JPH0245499B2 - - Google Patents
Info
- Publication number
- JPH0245499B2 JPH0245499B2 JP56073144A JP7314481A JPH0245499B2 JP H0245499 B2 JPH0245499 B2 JP H0245499B2 JP 56073144 A JP56073144 A JP 56073144A JP 7314481 A JP7314481 A JP 7314481A JP H0245499 B2 JPH0245499 B2 JP H0245499B2
- Authority
- JP
- Japan
- Prior art keywords
- tellurium
- catalyst
- reaction
- metal oxide
- containing solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052714 tellurium Inorganic materials 0.000 claims description 163
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 160
- 239000003054 catalyst Substances 0.000 claims description 159
- 230000000694 effects Effects 0.000 claims description 44
- 239000007787 solid Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 38
- 239000007789 gas Substances 0.000 claims description 34
- 229910044991 metal oxide Inorganic materials 0.000 claims description 26
- 150000004706 metal oxides Chemical class 0.000 claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 238000007254 oxidation reaction Methods 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 230000003647 oxidation Effects 0.000 claims description 15
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 14
- 229910017604 nitric acid Inorganic materials 0.000 claims description 14
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 12
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 9
- 239000011733 molybdenum Substances 0.000 claims description 9
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- -1 ammonium ions Chemical class 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 238000004090 dissolution Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 150000002926 oxygen Chemical class 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 150000001299 aldehydes Chemical class 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- FXADMRZICBQPQY-UHFFFAOYSA-N orthotelluric acid Chemical compound O[Te](O)(O)(O)(O)O FXADMRZICBQPQY-UHFFFAOYSA-N 0.000 claims description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 2
- 150000001993 dienes Chemical class 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- 150000002825 nitriles Chemical class 0.000 claims description 2
- SITVSCPRJNYAGV-UHFFFAOYSA-L tellurite Chemical compound [O-][Te]([O-])=O SITVSCPRJNYAGV-UHFFFAOYSA-L 0.000 claims description 2
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 79
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 19
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 229930195733 hydrocarbon Natural products 0.000 description 15
- 150000002430 hydrocarbons Chemical class 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- 238000011282 treatment Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 229910052787 antimony Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 150000002894 organic compounds Chemical class 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 150000003498 tellurium compounds Chemical class 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 150000003497 tellurium Chemical class 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 2
- 238000001941 electron spectroscopy Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PRPNWWVBZXJBKY-UHFFFAOYSA-N antimony iron Chemical compound [Fe].[Sb] PRPNWWVBZXJBKY-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
〔〕 発明の背景
本発明は、テルル含有する金属酸化物触媒の活
性向上法に関する。換言すれば、本発明は、活性
の向上したテルル含有金属酸化物触媒、特に該触
媒の触媒床、の製造法に関する。
テルル含有金属酸化物触媒としては多くのもの
が知られている。たとえば、特公昭41−7774号公
報記載のモリブデン、亜鉛およびテルルの酸化物
からなる触媒、特公昭42−18447号公報記載のテ
ルルおよびセリウムの酸化物からなる触媒、特公
昭43−6045号公報記載のモリブデン、テルル、マ
ンガンおよびリンの酸化物からなる触媒、特公昭
46−2804号公報記載の鉄、アンチモン、バナジウ
ム、モリブデン、タングステンおよびテルルの酸
化物からなる触媒、特開昭54−141724号公報記載
のモリブデン、テルル、アンチモン、コバルトお
よびリンの酸化物からなる触媒、特公昭55−
16971号公報記載のテルルとモリブデンおよびタ
ングステン、バナジウム、クロム、マンガン、
鉄、コバルト、ニツケル、亜鉛、錫、ビスマス等
の酸化物からなる触媒、特開昭55−94322号公報
記載の錫、アンチモン、銅、鉄、テルル等の酸化
物からなる触媒などが、炭化水素類の酸化、アン
モ酸化、または酸化脱水素反応に有用なことが知
られている。たとえば、プロピレン(またはイソ
ブチレン)の酸化反応ではアクロレイン(または
メタクロレイン)が、アンモ酸化反応ではアクリ
ロニトリル(またはメタクリロニトリル)が、で
きる。また、ブデン−1またはブテン−2の酸化
脱水素反応では、ブタジエンができる。
これら炭化水素類の酸化、アンモ酸化または酸
化脱水素反応においては、触媒の種類または使用
条件により程度の差異はあるものの、長期の反応
使用において活性の低下が認められることが多
い。
このような活性低下の原因は様々であり、その
対策もいろいろな角度から検討されている。
テルルを含有する金属酸化物触媒においてもこ
のような現象は時折発生しており、活性の低下と
共に触媒中のテルル含量の減少が併行して起るこ
とがある。反応中に触媒が不可逆的還元をうけ、
その結果として比較的蒸気圧の大きいテルル、有
機テルル化合物、テルル水和物などとしての逃散
というかたちが想定される。しかし、活性の低下
とテルル含量の減少が直接的な関係を持たない場
合も多く、原因は必ずしも明らかになつているわ
けではない。
原因はどうであれ、実用的見地からは、劣化し
にくい触媒の開発または劣化しにくい触媒使用法
の確立および劣化した触媒の再生ということが重
要である。
劣化した触媒の再生法としては、種々の方法が
提案されているが、いずれも触媒を反応器から取
り出したのち、各種の処理をするというものが多
かつた。例えば、特公昭52−42552号公報記載の
テルルを含有するアンチモン含有酸化物触媒の再
生法、特開昭54−62193号公報記載のテルルを含
有する鉄−アンチモン系酸化物触媒の再生法、特
願昭55−67872号明細書記載のテルルを含有する
アンチモン系の複合酸化物触媒の再生法などがそ
の例である。
これらの方法を用いて劣化触媒の再生を行なう
場合は、反応を一旦停止して触媒を抜き出さざる
