるいはその改良触媒
であり、本発明の方法は、これらの公知のテルル
含有の金属酸化物触媒に対して均しく適用するこ
とができる。具体的には、アンチモン、モリブデ
ンおよびバナジウムからなる群から選ばれた少な
くとも1種とテルルとを含有する下記実験式で表
わされるテルル含有金属酸化物触媒である。 AaTebCcDdEeOx ここでAはSb、MoおよびVからなる群から選
ばれた少なくとも1種の元素、CはB,P,As,
Bi,SおよびSeからなる群から選ばれた少なく
とも1種の元素、DはLi,Na,k,Rb,Csおよ
びTlからなる群から選ばれた少なくとも1種の
元素、EはMg,Ca,Sr,Ba,Y,La,Ce,
U,Ti,Zr,Nb,Ta,Cr,W,Mn,Re,Fe,
Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,Cu,Ag,
Zn,Cd,Al,Ga,In,Ge,SnおよびPbからな
る群から選ばれた少なくとも1種の元素およびO
は酸素をそれぞれ示し、添字a,b,c,d,e
およびxは原子比を示し、a=10のときb=0.01
〜5(好ましくは0.05〜3)、c=0〜10(好まし
くは0.05〜8)、d=0〜5(好ましくは0〜3)、
e=0〜60(好ましくは0.1〜50)、xは各成分が
結合して生成する酸化物の酸素の数である。 上記のテルル含有金属酸化物触媒はシリカ、シ
リカ・アルミナ、アルミナ、シリカ・チタニア、
チタニア等の各種担体に担持したものであつても
よい。 触媒の形状も任意のものが使用されるが、固定
層反応の場合には、数mm程度のペレツト状、球状
などの種々の形状のものが用いられる。また、流
動層反応の場合には、粒径が5ないし200ミクロ
ンの範囲の触媒粒子が用いられる。 2 テルル成分 1 形態 反応帯域に蒸気相で送入するテルル成分の形態
としては、テルル単体、一酸化テルル、二酸化テ
ルル、三酸化テルル、亜テルル酸、テルル酸、テ
ルル化水素、またはテルロール類、アルキルテル
ライド類、テルロキサイド類などの有機テルル化
合物などをあげることができる。 これらのテルル単体およびテルル化合物は、有
機化合物のアンモ酸化のための供給ガスに同伴さ
せるのが便利である。供給ガスは、有機化合物の
蒸気、酸素、アンモニア、その他必要により窒
素、水蒸気、ヘリウム、反応生成ガスから目的生
成物を回収した後の排ガスなどの稀釈用ガスから
なり、テルル類は、これらのガスの1種または数
種の混合ガスに同伴させることができる。 テルルの酸化物、水和物は、比較的蒸気圧が小
さいが、4価テルル酸化物(二酸化テルル)の水
和物の蒸気圧はやや大きい。このため、同伴ガス
に水蒸気、または、水蒸気混合ガスを用いるのが
便利な場合もある。また、テルル単体、テルル化
水素、有機テルル化合物などは蒸気圧が大きいの
で使用し易い。 テルル成分の反応器への送入の方法は、種々考
えられるが、上記の供給ガスの流路に、テルル成
分の所定量を流下、または噴霧することもでき
る。あるいは、テルル単体またはテルル化合物を
そのまま、または、適当な支持体に担持させ、同
伴ガスの流路に置き、その蒸気圧を調整すること
によつて流入量を設定する方法もよい。 供給ガスの一部との反応によつて、より蒸気圧
の大きい化合物に変換して送入する方法も適用す
ることができる。例えば、テルルの酸化物等を必
要な温度条件下に存在せしめ、これに還元性のガ
スを送入することによつて、蒸気圧の大きいテル
ル化水素、メタンテルロール、エタンテルロー
ル、プロパンテルロールなどの有機テルル化合物
を発生させて送入する方法である。このために用
いる還元性ガスとしては、目的反応の原料となる
有機化合物、あるいはアンモニアを用いるのもよ
いし、これのみを目的として、水素、オレフイン
類、アルコール類、などを少量用いてもよい。 また、テルル成分は、蒸気相で反応器に送入さ
れるが、一部、液滴または粉末状のものが混入し
ていてもさしつかえない。多くの場合、供給ガス
ラインよりも反応器内の方が高温なので、それら
が少量混入していても、反応系に入るとただちに
蒸気状となるので問題はない。 2 テルル送入量 テルル単体またはテルル化合物の送入量につい
ては、使用する金属酸化物触媒、対象反応および
反応条件によつて種々変更することができる。送
入量が少ないと効果が小さいし、効果の発現に時
間がかかり、一方多すぎるとマイナスが生じる。 送入量を調整する最も確実な方法は、テルル単
体またはテルル化合物を少しづつ送入しながら、
反応成績の推移を追い、所望のレベルに到達した
ら送入量を下げ、あるいは停止し、必要によりこ
れを繰り返すという方法である。 テルル成分の送入量が多すぎた場合は、一般に
反応速度の低下がまず現れる。テルルの触媒への
沈着過大による活性低下の場合は、その影響が軽
度であれば、テルル成分の送入を停止し、そのま
ま反応を続けることにより徐々に回復する。ただ
し、低下の程度の大きいときには、部分的な触媒
の入れ替えが必要となることもあるので、注意を
要する。 反応供給ガス総量に対するテルル成分の送入量
は、10-5ないし102〔mg/〕の範囲が好ましく、
また、一時に送入するテルル成分の量は、最大で
10〔mg/g―触媒/時間〕程度とする。送入テル
ル成分が充填触媒に均一に接触するようにするこ
とが望ましく、この点を配慮して送入速度を決め
るべきである。 一時に大量に送入しても、触媒層をそのまま通
過して系外に飛散損失する割合も増えるので無意
味である。また、化合物の形態によつて、触媒に
沈着し易いものと、そうでないものとがあるの
で、この点も考慮すべきである。比較的蒸気圧の
大きいテルル単体、テルル水素化物、有機テルル
化合物などは非常に酸化され易く、有機化合物の
アンモ酸化反応帯域に存在する金属酸化物触媒に
接触すると、ただちに酸化、あるいは酸化分解し
て触媒に沈着するので、送入量が過大でないかぎ
り、多少送入量が大きくとも効率は良好である。 テルル成分の全送入量の最適値は、上述のよう
に、使用触媒、送入するテルル成分の種類と形
態、反応の種類、反応条件によつて変わつてく
る。ただし、おおよその範囲は、テルル成分の送
入にともなう充填触媒のテルル含量の増分が、
0.001ないし15重量%、好ましくは0.01ないし10
重量%の範囲となるものである。 3 アンモ酸化法 本発明の活性化処理は、有機化合物のアンモ酸
化を行ないながら実施するもので、そのアンモ酸
化反応の条件は公知のものである。大略の範囲を
示せば次の通りである。 供給ガスのモル比は、有機化合物/酸素/アン
モニア(モル比)が、1/0.3―10/0.5―5であ
り、必要により、稀釈ガスとして窒素、水蒸気、
炭酸ガス、一酸化炭素などを加えることもでき
る。 反応温度は、300〜500℃、見掛け接触時間は、
0.1〜20秒である。 4 実施例 以下、本発明の効果を実施例および比較例によ
り示す。 なお、本明細書中の目的生成物の収率および選
択率は、次の定義による。 収率(%) =生成した目的生成物の炭素重量/供給した原料有機
化合物の炭素重量×100 選択率(%) =生成した目的生成物の炭素重量/反応した原料有機
化合物の炭素重量×100 活性試験の条件は、次の通りである。 (1) プロピレンのアンモ酸化法 触媒流動部の内径が5cm、高さ2mの流動層反
応器に触媒を充填し、次の組成のガスを見掛け線
速度が15cm/secとなるように送入する。反応圧
力は常圧である。 O2(空気で供給)/プロピレン =2.1(モル比) NH3/プロピレン =1.15(モル比) ただし、接触時間は、次のように定義される。 接触時間(sec)=触媒の充填容積*()/供給ガス流
速(/sec) (*触媒の粗かさ密度基準) (2) メタノールのアンモ酸化反応 前項プロピレンのアンモ酸化反応と同じ反応器
を用いる。 この反応器へ次の組成のガスを見掛け線速度が
15cm/secとなるように送入する。反応圧力は常
圧である。 O2(空気で供給)/メタノール=2.10(モル比) NH3/メタノール=1.20(モル比) H2O/メタノール=2.00(モル比) N2/メタノール=5.00(モル比) 接触時間の定義は前項と同様である。 (3) トルエンのアンモ酸化反応 前項と同じ流動反応器に触媒を充填し、次の組
成のガスを見掛け線速度が15cm/secとなるよう
に送入する。反応圧力は常圧である。 O2(空気で供給)/トルエン2.5(モル比) NH3/トルエン=1.5(モル比) H2O/トルエン=2.5(モル比) 接触時間の定義は前項と同様である。 実施例 1 実験式がFe10Sb25W0.25Te1.0O67.8(SiO230であ
る流動触媒をプロピレンのアンモ酸化反応に使用
した。 反応中に、供給ガスの酸素/プロピレンのモル
比の低下により活性が低下した。 すなわち、初期にアクリロニトリルの収率が
80.3%であつたものが、79.0%に低下した。 そこで、アンモニア供給ガススラインにテルル
単体蒸気を送入し、アンモニアガスに同伴させて
反応器内に送つた。テルルの全供給ガス(空気+
プロピレン+アンモニア)中の濃度は、0.25
〔mg/Nl〕であつた。 テルル蒸気の送入開始とともにアクリロニトリ
ル収率が向上し、炭酸ガス収率が低下した。2時
間後には、アクリロニトリル収率は、80.0%とな
つた。 テルルの送入を停止し、さらに2時間反応させ
たが、アクリロニトリル収率に変化はなかつた。
この送入停止の時点で少量の触媒を抜きとり組成
分析したところ、充填触媒のテルル含量の増分
は、0.02%であつた。 実施例 2 実験式が、Fe10Sb25Cu3Mo0.5W0.3Te1.5O73.4
(SiO260である流動触媒を、内径20cmの流動層反
応器に充填し、プロピレンのアンモ酸化反応を行
なつた。この場合の試験条件は、次の通りとし
た。 見掛け線速度 18cm/sec 反応圧力 0.5Kg/cm2G 反応温度 450℃ 供給ガスモル比 空気/プロピレン=10.5(モル比) NH3/プロピレン1.05(モル比) この条件で500時間反応を行なつたところ、ア
クリロニトリルの収率が低下した。 この劣化触媒を抜き出して活性試験条件(1)によ
り活性試験を行なつたところ、アクリロニトリル
収率は、83.0%であつた。 そこで、プロピレン供給ガスラインに、プロパ
ンテルロールの蒸気を送入し、プロピレンガスに
同伴させて反応器へ送つた。テルル成分のテルル
換算の全供給ガス中の濃度は、0.42〔mg/Nl〕で
あつた。 プロパンテルロール蒸気の送入開始と共にアク
リロニトリル収率が向上し、炭酸ガス収率が低下
した。3時間後には、アクリロニトリル収率は、
84.7%となつた。 プロパンテルロール蒸気の送入を停止し、さら
に3時間反応させたが、アクリロニトリルの収率
は変らなかつた。このプロパンテルロール蒸気の
送入の停止時点で、少量の触媒を抜きとり組成分
析したところ、充填触媒のテルル含量の増分は、
0.07%であつた。 実施例 3 実験式が、Te0.5Mo10W1Fe2Co3Ni2Bi1O43.5
(SiO250である流動触媒を、活性試験条件(2)に従
つて、メタノールのアンモ酸化反応に用いた。 青酸の収率は、84.1%であつたが、アンモニア
の流量低下により反応内容がおかしくなり、正常
な反応条件にもどしたものの、青酸収率は、82.9
%に低下してしまつた。 そこで、供給メタノールに、テルル酸を混合し
て送入した。テルル酸の全供給ガス中の濃度は、
テルル換算で0.1〔mg/Nl〕、メタノールに対して
は、テルル換算で2.53〔mg/mol〕であつた。 青酸収率は向上し、1時間後には、83.9%とな
つた。 実施例 4 実験式が、P1Te0.5V12O33.5(SiO250の流動触媒
を用い、試験条件(3)により活性試験を行なつた。 ベンゾニトリル収率は、76.4%であつた。 反応中、トルエンの送入量が設定値より多くな
つたため、収率が低下し、75.2%となつた。 そこで、アンモニア供給ガスラインにテルル単
体蒸気を送入し、アンモニアガスに同伴させて反
応器へ送つた。送入テルルの濃度は、全供給ガス
に対し、0.05〔mg/Nl〕であつた。 テルル単体蒸気の送入開始と共に、ベンゾニト
リル収率は向上し、2時間後には、76.8%となつ
た。 実施例 5 実施例1と同様の触媒を用い、試験条件(1)によ
りプロピレンのアンモ酸化反応を行なつた。 500時間の反応を行なつたところ、初期にアク
リロニトリルの収率が80.3%であつたものが、
79.8%に低下した。逆に、炭酸ガスの収率がやや
増大した。 一方、プロピレン供給ガスラインに、プロパン
テルロール蒸気を、全供給ガス中のテルル濃度が
2×10-3〔mg/Nl〕となるように送入して、同じ
く500時間の反応を行なつた。この場合は500時間
の後も、アクリロニトリルの収率はほとんど変ら
ず、反応停止直前の分析の結果によれば、アクリ
ロニトリルの収率は、80.5%であつた。 結果の総括 上記の実験例の内容を、次の表にまとめた。 【表】
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION The present invention relates to an improved process for ammoxidation of organic compounds using tellurium-containing metal oxide catalysts. Many tellurium-containing metal oxide catalysts are known. For example, catalysts consisting of molybdenum and tellurium oxides described in Japanese Patent Publication No. 37-11008, molybdenum described in Japanese Patent Publication No. 41-7774,
Catalyst consisting of tellurium and zinc oxides, Tokkosho
Catalysts comprising oxides of tellurium and cerium described in Japanese Patent Publication No. 42-18447, catalysts comprising oxides of molybdenum, tellurium, manganese, and phosphorous described in Japanese Patent Publication No. 43-6045, catalysts comprising oxides of molybdenum, tellurium, manganese, and phosphorus described in Japanese Patent Publication No. 46-2804. Catalysts consisting of oxides of iron, antimony, vanadium, molybdenum, tungsten and tellurium,