を得ず、その間の生産停止による経済的損失は大
きい。
反応を行ないながら、あるいは反応を停止する
にしても反応器から抜き出さずに、なんらかの方
法で性能の回復をはかることができれば非常に有
利である。
〔〕 発明の概要
要 旨
本発明はテルル含有触媒について上記の点に解
決を与えることを目的とし、テルル成分をテルル
成分源から気相で該テルル含有触媒と接触させる
ことによつてこの目的を達成しようとするもので
ある。
従つて、本発明によるテルル含有金属酸化物触
媒の活性向上法は、テルル含有金属属酸化物触媒
とテルル単体およびテルル富化触媒からなる群か
ら選ばれた少なくとも一種のテルル含有固体とを
気体雰囲気中で900℃までの温度で加熱すること、
を特徴とするものである。
効 果
本発明によれば、テルル含有金属酸化物触媒の
活性の経時変化の減少あるいは劣化触媒の目的生
成物の選択性改善を計ることができる。そのう
え、驚くべきことには、本発明方法は新しい触媒
(すなわち、劣化していない触媒)に適用しても
効果があり、従つて本発明方法は単なる触媒の再
生法の範疇を越えたものというべきである。
そして、本発明方法は、触媒を流動反応に使用
しているときに適用することができる。すなわ
ち、流動反応においては、反応を行ないながら一
部の触媒を抜き出すこと、また触媒を添加するこ
と、は容易である。これは、連続的には断続的に
も行なうことができ、操作上も簡単であつて工業
的に常時行なわれていることである。従つて、本
発明の触媒活性向上剤であるテルル含有固体を、
流動反応を行ないながら添加することも可能であ
りまた容易でもある。これは、前述のような従来
法による触媒再生法と異なり、反応を行ないつつ
実施できるので、生産の停止による損失は発生し
ない。勿論、、反応開始前に触媒と本発明による
テルル含有固体を混合し、ついで本発明による処
理を行なつた場合も、活性の向上は同様に認めら
れる。このような方法も本発明の範囲である。ま
た、反応器から取り出して、本発明による処理を
行なつた場合も、活性の向上は同様であり、この
ような方法も、本発明の範囲内である。
本発明が効果を発揮するメカニズムは明らかで
はないが、気体雰囲気(詳細後記)中での加熱処
理時にテルル含有固体から少量の揮発性テルル成
分が発生し、これが触媒上の二酸化炭素、一酸化
炭素などの副成生物の生成に関与する活性点を被
毒してこれらの生成を抑制することによつて、目
的生成物の選択率を高めるという推定が可能かも
しれない。本発明のテルル含有固体を用いる場
合、効果の発現までに要する時間は比較的短か
い。従つて、その副生成物生成活性点の被毒は、
きわめて少量のテルル成分揮発により効果的に行
なわれるもののようにみえる。しかも、効果の持
続性は比較的良好である。
なお、このメカニズムは推定に基くものであつ
て、その詳細は未だ充分に明らかとはいえない。
従つて、前記したテルル成分をテルル成分源から
テルル含有触媒と接触させるという本発明の目的
達成手段もこの観点から理解すべきである。
〔〕 発明の具体的説明
1 テルル含有金属酸化物触媒
本発明で対象とするテルル含有触媒は、炭化
水素その他の有機化合物の酸化、アンモ酸化ま
たは酸化脱水素反応による不飽和アルデヒド、
不飽和ニトリルまたはシアン化水素、あるいは
ジオレフインの製造に使用されるものであるこ
とが特に好ましい。
前記したように、テルル含有金属酸化物触媒
は既に各種のものが知られている。
本発明方法は、これらの公知のテルル含有金
属酸化物触媒に均しく適用することができる。
具体的には、アンチモン、モリブデンおよび
バナジウムからなる群から選ばれた少なくとも
1種とテルルとを含有する下記実験式で表わさ
れるテルル含有金属酸化物触媒である。
AaTebCcDdEeOx
ここでAはSb、MoおよびVからなる群から
選ばれた少なくとも1種の元素、CはB、P、
As、Bi、SおよびSeからなる群から選ばれた
少なくとも1種の元素、DはLi、Na、K、
Rb、CsおよびTlからなる群から選ばれた少な
くとも1種の元素、EはMg、Ca、Sr、Ba、
Y、La、Ce、U、Ti、Zr、Nb、Ta、Cr、
W、Mn、Re、Fe、Co、Ni、Ru、Rh、Pd、
Os、Ir、Pt、Cu、Ag、Zn、Cd、Al、Ga、
In、Ge、SnおよびPbからなる群から選ばれた
少なくとも1種の元素およびOは酸素をそれぞ
れ示し、添字a、b、c、d、eおよびxは原
子比を示し、a=10のときb=0.01〜5(好ま
しくは0.05〜3)、c=0〜10(好まくは0.05〜
8)、d=0〜5(好ましくは0〜3)、e=0
〜60(好ましくは0.1〜50)、xは各成分が結合
して生成する酸化物の酸素の数である。
上記のテルル含有金属酸化物触媒はシリカ、
シリカ・アルミナ、アルミナ、シリカ・チタニ
ア、チタニア等の各種担体に担持したものであ
つてもよい。なお、テルル含有金属酸化物触媒
として本発明で対象とするのに特に好ましいの
は、含有されるテルルの状態がその触媒をX線
回折に付したときに金属テルルまたはテルル酸
化物の存在が認められないようなもの、であ
る。
本発明で対象とするテルル含有金属酸化物触
媒は、流動反応用の形態のものであることが好
ましい(粒径に関していえば、5〜200ミクロ
ンの範囲の粒径のものが好ましい)。流動反応
に使用中に本発明方法を適用することが容易で
あり、効果が大きいからである。
このようなテルル含有金属酸化物触媒によつ
て実施すべき反応、特に流動反応は、炭化水素
類の酸化、アンモ酸化および酸化脱水素反応が
代表的なものである。
2 テルル含有固体
本発明で使用する活性向上剤であるテルル含
有固体は、各種のものがありうる。前記のよう
に、本発明の好ましい実施態様では、活性を向
上させるべき対象触媒が流動反応用のものであ
りしかもその流動反応を実施しつつ本発明処理
を行なうのであるから、テルル含有固体も流動
可能な微粒ないし粉体の形であること、就中対
象触媒と同一条件で流動化しうるものであるこ
と、が好ましい。
1) 種類および製造
本発明のテルル含有固体の具体例として
は、テルル単体あるいはテルル富化触媒をあ
げることができる。
テルル富化触媒とはテルル成分を富化含有
する触媒であつて、反応に使用する触媒より
もテルル含有量を高めたものである。このテ
ルル富化触媒は、公知の任意の方法で製造す
ることができる。
さらに、公知の任意の方法によつて調製し
た触媒を、そのままあるいはそれを反応に使
用したのち、これにテルル成分を含む液を含
浸させ、これを乾燥および焼成することによ
り製造することもできる。
テルル成分をテルル含有金属酸化物触媒に
含浸させ、乾燥および焼成して本発明による
テルル含有固体、すなわちテルル富化触媒、
の粉体を製造する場合は、例えば、前述の公
昭52−42552号公報などに記されている方法
に準ずればよい。ただし、本発明の場合は、
例えば、アンチモン系の金属酸化物触媒にテ
ルル成分を含浸するにしても、テルル成分が
基体の触媒の構成結晶相に固溶していること
は必要条件ではない。
テルル成分を触媒に含浸させるに当つて必
要なテルル成分を含有する含浸液の調製に
は、下記のような方法が好ましい。
(1) 金属テルルの硝酸酸化
(2) 二酸化テルル、亜テルル酸の硝酸への溶
解
(3) テルル酸の水、または硝酸への溶解
(4) 金属テルルを、下記の群から選んだイオ
ンおよび(または)化合物の存在下に過酸
化水素酸化
(イ) アンモニウムイオン
(ロ) アルカリ金属イオン
(ハ) バナジウム、モリブデンおよびタング
ステンからなる群から選ばれた少なくと
も一種の金属の酸化物、酸素酸または酸
素酸塩
(5) 金属テルルを硝酸共存下に過酸化水素酸
化
(6) 金属テルルを硝酸酸化したのち、鉄イオ
ン共存下に過酸化水素酸化
これらの液を単独で、あるいは若干の他の
成分との混合溶液として触媒に含浸させ、乾
燥すれば、あるいはこれをさらに焼成すれ
ば、本発明で使用するテルル含有固体が得ら
れる。この場合の焼成温度は湿分を除去する
程度の比較的低温から有効であり、850℃以
下、好ましくは、750℃以下、とするのが良
い。これらの他テルルおよび(または)テル
ル化合物あるいはこれを含む物質と、触媒と
を混合加熱することによつてテルル富化媒を
調製することもできる。テルル単体をはじめ
として多くのテルル化合物は比較的融点の低
いものあるいは蒸気圧の大きいものが多いの
で、このような方法が使える場合がある。ま
た、テルルまたはテルル化合物の蒸気をその
まゝあるいは他のガスに同伴させて、触媒と
接触させることによつて、テルル成分を触媒
にに担持させる方法もテルル含有固体の一つ
の調製法となし得る。
テルル含有固体中のテルル成分は前記のよ
うなテルルの化合物、すなわちテルル以外の
金属ないしメタロイドを含まないもの(酸化
物、酸素酸および有機化合物)、がふつうで
あるが、必要に応じて金属ないしメタロイド
その他を含んでいてもよい。すなわち、この
テルル富化触媒は、テルル以外に、アルカリ
金属、アルカリ土類金属、クロム、モリブデ
ン、タングステン、バナジウム、マンガン、
レニウム、鉄、コバルト、ニツケル、パラジ
ウム、銅、銀、亜鉛、カドミウム、稀土類金
属、ホウ素、アルミニウム、ガリウム、イン
ジウム、タリウム、炭素、ケイ素、ゲルマニ
ウム、錫、鉛、リン、ヒ素、アンチモン、ビ
スマス、酸素、硫黄、セレンなどを含んでい
てもさしつかえない。これらテルル以外の成
分の種類およびその含有量は、対象触媒と混
合して活性向上処理を行なつた場合に、目的
生成物の選択性にマイナスを与えない範囲で
許容される。
一般に、このようなテルル含有固体単独で
目的の反応を行なつたとき、これらが活性を
有し、しかも目的生成物の選択性が悪い場合
でも、その反応速度が使用触媒のそれに比べ
小さいとき、または使用初期には多少反応速
度が大きくともその低下が早いときには、問
題なく使用できる。従つて、この点に留意す
れば、テルルとこれら元素の相対的割合は広
い範囲で変えられる。すなわちこれら元素
(または元素の和)をAで表わすとき、A/
テルル(重量比)は0〜100、好ましくは0
〜50、である(ただし、Aは酸素を除く)。
2) テルル含量
前記のように、本発明による処理中に系内
でテルル成分が揮発性の化合物に転化して効
力を発揮するもののようであり、事実、使用
するテルル含有固体の表面テルル濃度があま
り低いとその効果の発現に時間がかかるし、
その効果の適度も小さくなる。
テルル含量があまり少ないと、効果の発
揮、および効果の持続性という点から、テル
ル含有固体を多量に添加しなければならなく
なる。しかも、これは、本来目的反応の触媒
そのものではないから、対象触媒についての
流動反応を実施中に本発明を実施するときは
場合によつては触媒を稀釈することになり、
この流動反応を十分に進めるためには反応容