Catalysts made of oxides of molybdenum, tellurium, antimony, cobalt and phosphorous described in JP-A-54-141724, catalysts made of oxides of molybdenum, tellurium and tungsten, vanadium, etc. described in JP-A-55-16971; are known to be useful in ammoxidation reactions of organic compounds. In the ammoxidation reaction of these organic compounds, a decrease in activity is often observed during long-term reaction use, although the degree varies depending on the type of catalyst or conditions of use. There are various causes for such a decrease in activity, and countermeasures are being investigated from various angles. Such a phenomenon sometimes occurs in metal oxides containing tellurium, and a decrease in activity may be accompanied by a decrease in tellurium content in the catalyst.
It is assumed that the catalyst undergoes irreversible reduction during the reaction, and as a result escapes as tellurium alone, tellurium hydride, organic tellurium compound, tellurium hydrate, etc., which have a relatively high vapor pressure. However, there is often no direct relationship between the decrease in activity and the decrease in tellurium content, and the cause is not necessarily clear. Whatever the cause, from a practical standpoint, it is important to develop catalysts that do not easily deteriorate, establish methods of using catalysts that do not easily deteriorate, and regenerate deteriorated catalysts. Various methods have been proposed for regenerating deteriorated catalysts, but most of them involve taking the catalyst out of the reactor and then subjecting it to various treatments. For example, the method for regenerating an antimony-containing oxide catalyst containing tellurium described in Japanese Patent Publication No. 52-42552, the method for regenerating an iron-antimony-based oxide catalyst containing tellurium described in JP-A-54-62193, etc. be. When regenerating a deteriorated catalyst using these methods, it is necessary to temporarily stop the reaction and extract the catalyst from the reactor, and the economic loss due to production stoppage during this period is large. It would be very advantageous if the performance of the catalyst could be restored in some way, either while the reaction is running or even when the reaction is stopped, without removing the catalyst from the reactor. [] Summary of the Invention In order to solve the above-mentioned problems regarding the ammoxidation catalyst of these tellurium-containing metal oxides, the present invention aims to provide a solution to the above-mentioned problems by continuously supplying the ammoxidation catalyst from outside the reaction system to the reactor in the vapor phase while carrying out the reaction. The objective is to be achieved by introducing the tellurium component either periodically or intermittently. Therefore, the method for improving the activity of a tellurium-containing metal oxide catalyst according to the present invention uses this catalyst to
A method for carrying out ammoxidation of organic compounds at a temperature of 500°C to 500°C, which is characterized by continuously or intermittently feeding tellurium alone or a tellurium compound into a reactor in the vapor phase. Effects According to the present invention, it is possible to improve the selectivity of the target product of a tellurium-containing metal oxide catalyst, reduce the change over time, or improve the selectivity of the target product of a degraded catalyst. In addition, the method of the present invention can be carried