量が不足するようなことも起り得る。
このようなことを勘案すると、テルル含有
固体は、そのテルル表面濃度が0.05原子%以
上、好ましくは0.1原子%以上、テルル含量
が1重量%以上、であることが好ましい。
こゝにおけるテルル含有固体のテルルの表面
濃度は、X線電子分光(XPS)により測定
したものである。(詳細後記)。
3) 物 性
テルル含有固体の物性は、この活性向上剤
を対象触媒が流動反応系に在るときに適用し
ようとする場合その他のようにこの固体自身
も流動化して使用する場合には重要な要素で
ある。
すなわち、テルル含有固体が、触媒に比べ
て軽すぎると、流動反応中に、系外への飛散
が増え、本発明の目的に有効に作用しない
まゝに損失してしまう。
一方、テルル含有固体が対象触媒に比べて
重すぎる場合は、それ自体の損失という点で
は問題ないが、対象触媒の流動反応系に加え
る量が多すぎると流動化状態が悪化し、反応
成績が低下することもあるので注意を要す
る。
従つて、とりわけ対象触媒について流動反
応を行ないながら本発明の方法を実施しよう
とするときには、テルル含有固体は使用する
触媒に比較的近接した粒径とし、(テルル含
有固体のかさ密度)/(触媒のかさ密度)の
値が、0.05ないし8の範囲、好ましくは0.2
ないし6の範囲、にあるようにすることが望
ましい。なお、このようにして本発明を実施
する場合の対象流動反応用触媒は、かさ密度
が0.1ないし3〔g/ml〕の、5ないし200ミクロ
ン程度の粒径のものが好ましい。
3 活性向上処理
本発明によるテルル合有金属酸化物触媒の活
性向上処理は、この触媒と前記のテルル含有固
体とを気体雰囲気中で900℃までの温度で加熱
することによつて行なわれる。対象触媒とテル
ル含有固体とは、ともに流動状態にあることが
好ましい。その場合に、触媒の流動状態がこの
触媒について流動反応を行なつていることによ
り実現されている場合が最も好ましい。そのよ
うな実施態様ではこの流動反応を停止せずに本
発明が実施できるからである。
本発明の方法は、対象触媒とテルル含有固体
とを混合して固体床として加熱処理する場合に
も共通して適用可能なものである。たゞし、そ
の効果は、流動触媒を用い、の流動状態下で本
発明の処理を行なう場合にとくに大きい。流動
状態下では、触媒の動きがかなり大巾に起り得
るので、これが効果を大きくしている理由と考
えられる。
対象触媒とテルル含有固体との加熱を行なう
ための気体雰囲気(流動状状態で本発明処理を
行なう場合は、流動用の気体となることはいう
までもない)は、窒素、酸素、二酸化炭素、水
蒸気等の不活性ないし酸化性ガス、ならびに炭
化水素、アンモニア、一酸化炭素等の還元性ガ
スと酸素との混合ガス、その他がある。
これらのガスは、単なる熱処理雰囲気ガスで
ある場合もあるが、本発明の好ましい実施態様
に従つて対象触媒についての流動反応を行なつ
ているときにテルル含有固体による活性化を行
なう場合にはこの流動反応の反応雰囲気という
ことになる。たとえば、炭化水素またはアルコ
ール(たとえば、プロピレンまたはメタノー
ル)、アンモニアおよび酸素(特に空気)(およ
び場合により水蒸気)の混合ガスは炭化水素ま
たはアルコールのアンモ酸化の際の反応ガスで
あり、これからアンモニアを除いたものは酸化
または酸化脱水素の際の反応ガスである。
この気体雰囲気は、過度に還元性であつては
ならない。すなわち、炭化水素類、アンモニ
ア、一酸化炭素等の還元性ガスを用いるとき
は、これらを単独で用いることはできない。こ
れら還元ガスのみの存在下の昇温した場合は、
触媒自体が還元をうけ性能の悪化をきたす。こ
れら還元性ガスは酵素共存下に用いることが必
要である。たゞし、ここで還元性ガスとは触媒
を還元する能力のあるガスを意味する。従つ
て、温度条件によつては、こゝで挙げた還元性
ガスも不活性ガスとして扱うべき場合がある。
例えば炭化水素その他の有機化合物、アンモニ
ア、一酸化炭素等も一般には3000℃以下では、
この種の反応で用いられる触媒に対する還元力
は小さいので、不活性ガスとして扱うことがで
きる。この場合は、酸素の共存は必須ではな
い。
炭化水素その他の有機化合物としては、オレ
フイン類、アルコール類、アルデヒド類などが
好んで用いられる。飽和炭化水素は、この種の
反応の触媒にとつては、むしろ不活性ガスの範
ちゆうに入れるべきものである。
これら還元性ガスは、酸素共存下に複数種混
合して、あるいは、不活性ガスと混合して用い
ることもできる。
このテルル含有固体は、対象触媒に対し、
0.01重量%以上、好ましくは0.05ないし30重量
%、の範囲で加えるのがよい。この範囲であれ
ば、使用触媒の性能能にマイナスを与えること
なく本発明の目的を達することができる。テル
ル濃度の高いテルル含有固体を使用する時には
その使用量を比較的少なく、テルル濃度の低い
テルル含有固体を使用する時にはその使用量を
比較的多く使用する。
テルル含有固体としてテルル富化触媒を用い
るときは、それがとくに異常な活性を有するも
のでない限り、任意の割合で混合使用できるの
は前述の通りである。
活性化処理温度は、900℃以下で行なわれる。
900℃を越えると触媒自体が焼結、結晶化など
により変質してしまうからである。窒素、酸
素、炭酸ガス、水蒸気等の不活性ガス存在下に
行なうときは比較的高い温度が、炭化水素その
他の有機化合物、アンモニア、一酸化炭素等の
還元性ガスと酸素の共存下に行なうときは比較
的低い温度が、選択される。
ただし、テルル含有固体中のテルルの形態が
金段属テルル、有機テルル化合物など比較的蒸
気圧の大きいものあるいはこれらを含む場合
は、ガスの種類によらず低い温度でしかも短時
間の処理で有効である。この場合、温度が高す
ぎると、反応速度の低下をきたすなど若干のマ
イナスが発生することがあるので注意を要す
る。
気体雰囲気として水蒸気を用いるときは、
700℃以上では触媒の焼結により性能が悪化す
る合があるので、実施時の温度の選択には注意
を要する。
処理温度の下限は、本発明の効果が認められ
る限り任意であるが、一般に200℃程度あるこ
とがふつうである。
なお、本発明の処理条件(温度および時間)
は、用いるテルル含有固体と使用ガスによつて
変動するので、最適の条件はその組合せによつ
て実験的に定めるべきである。また、本発明を
対象触媒についてその反応を行ないながら実施
する場合の条件は、炭化水素類の酸化、アンモ
酸化、または酸化脱水素反応で常用されるもの
と同一であつてよい。炭化水素その他の有機化
合物の酸化、アンモ酸化、または酸化脱水素反
応を行ないながら本発明の方法を実施する場合
の供給ガスモル比は、炭化水素その他の有機化
合物/酸素/アンモニア(モル比)が、1/0.3
〜10/0~5であり、反応温度は300〜600℃の範
囲で選択される。
4 実施例
以下、本発明の効果を実施例および比較例によ
つて示した。
なお、本明細書中の目的生成物の収率および選
択率は、次の定義による。
収率(%)
=生成した目的生成物の炭素重量/供給した原料炭化
水素の炭素重量×100
選択率(%)
=生成した目的生成物の炭素重量/反応した原料炭化
水素の炭素重量×100
活性試験条件は次の通りである。
(1) プロピレンのアンモ酸化反応
触媒流動部の内径が5cm(2インチ)、高さ
2mの流動層反応器に触媒を1200gないし1800
gの間で適宜選択して充填する。
この反応器へ次の組成のガスを見掛け線速度
が15cm/secとなるように送入する。反応圧力は
常圧である。
O2(空気で供給)/プロピレン=2.10(モル比)
NH3/プロピレン =1.15(モル比)
ただし、接触時間は次のように定義される。
接触時間
=触媒の充填容積〔リツトル〕*/供給ガス流速〔リ
ツトル/sec〕〔sec〕
*触媒の粗かさ密度基準
(2) メタノールのアンモ酸化反応
前項プロピレンのアンモ酸化と同じ反応器を
用いる。
この反応器へ次の組成のガス見掛け線速度が
15cm/secとなるように送入する。反応圧力は常
圧である。
O2(空気で供給)/メタノール=2.10(モル比)
NH3/メタノール =1.20(モル比)
H2O/メタノール =2.00(モル比)
N2/メタノール =5.00(モル比)
接触時間の定義は、前項と同様である。
実施例 1
実験式が、
Fe10Sb25W0.25Te1.0O67.8(SiO2)30である流動触
媒をプロピレンのアンモ酸化反応に使用した。
反応中に(酸素/プロピレン)モル比の低下に
より玩然が低下した。
すなわち、初期にアクリロニトリル収率が80.3
%であつたものが、78.6%に低下した。
この触媒の10%を抜き出し、別途調製したテル
ル成分富化触媒と置換した。
このようにして得られたテルル含有含有固体と
テルル含有固体の混合物を用いて、前記の活性試
験条件(1)に従い、プロピレンのアンモ酸化反応を
行なつた。この結果、アクリロニトリル収率は向
上し、3時間後には、80.1%となつた。その後、
5時間反応を継続したたが、この水準を維持した
まゝであつた。
なお、こゝに用いたテルル富化触媒は、次によ
うにして調製した。
実験式が、
Fe10Sb25W0.25Te1.0O67.8(SiO2)30であり、長期
の反応に使用し活性の低下した流動触媒2Kgをと
つた。
金属テルル粉15.1gを45%硝酸540gに加え溶
解した。これに45%硝酸を加えて440mlとし、上
記の劣化触媒に注下して約1時間よく混合した。
これを200℃2時間、ついで350℃4時間焼成し
た。
このテルル富化触媒のテルル含量は2.65重量%
である。
実施例 2
実験式が、
Fe10Sb25Cu0.5Mo0.25Te1.0O68.3(SiO2)60である流
動触媒を、内径20cm(8インチ)の流動層反器に
充填し、プロピレのアンモ酸化反応を行なつた。
反応器へ供給するガスの見掛け線速度 18cm/sec
反応圧力 0.5Kg/cm2G
供給ガスモル比
O2(空気として供給)/プロピレン
2.2(モル比)
NH3/プロピレン 1.1(モル比)
反応温度 450℃
上記の反応条件で670時間反応を行なつたとこ
ろ、アクリロニトリル収率が低下し、二酸化炭素
の生成が増大した。
この劣化触媒を抜き出して、その2Kgをとつ
た。
金属テルル粉を、この劣化触媒に対して0.2%
加え、内径5cm(2インチ)の流動層反応器に充
填し、窒素ガスを通じて流動化させた。徐々に温
度を高めて、300℃に1時間保つた。
このように処理して触媒をプロピレンのアンモ
酸化反応に供した。前記の活性試験条件(1)におい
て劣化触媒のアクリロニトリル収率は、76.3%で
あつたが、このように処理した触媒はアクリロニ
トリル収率が77.8%に向上した。
実施例 3
実験式が、
Fe10Sb25Cu3Mo0.5W0.3Te1.5O73.4(SiO2)60であ
る触媒を用い、プロピレンのアンモ酸化反応を行
なつた。
反応中に酸素/プロピレンモル比を低下させた
ため、触媒が劣化した。その結果、標準条件にも
どしたものの、アクリロニトリル収率は83.2%に
低下していた。
この触媒に対し、別途調製したテルル富化触媒
の混合率を7%として前記活性試験条件(1)に従つ
て反応を行なつた。アクリロニトリル収率は徐々
に向上し、反応3時間には85.0%となつた。
なお、ここに用いたテルル富化触媒は、次のよ
うにして調製した。
実施例2で発生した劣化触媒を1.5Kgとる。
金属テルル約13.5gを45%硝酸に少しずつ加え
て、溶解させる。
パラモリブデン酸アンモニウム3.75gを純水10
mlに溶解し、これを前記のテルル硝酸溶液に加え
る。純水を加えて液量を420mlに調整したのち、
劣化触媒に加えてブレンダーで1時間よく混合し
た。
200℃で5時間および400℃で2時間熱処理後、
550℃で4時間焼成した。
実施例 4
実施例3と同じ触媒を用いて以下の実験を行な
つた。
反応中に酸素/プロピレンモル比を低下させた
ため、触媒が劣化した。その結果、標準条件にも
どしたものの、アクリロニトリル収率は82.8%に
低下していた。
この触媒に対して実施例3と同じテルル富化触
媒を3%加えて、再び反応を行なつた。
アクリロニトリル収率は徐々に向上し、反応5
時間後には84.8%となつた。
上記の実施例1〜4の内容を総括すれば、下記
の第1表の通りである。
[] BACKGROUND OF THE INVENTION The present invention relates to a method for improving the activity of a tellurium-containing metal oxide catalyst. In other words, the present invention relates to a method for producing tellurium-containing metal oxide catalysts with improved activity, particularly catalyst beds of such catalysts. Many tellurium-containing metal oxide catalysts are known. For example, a catalyst comprising oxides of molybdenum, zinc and tellurium as described in Japanese Patent Publication No. 41-7774, a catalyst comprising oxides of tellurium and cerium as described in Japanese Patent Publication No. 42-18447, and a catalyst as described in Japanese Patent Publication No. 43-6045. A catalyst consisting of oxides of molybdenum, tellurium, manganese and phosphorus,
Catalysts comprising oxides of iron, antimony, vanadium, molybdenum, tungsten and tellurium as described in JP-A No. 46-2804, catalysts comprising oxides of molybdenum, tellurium, antimony, cobalt and phosphorus as described in JP-A-54-141724 ,Special Public Service 1977-
Tellurium and molybdenum and tungsten, vanadium, chromium, manganese, and
Catalysts made of oxides of iron, cobalt, nickel, zinc, tin, bismuth, etc., catalysts made of oxides of tin, antimony, copper, iron, tellurium, etc. described in JP-A-55-94322, etc. oxidation, ammoxidation, or oxidative dehydrogenation reactions. For example, an oxidation reaction of propylene (or isobutylene) produces acrolein (or methacrolein), and an ammoxidation reaction produces acrylonitrile (or methacrylonitrile). Furthermore, in the oxidative dehydrogenation reaction of butene-1 or butene-2, butadiene is produced. In the oxidation, ammoxidation, or oxidative dehydrogenation reactions of these hydrocarbons, a decrease in activity is often observed during long-term reaction use, although the degree varies depending on the type of catalyst and conditions of use. There are various causes for such a decrease in activity, and countermeasures are being investigated from various angles. Such a phenomenon sometimes occurs even in metal oxide catalysts containing tellurium, and a decrease in activity may be accompanied by a decrease in the tellurium content in the catalyst. During the reaction, the catalyst undergoes irreversible reduction,
As a result, it is assumed that it escapes as tellurium, organic tellurium compounds, tellurium hydrates, etc., which have relatively high vapor pressure. However, in many cases, there is no direct relationship between the decrease in activity and the decrease in tellurium content, and the cause is not always clear. Whatever the cause, from a practical standpoint, it is important to develop catalysts that do not easily deteriorate, establish methods of using catalysts that do not easily deteriorate, and regenerate deteriorated catalysts. Various methods have been proposed to regenerate deteriorated catalysts, but most of them involve taking the catalyst out of the reactor and then subjecting it to various treatments. For example, the method for regenerating an antimony-containing oxide catalyst containing tellurium described in Japanese Patent Publication No. 52-42552, the method for regenerating an iron-antimony-based oxide catalyst containing tellurium described in JP-A-54-62193, An example of this is the method for regenerating an antimony-based composite oxide catalyst containing tellurium described in Japanese Patent No. 55-67872. When regenerating a deteriorated catalyst using these methods, it is necessary to temporarily stop the reaction and extract the catalyst, and the economic loss due to production stoppage during this period is large. It would be very advantageous if the performance could be restored by some method while the reaction is being carried out, or even if the reaction is stopped, without being extracted from the reactor. [] SUMMARY OF THE INVENTION Summary The present invention aims to provide a solution to the above points regarding tellurium-containing catalysts, and achieves this objective by contacting the tellurium component with the tellurium-containing catalyst in the gas phase from a tellurium component source. This is what we are trying to achieve. Therefore, in the method for improving the activity of a tellurium-containing metal oxide catalyst according to the present invention, a tellurium-containing metal oxide catalyst and at least one tellurium-containing solid selected from the group consisting of tellurium alone and tellurium-enriched catalyst are heated in a gas atmosphere. heating at temperatures up to 900°C in