out safely while carrying out the reaction, and therefore is industrially extremely easy to implement and economical. The method of the present invention can be applied to both fixed bed reactions and fluidized bed reactions, but is particularly effective in fluidized bed reactions. The feed of the tellurium component may in any case be continuous or intermittent. It can be selected appropriately while checking the reaction results. It is not clear why the effect is greater in the fluidized bed reaction than in the fixed bed reaction, but in the case of the fixed bed reaction, there is a distribution in the concentration of the tellurium component deposited on the catalyst in the axial direction of the reactor. In the case of a fluidized bed reaction, it may be important that the catalyst is thoroughly mixed within the reactor, so that the concentration of the tellurium component in the catalyst is averaged out without large deviations. The mechanism by which the present invention exerts its effects is not necessarily clear. However, some or most of the tellurium alone or tellurium compound fed into the reaction zone is deposited on the catalyst, which leads to catalyst by-products such as carbon dioxide, carbon monoxide,
It may be possible to infer that by poisoning active sites that produce hydrocyanic acid and suppressing their production, the relative selectivity of the desired product may be increased. In addition, the effects of the present invention appear quickly;
Moreover, the sustainability of the effect is also good. [] Detailed description of the invention 1 Tellurium-containing metal oxide catalyst The tellurium-containing metal oxide catalyst used in the present invention is:
Various ammoxidation catalysts for organic compounds or improved catalysts thereof are disclosed in the above-mentioned patent publications, etc., and the method of the present invention is equally applicable to these known tellurium-containing metal oxide catalysts. can do. Specifically, it is a tellurium-containing metal oxide catalyst represented by the following empirical formula containing at least one member selected from the group consisting of antimony, molybdenum, and vanadium and tellurium. A a Te b C c D d E e O x where A is at least one element selected from the group consisting of Sb, Mo and V, and C is B, P, As,
At least one element selected from the group consisting of Bi, S and Se; D is at least one element selected from the group consisting of Li, Na, k, Rb, Cs and Tl; E is Mg, Ca, Sr, Ba, Y, La, Ce,
U, Ti, Zr, Nb, Ta, Cr, W, Mn, Re, Fe,
Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag,
At least one element selected from the group consisting of Zn, Cd, Al, Ga, In, Ge, Sn and Pb and O
indicate oxygen, and the subscripts a, b, c, d, e
and x indicates the atomic ratio; when a=10, b=0.01
~5 (preferably 0.05-3), c=0-10 (preferably 0.05-8), d=0-5 (preferably 0-3),
e=0 to 60 (preferably 0.1 to 50), and x is the number of oxygen atoms in the oxide formed by combining each component. The above tellurium-containing metal oxide catalysts include silica, silica-alumina, alumina, silica-titania,