It is characterized by: Effects According to the present invention, it is possible to reduce the change over time in the activity of a tellurium-containing metal oxide catalyst or to improve the selectivity of a degraded catalyst to a target product. Furthermore, surprisingly, the method of the present invention is effective even when applied to fresh catalysts (i.e., non-degraded catalysts), and therefore the method of the present invention goes beyond a mere catalyst regeneration method. Should. The method of the present invention can be applied when the catalyst is used in a fluidized reaction. That is, in a fluidized reaction, it is easy to extract a part of the catalyst or add the catalyst while the reaction is being carried out. This can be carried out continuously or intermittently, is easy to operate, and is routinely carried out industrially. Therefore, the tellurium-containing solid that is the catalyst activity improver of the present invention,
It is also possible and easy to add while carrying out a fluid reaction. Unlike the conventional catalyst regeneration method described above, this can be carried out while the reaction is being carried out, so there is no loss due to production stoppage. Of course, if the catalyst and the tellurium-containing solid according to the present invention are mixed before the start of the reaction and then the treatment according to the present invention is carried out, the same improvement in activity is observed. Such methods are also within the scope of the present invention. Further, even when the material is taken out from the reactor and subjected to the treatment according to the present invention, the activity is similarly improved, and such a method is also within the scope of the present invention. Although the mechanism by which the present invention exerts its effects is not clear, a small amount of volatile tellurium components are generated from tellurium-containing solids during heat treatment in a gas atmosphere (details will be described later), and this is caused by carbon dioxide and carbon monoxide on the catalyst. It may be possible to infer that the selectivity of the desired product can be increased by poisoning the active sites involved in the production of by-products such as, and inhibiting their production. When using the tellurium-containing solids of the present invention, the time required for the onset of effects is relatively short. Therefore, the poisoning of the by-product producing active site is
It appears to be effective by volatilizing a very small amount of tellurium component. Moreover, the durability of the effect is relatively good. Note that this mechanism is based on speculation, and its details are not yet sufficiently clear.
Accordingly, the means of achieving the object of the present invention, which involves contacting the aforementioned tellurium component from a tellurium component source with a tellurium-containing catalyst, should also be understood from this perspective. [] Detailed description of the invention 1 Tellurium-containing metal oxide catalyst The tellurium-containing catalyst targeted by the present invention is an unsaturated aldehyde produced by oxidation, ammoxidation or oxidative dehydrogenation of hydrocarbons and other organic compounds,
Particular preference is given to those used in the production of unsaturated nitriles or hydrogen cyanide, or diolefins. As mentioned above, various types of tellurium-containing metal oxide catalysts are already known. The method of the present invention can be equally applied to these known tellurium-containing metal oxide catalysts. Specifically, it is a tellurium-containing metal oxide catalyst represented by the following empirical formula containing at least one member selected from the group consisting of antimony, molybdenum, and vanadium and tellurium. A a Te b C c D d E e O x where A is at least one element selected from the group consisting of Sb, Mo and V, C is B, P,
At least one element selected from the group consisting of As, Bi, S and Se, D is Li, Na, K,
At least one element selected from the group consisting of Rb, Cs and Tl, E is Mg, Ca, Sr, Ba,
Y, La, Ce, U, Ti, Zr, Nb, Ta, Cr,
W, Mn, Re, Fe, Co, Ni, Ru, Rh, Pd,
Os, Ir, Pt, Cu, Ag, Zn, Cd, Al, Ga,
At least one element selected from the group consisting of In, Ge, Sn, and Pb and O represent oxygen, and subscripts a, b, c, d, e, and x represent atomic ratios, and when a=10 b=0.01-5 (preferably 0.05-3), c=0-10 (preferably 0.05-3)
8), d=0-5 (preferably 0-3), e=0
~60 (preferably 0.1 to 50), x is the number of oxygen atoms in the oxide formed by combining each component. The above tellurium-containing metal oxide catalyst is silica,
It may be supported on various carriers such as silica/alumina, alumina, silica/titania, and titania. Particularly preferred tellurium-containing metal oxide catalysts to be targeted in the present invention are those in which the state of the contained tellurium is such that the presence of metal tellurium or tellurium oxide is recognized when the catalyst is subjected to X-ray diffraction. It is something that cannot be avoided. The tellurium-containing metal oxide catalyst targeted by the present invention is preferably in a form for fluidized reactions (in terms of particle size, it is preferably in the range of 5 to 200 microns). This is because it is easy to apply the method of the present invention during use in a fluid reaction and it is highly effective. Reactions to be carried out using such tellurium-containing metal oxide catalysts, particularly flow reactions, are typically hydrocarbon oxidation, ammoxidation, and oxidative dehydrogenation reactions. 2 Tellurium-Containing Solid The tellurium-containing solid that is the activity enhancer used in the present invention can be of various types. As mentioned above, in a preferred embodiment of the present invention, the target catalyst whose activity is to be improved is for a fluidized reaction, and the treatment of the present invention is carried out while the fluidized reaction is being carried out. Therefore, the tellurium-containing solid is also fluidized. It is preferable that the catalyst be in the form of fine particles or powder, and especially that it can be fluidized under the same conditions as the catalyst in question. 1) Type and Production Specific examples of the tellurium-containing solid of the present invention include tellurium alone or a tellurium-enriched catalyst. A tellurium-enriched catalyst is a catalyst containing an enriched tellurium component, and has a higher tellurium content than the catalyst used in the reaction. This tellurium-enriched catalyst can be produced by any known method. Furthermore, it can also be produced by using a catalyst prepared by any known method as it is or using it in the reaction, impregnating it with a liquid containing a tellurium component, drying and calcining it. A tellurium-containing metal oxide catalyst is impregnated with a tellurium component, dried and calcined to produce a tellurium-containing solid according to the present invention, i.e., a tellurium-enriched catalyst,
When producing the powder, for example, the method described in the above-mentioned Publication No. 52-42552 may be followed. However, in the case of the present invention,
For example, even if an antimony-based metal oxide catalyst is impregnated with a tellurium component, it is not a necessary condition that the tellurium component be solidly dissolved in the constituent crystalline phase of the base catalyst. The following method is preferred for preparing an impregnating solution containing the tellurium component necessary for impregnating the catalyst with the tellurium component. (1) Oxidation of tellurium metal with nitric acid (2) Dissolution of tellurium dioxide and tellurite acid in nitric acid (3) Dissolution of telluric acid in water or nitric acid (4) Oxidation of tellurium metal with ions selected from the following groups and (or) oxidation of hydrogen peroxide in the presence of a compound (a) ammonium ion (b) alkali metal ion (c) oxide of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten, oxygen acid or oxygen (5) Oxidation of tellurium metal with hydrogen peroxide in the coexistence of nitric acid (6) Oxidation of tellurium metal with nitric acid and then oxidation of hydrogen peroxide in the coexistence of iron ions These solutions can be used alone or with some other components. The tellurium-containing solid used in the present invention can be obtained by impregnating the catalyst as a mixed solution and drying it, or by further calcining it. In this case, the firing temperature is effective from a relatively low temperature to remove moisture, and is preferably 850°C or lower, preferably 750°C or lower. In addition to these, a tellurium-enriched medium can also be prepared by mixing and heating tellurium and/or