It may be supported on various carriers such as titania. The shape of the catalyst may be arbitrary, but in the case of a fixed bed reaction, catalysts of various shapes such as pellets or spheres of several millimeters are used. Additionally, in the case of fluidized bed reactions, catalyst particles having a particle size in the range of 5 to 200 microns are used. 2 Tellurium component 1 Form The tellurium component fed into the reaction zone in the vapor phase may be in the form of simple tellurium, tellurium monoxide, tellurium dioxide, tellurium trioxide, tellurous acid, telluric acid, hydrogen telluride, or telluriums, Examples include organic tellurium compounds such as alkyl tellurides and telluroxides. These tellurium elements and tellurium compounds are conveniently entrained in the feed gas for ammoxidation of organic compounds. The supply gas consists of organic compound vapor, oxygen, ammonia, and other diluting gases such as nitrogen, water vapor, helium, and exhaust gas after recovering the desired product from the reaction product gas. It can be entrained in one or more mixed gases. Oxides and hydrates of tellurium have relatively low vapor pressures, but hydrates of tetravalent tellurium oxides (tellurium dioxide) have somewhat high vapor pressures. For this reason, it may be convenient to use water vapor or a water vapor mixed gas as the entrained gas. In addition, simple tellurium, hydrogen telluride, organic tellurium compounds, etc. have high vapor pressures and are therefore easy to use. Various methods can be considered for introducing the tellurium component into the reactor, but a predetermined amount of the tellurium component may be flowed down or sprayed into the flow path of the above-mentioned supply gas. Alternatively, it is also possible to set the amount of inflow by placing tellurium alone or a tellurium compound as is or supported on a suitable support in the flow path of the entrained gas, and adjusting its vapor pressure. It is also possible to apply a method of converting the compound into a compound having a higher vapor pressure by reacting with a portion of the supplied gas and then supplying the compound. For example, by making tellurium oxide exist under the necessary temperature conditions and introducing a reducing gas into it, hydrogen telluride, methantellol, ethantellol, propanetelol, which has a high vapor pressure, can be extracted. This is a method in which organic tellurium compounds such as rolls are generated and delivered. As the reducing gas used for this purpose, an organic compound serving as a raw material for the desired reaction or ammonia may be used, or a small amount of hydrogen, olefins, alcohols, etc. may be used for this purpose only. Further, the tellurium component is fed into the reactor in a vapor phase, but there is no problem even if part of the tellurium component is mixed with liquid droplets or powder. In many cases, the temperature inside the reactor is higher than that in the supply gas line, so even if a small amount of these substances are mixed in, there is no problem because they will immediately turn into vapor when they enter the reaction system. 2. Amount of tellurium fed The amount of tellurium alone or a tellurium compound fed can be varied depending on the metal oxide catalyst used, the target reaction, and the reaction conditions. If the amount fed is small, the effect will be small and it will take time for the effect to appear, while if it is too large, negative effects will occur. The most reliable way to adjust the amount of feed is to feed tellurium alone or a tellurium compound little by little.