a tellurium compound or a substance containing the same and a catalyst. Many tellurium compounds, including tellurium alone, have relatively low melting points or high vapor pressures, so this method can be used in some cases. Another method for preparing tellurium-containing solids is to support the tellurium component on the catalyst by contacting the vapor of tellurium or a tellurium compound as it is or with other gas and bringing it into contact with the catalyst. obtain. The tellurium component in the tellurium-containing solid is usually a tellurium compound as described above, that is, one that does not contain metals or metalloids other than tellurium (oxides, oxygen acids, and organic compounds), but if necessary, metals or It may also contain metalloids and others. In other words, this tellurium-enriched catalyst contains, in addition to tellurium, alkali metals, alkaline earth metals, chromium, molybdenum, tungsten, vanadium, manganese,
Rhenium, iron, cobalt, nickel, palladium, copper, silver, zinc, cadmium, rare earth metals, boron, aluminum, gallium, indium, thallium, carbon, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, It does not matter if it contains oxygen, sulfur, selenium, etc. The types and contents of these components other than tellurium are permissible within a range that does not adversely affect the selectivity of the target product when mixed with the target catalyst and subjected to activity improvement treatment. Generally, when the desired reaction is carried out using such tellurium-containing solids alone, even if they have activity and the selectivity of the desired product is poor, if the reaction rate is lower than that of the catalyst used, Alternatively, even if the reaction rate is somewhat high at the beginning of use, if the reaction rate decreases quickly, it can be used without problems. With this in mind, therefore, the relative proportions of tellurium and these elements can be varied within a wide range. In other words, when these elements (or the sum of elements) are represented by A, A/
Tellurium (weight ratio) is 0 to 100, preferably 0
~50 (however, A excludes oxygen). 2) Tellurium content As mentioned above, during the treatment according to the present invention, the tellurium component seems to be converted into volatile compounds in the system to exert its effect, and in fact, the surface tellurium concentration of the tellurium-containing solid used is If it is too low, it will take time for the effect to appear,
The moderation of the effect also becomes smaller. If the tellurium content is too low, a large amount of tellurium-containing solid must be added in order to achieve the desired effect and maintain the effect. Moreover, since this is not the catalyst itself for the intended reaction, when carrying out the present invention while the fluid reaction is being carried out for the target catalyst, the catalyst may need to be diluted depending on the case.
It may happen that the reaction capacity is insufficient to sufficiently proceed with this fluid reaction. Taking these matters into consideration, it is preferable that the tellurium-containing solid has a tellurium surface concentration of 0.05 atomic % or more, preferably 0.1 atomic % or more, and a tellurium content of 1 weight % or more.
The surface concentration of tellurium in the tellurium-containing solid here was measured by X-ray electron spectroscopy (XPS). (Details later). 3) Physical properties The physical properties of the tellurium-containing solid are important when this activity enhancer is applied when the target catalyst is in a fluidized reaction system, or when the solid itself is used in a fluidized state. is an element. That is, if the tellurium-containing solid is too light compared to the catalyst, it will be more likely to scatter out of the system during the flow reaction and will be lost without effectively achieving the object of the present invention. On the other hand, if the tellurium-containing solid is too heavy compared to the target catalyst, there is no problem in terms of its own loss, but if too much is added to the fluidized reaction system of the target catalyst, the fluidization state will deteriorate and the reaction results will deteriorate. Caution is required as it may decrease. Therefore, especially when carrying out the method of the present invention while carrying out a fluid reaction with a target catalyst, the tellurium-containing solid should have a particle size relatively close to that of the catalyst used, and the tellurium-containing solid should have a particle size relatively close to that of the catalyst. bulk density) is in the range of 0.05 to 8, preferably 0.2.