The method is to follow the progress of the reaction results, and when the desired level is reached, the amount of feed is reduced or stopped, and this is repeated as necessary. If the amount of tellurium component fed is too large, a decrease in reaction rate generally appears first. In the case of a decrease in activity due to excessive tellurium deposition on the catalyst, if the effect is mild, it can be gradually recovered by stopping the feed of the tellurium component and continuing the reaction. However, if the degree of decrease is large, it may be necessary to partially replace the catalyst, so care must be taken. The feed amount of the tellurium component relative to the total amount of reaction supply gas is preferably in the range of 10 -5 to 10 2 [mg/],
In addition, the amount of tellurium component fed at one time is limited to a maximum of
The amount should be about 10 [mg/g-catalyst/hour]. It is desirable that the introduced tellurium component comes into uniform contact with the packed catalyst, and the feeding rate should be determined with this point in mind. Even if a large amount is fed at once, there is no point in passing through the catalyst layer as it is and increasing the proportion of loss due to scattering outside the system. Furthermore, depending on the form of the compound, some are easily deposited on the catalyst and others are not, so this point should also be taken into consideration. Elemental tellurium, tellurium hydride, organic tellurium compounds, etc., which have a relatively high vapor pressure, are very easily oxidized, and when they come into contact with the metal oxide catalyst present in the ammoxidation reaction zone of organic compounds, they are immediately oxidized or decomposed by oxidation. Since it is deposited on the catalyst, efficiency is good even if the amount fed is somewhat large, as long as the amount fed is not excessive. As mentioned above, the optimum value for the total feed amount of the tellurium component varies depending on the catalyst used, the type and form of the tellurium component fed, the type of reaction, and the reaction conditions. However, the approximate range is that the increase in the tellurium content of the packed catalyst due to the feed of the tellurium component is
0.001 to 15% by weight, preferably 0.01 to 10
% by weight. 3 Ammoxidation method The activation treatment of the present invention is carried out while carrying out ammoxidation of an organic compound, and the conditions for the ammoxidation reaction are known. The approximate range is as follows. The molar ratio of the supplied gas is organic compound/oxygen/ammonia (molar ratio) of 1/0.3-10/0.5-5, and if necessary, nitrogen, water vapor,
Carbon dioxide gas, carbon monoxide, etc. can also be added. The reaction temperature is 300-500℃, and the apparent contact time is
It is 0.1~20 seconds. 4 Examples Hereinafter, the effects of the present invention will be shown by Examples and Comparative Examples. Note that the yield and selectivity of the target product in this specification are based on the following definitions. Yield (%) = Carbon weight of generated target product / Carbon weight of supplied raw material organic compound x 100 Selectivity (%) = Carbon weight of generated target product / Carbon weight of reacted raw material organic compound x 100 The conditions for the activity test are as follows. (1) Propylene ammoxidation method A catalyst is packed into a fluidized bed reactor with an inner diameter of the catalyst flow section of 5 cm and a height of 2 m, and a gas having the following composition is fed so that the apparent linear velocity is 15 cm/sec. . The reaction pressure is normal pressure. O 2 (supplied with air)/propylene = 2.1 (mole ratio) NH 3 /propylene = 1.15 (mole ratio) However, the contact time is defined as follows. Contact time (sec) = Catalyst packing volume * () / Supply gas flow rate (/sec) (*Based on catalyst roughness density) (2) Methanol ammoxidation reaction Use the same reactor as the propylene ammoxidation reaction in the previous section . The apparent linear velocity of a gas of the following composition to this reactor is
Feed at a rate of 15cm/sec. The reaction pressure is normal pressure. O 2 (supplied with air)/methanol = 2.10 (mole ratio) NH 3 /methanol = 1.20 (mole ratio) H 2 O/methanol = 2.00 (mole ratio) N 2 /methanol = 5.00 (mole ratio) Definition of contact time is the same as the previous section. (3) Ammoxidation reaction of toluene A catalyst is packed in the same fluidized reactor as in the previous section, and gas with the following composition is fed so that the apparent linear velocity is 15 cm/sec. The reaction pressure is normal pressure. O 2 (supplied with air)/toluene 2.5 (mole ratio) NH 3 /toluene = 1.5 (mole ratio) H 2 O/toluene = 2.5 (mole ratio) The definition of contact time is the same as in the previous section. Example 1 A fluidized catalyst having the empirical formula Fe 10 Sb 25 W 0.25 Te 1.0 O 67.8 (SiO 2 ) 30 was used in the ammoxidation reaction of propylene. During the reaction, the activity decreased due to a decrease in the oxygen/propylene molar ratio of the feed gas. In other words, initially the yield of acrylonitrile is
What used to be 80.3% dropped to 79.0%. Therefore, tellurium elemental vapor was introduced into the ammonia supply gas line and sent into the reactor together with the ammonia gas. Total tellurium feed gas (air +
The concentration in propylene + ammonia) is 0.25
It was [mg/Nl]. With the start of feed of tellurium vapor, the acrylonitrile yield increased and the carbon dioxide yield decreased. After 2 hours, the acrylonitrile yield was 80.0%. Although the feed of tellurium was stopped and the reaction was allowed to proceed for an additional 2 hours, there was no change in the acrylonitrile yield.
When the feed was stopped, a small amount of the catalyst was taken out and analyzed for composition, and the increase in the tellurium content of the packed catalyst was 0.02%. Example 2 The experimental formula is Fe 10 Sb 25 Cu 3 Mo 0.5 W 0.3 Te 1.5 O 73.4
A fluidized catalyst (SiO 2 ) 60 was packed in a fluidized bed reactor with an inner diameter of 20 cm, and an ammoxidation reaction of propylene was carried out. The test conditions in this case were as follows. Apparent linear velocity 18 cm/sec Reaction pressure 0.5 Kg/cm 2 G Reaction temperature 450°C Supply gas molar ratio Air/propylene = 10.5 (molar ratio) NH 3 /propylene 1.05 (molar ratio) Reaction was carried out under these conditions for 500 hours. , the yield of acrylonitrile decreased. When this deteriorated catalyst was extracted and an activity test was conducted under the activity test conditions (1), the acrylonitrile yield was 83.0%. Therefore, propanetellol vapor was introduced into the propylene supply gas line and sent to the reactor along with the propylene gas. The concentration of the tellurium component in the total feed gas in terms of tellurium was 0.42 [mg/Nl]. With the start of feeding propanetellol vapor, the acrylonitrile yield increased and the carbon dioxide yield decreased. After 3 hours, the acrylonitrile yield was
It became 84.7%. Although the supply of propanetellol vapor was stopped and the reaction was allowed to proceed for an additional 3 hours, the yield of acrylonitrile did not change. When the supply of propanetellurol vapor was stopped, a small amount of the catalyst was removed and the composition was analyzed, and the increment in the tellurium content of the packed catalyst was found to be
It was 0.07%. Example 3 The empirical formula is Te 0.5 Mo 10 W 1 Fe 2 Co 3 Ni 2 Bi 1 O 43.5
A fluidized catalyst (SiO 2 ) 50 was used for the ammoxidation reaction of methanol according to the activity test conditions (2). The yield of hydrocyanic acid was 84.1%, but the reaction content became strange due to the decrease in the flow rate of ammonia, and although normal reaction conditions were restored, the yield of hydrocyanic acid was 82.9%.
It has dropped to %. Therefore, telluric acid was mixed with the methanol to be supplied. The concentration of telluric acid in the total feed gas is:
It was 0.1 [mg/Nl] in terms of tellurium, and 2.53 [mg/mol] in terms of tellurium for methanol. The hydrocyanic acid yield improved and reached 83.9% after 1 hour. Example 4 Using a fluidized catalyst with an experimental formula of P 1 Te 0.5 V 12 O 33.5 (SiO 2 ) 50 , an activity test was conducted under test conditions (3). The benzonitrile yield was 76.4%. During the reaction, the amount of toluene fed was greater than the set value, so the yield decreased to 75.2%. Therefore, tellurium elemental vapor was introduced into the ammonia supply gas line and sent to the reactor along with the ammonia gas. The concentration of feed tellurium was 0.05 [mg/Nl] based on the total feed gas. The benzonitrile yield increased with the start of feed of tellurium vapor, reaching 76.8% after 2 hours. Example 5 Using the same catalyst as in Example 1, an ammoxidation reaction of propylene was carried out under test conditions (1). After 500 hours of reaction, the initial yield of acrylonitrile was 80.3%, but
It decreased to 79.8%. On the contrary, the yield of carbon dioxide gas increased slightly. On the other hand, propanetellurol vapor was introduced into the propylene supply gas line so that the tellurium concentration in the total supply gas was 2 × 10 -3 [mg/Nl], and the same reaction was carried out for 500 hours. . In this case, the yield of acrylonitrile remained almost unchanged even after 500 hours, and the yield of acrylonitrile was 80.5% according to the results of analysis immediately before the reaction was stopped. Summary of Results The contents of the above experimental examples are summarized in the following table. 【table】

Claims (1)

【特許請求の範囲】 1 テルル含有金属酸化物触媒を用いて、300℃
ないし500℃の温度で、、有機化合物のアンモ酸化
反応を行なう方法において、テルル単体またはテ
ルル化合物を反応器外から、蒸気相で連続的また
は間歇的に反応器内へ送入することを特徴とする
方法。 2 テルル含有金属酸化物触媒が、粒径5ないし
200ミクロンの範囲の流動触媒である、特許請求
の範囲第1項記載の方法。 3 反応器へ蒸気相で送入するテルル成分の形態
が、テルル単体、テルル水素化物、有機テルル化
合物、テルル酸化物、またはテルル水和物である
特許請求の範囲第1項〜第2項のいずれかに記載
の方法。 4 反応供給ガス総量に対するテルル成分送入量
が、10-5ないし102〔mg/〕である特許請求の範
囲第1項〜第3項のいずれかに記載の方法。 5 充填触媒のテルル成分送入によるテルルの含
量増分が、0.001ないし15重量%である特許請求
の範囲第1項〜第4項のいずれかに記載の方法。
[Claims] 1. Using a tellurium-containing metal oxide catalyst,
A method for carrying out an ammoxidation reaction of an organic compound at a temperature between 500°C and 500°C, characterized in that tellurium alone or a tellurium compound is continuously or intermittently fed into the reactor in a vapor phase from outside the reactor. how to. 2 The tellurium-containing metal oxide catalyst has a particle size of 5 to
2. The method of claim 1, wherein the catalyst is a fluidized catalyst in the 200 micron range. 3. Claims 1 to 2, wherein the form of the tellurium component fed in the vapor phase to the reactor is simple tellurium, tellurium hydride, organic tellurium compound, tellurium oxide, or tellurium hydrate. Any method described. 4. The method according to any one of claims 1 to 3, wherein the feed amount of the tellurium component relative to the total amount of reaction supply gas is 10 -5 to 10 2 [mg/]. 5. The method according to any one of claims 1 to 4, wherein the tellurium content increase by feeding the tellurium component into the packed catalyst is 0.001 to 15% by weight.
JP57003125A 1982-01-12 1982-01-12 Ammoxidation method of organic compound Granted JPS58121261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57003125A JPS58121261A (en) 1982-01-12 1982-01-12 Ammoxidation method of organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57003125A JPS58121261A (en) 1982-01-12 1982-01-12 Ammoxidation method of organic compound

Publications (2)

Publication Number Publication Date
JPS58121261A JPS58121261A (en) 1983-07-19
JPH0141135B2 true JPH0141135B2 (en) 1989-09-04

Family

ID=11548634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57003125A Granted JPS58121261A (en) 1982-01-12 1982-01-12 Ammoxidation method of organic compound

Country Status (1)

Country Link
JP (1) JPS58121261A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538059B2 (en) * 2006-01-31 2009-05-26 Rohm And Haas Company Regeneration of mixed metal oxide catalysts

Also Published As

Publication number Publication date
JPS58121261A (en) 1983-07-19

Similar Documents

Publication Publication Date Title
US4618593A (en) Process for improving activity of tellurium containing metal oxide catalysts
EP1270068B1 (en) Preparation of hydrothermally synthesized Mo-V-M-X oxide catalysts for the selective oxidation of hydrocarbons
US6723869B1 (en) Method for producing acrylonitrile, catalyst for use therein and method for preparing the same
JPH0256938B2 (en)
WO2001028986A1 (en) Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same
JPH0256939B2 (en)
EP0076678B1 (en) Process for ammoxidation of organic compounds
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
JPH10139749A (en) Production of acrylonitrile
EP0078150B1 (en) Production of methacrylonitrile
JP2002193871A (en) Method for producing methacrylic acid
JPH0139418B2 (en)
JPH0141135B2 (en)
JPH06228073A (en) Production of nitrile
US4590011A (en) Ammoxidation process
JPH0245500B2 (en)
JP3376105B2 (en) Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst
JP4413368B2 (en) Oxidation or ammoxidation catalyst
JPH0583539B2 (en)
JPH0479696B2 (en)
JPH0128741B2 (en)
JPH024218B2 (en)
JPS6246538B2 (en)
JPH0245499B2 (en)
JPH10120641A (en) Production of aromatic nitrile by gas-phase ammoxidation reaction