It is desirable that the value be in the range of 6 to 6. The fluid reaction catalyst to be used in carrying out the present invention as described above is preferably one having a bulk density of 0.1 to 3 [g/ml] and a particle size of about 5 to 200 microns. 3 Activity Improvement Treatment The activity improvement treatment of the tellurium-containing metal oxide catalyst according to the present invention is carried out by heating the catalyst and the above-mentioned tellurium-containing solid at a temperature of up to 900° C. in a gas atmosphere. Both the target catalyst and the tellurium-containing solid are preferably in a fluid state. In this case, it is most preferable that the fluidized state of the catalyst is achieved by performing a fluidized reaction on the catalyst. This is because in such an embodiment, the present invention can be carried out without stopping this flow reaction. The method of the present invention can also be commonly applied to cases where the target catalyst and tellurium-containing solid are mixed and heated to form a solid bed. However, the effect is particularly great when the treatment of the present invention is carried out in a fluidized state using a fluidized catalyst. Under fluidized conditions, catalyst movement can be quite extensive, which is thought to be the reason for the greater effect. The gas atmosphere for heating the target catalyst and the tellurium-containing solid (in the case of carrying out the process of the present invention in a fluidized state, it goes without saying that this becomes a fluidizing gas) includes nitrogen, oxygen, carbon dioxide, Examples include inert or oxidizing gases such as water vapor, mixed gases of oxygen and reducing gases such as hydrocarbons, ammonia, and carbon monoxide, and others. These gases may simply be heat treatment atmosphere gases, but in the case of activation with tellurium-containing solids during the flow reaction of the target catalyst in accordance with the preferred embodiment of the present invention. This is the reaction atmosphere for the fluid reaction. For example, a gas mixture of a hydrocarbon or alcohol (e.g. propylene or methanol), ammonia and oxygen (especially air) (and possibly water vapor) is a reaction gas during the ammoxidation of a hydrocarbon or alcohol, from which the ammonia is removed. This is the reaction gas during oxidation or oxidative dehydrogenation. This gaseous atmosphere must not be too reducing. That is, when using reducing gases such as hydrocarbons, ammonia, and carbon monoxide, these cannot be used alone. When the temperature is increased in the presence of only these reducing gases,
The catalyst itself undergoes reduction, resulting in deterioration of performance. These reducing gases must be used in the presence of enzymes. However, the term "reducing gas" here means a gas capable of reducing the catalyst. Therefore, depending on the temperature conditions, the reducing gases mentioned above may also be treated as inert gases.
For example, hydrocarbons and other organic compounds, ammonia, carbon monoxide, etc. are generally
Since its reducing power against the catalyst used in this type of reaction is small, it can be treated as an inert gas. In this case, coexistence of oxygen is not essential. As the hydrocarbons and other organic compounds, olefins, alcohols, aldehydes, etc. are preferably used. Saturated hydrocarbons should rather be placed in the category of inert gases for catalyzing reactions of this type. These reducing gases can be used as a mixture in the presence of oxygen or as a mixture with an inert gas. This tellurium-containing solid has the following effects on the target catalyst:
It is preferable to add 0.01% by weight or more, preferably 0.05 to 30% by weight. Within this range, the object of the present invention can be achieved without negatively impacting the performance of the catalyst used. When a tellurium-containing solid with a high tellurium concentration is used, a relatively small amount is used, and when a tellurium-containing solid with a low tellurium concentration is used, a relatively large amount is used. As mentioned above, when a tellurium-enriched catalyst is used as the tellurium-containing solid, it can be mixed and used in any proportion unless it has particularly abnormal activity. The activation treatment temperature is 900°C or lower.
This is because if the temperature exceeds 900°C, the catalyst itself will deteriorate due to sintering, crystallization, etc. Relatively high temperatures occur when the process is carried out in the presence of inert gases such as nitrogen, oxygen, carbon dioxide, and water vapor, while when the process is carried out in the coexistence of hydrocarbons, other organic compounds, reducing gases such as ammonia and carbon monoxide, and oxygen. A relatively low temperature is selected. However, if the form of tellurium in the tellurium-containing solid has a relatively high vapor pressure, such as gold metal tellurium or organic tellurium compounds, or contains these, treatment is effective at a low temperature and in a short time regardless of the type of gas. It is. In this case, care must be taken because if the temperature is too high, some negative effects such as a decrease in the reaction rate may occur. When using water vapor as the gas atmosphere,
If the temperature exceeds 700°C, the performance may deteriorate due to sintering of the catalyst, so care must be taken when selecting the temperature during implementation. The lower limit of the treatment temperature is arbitrary as long as the effects of the present invention are recognized, but it is generally about 200°C. In addition, the processing conditions (temperature and time) of the present invention
varies depending on the tellurium-containing solid used and the gas used, so the optimum conditions should be determined experimentally based on the combination. Further, when carrying out the present invention while carrying out the reaction on the target catalyst, the conditions may be the same as those commonly used in oxidation, ammoxidation, or oxidative dehydrogenation reactions of hydrocarbons. When carrying out the method of the present invention while carrying out oxidation, ammoxidation, or oxidative dehydrogenation of hydrocarbons or other organic compounds, the molar ratio of the supplied gas is such that the molar ratio of hydrocarbons or other organic compounds/oxygen/ammonia is: 1/0.3
~10/0~5, and the reaction temperature is selected in the range of 300~600°C. 4 Examples Hereinafter, the effects of the present invention will be shown by Examples and Comparative Examples. Note that the yield and selectivity of the target product in this specification are based on the following definitions. Yield (%) = Carbon weight of generated target product / Carbon weight of supplied raw material hydrocarbon x 100 Selectivity (%) = Carbon weight of generated target product / Carbon weight of reacted raw material hydrocarbon x 100 The activity test conditions are as follows. (1) Ammoxidation reaction of propylene 1200g to 1800g of catalyst is placed in a fluidized bed reactor with an inner diameter of 5cm (2 inches) and a height of 2m.
Select and fill as appropriate between g. A gas having the following composition is fed into this reactor so that the apparent linear velocity is 15 cm/sec. The reaction pressure is normal pressure. O 2 (supplied with air)/propylene = 2.10 (mole ratio) NH 3 /propylene = 1.15 (mole ratio) However, the contact time is defined as follows. Contact time = Catalyst packing volume [liters] * /Supplied gas flow rate [liters/sec] [sec] *Catalyst coarse density standard (2) Methanol ammoxidation reaction Use the same reactor as in the previous section for propylene ammoxidation. The apparent linear velocity of a gas of the following composition to this reactor is
Feed at a rate of 15cm/sec. The reaction pressure is normal pressure. O 2 (supplied with air)/methanol = 2.10 (mole ratio) NH 3 /methanol = 1.20 (mole ratio) H 2 O/methanol = 2.00 (mole ratio) N 2 /methanol = 5.00 (mole ratio) Definition of contact time is the same as the previous section. Example 1 A fluidized catalyst having the empirical formula Fe 10 Sb 25 W 0.25 Te 1.0 O 67.8 (SiO 2 ) 30 was used in the ammoxidation reaction of propylene. During the reaction, the resistance decreased due to a decrease in the (oxygen/propylene) molar ratio. That is, the initial acrylonitrile yield was 80.3
%, but it dropped to 78.6%. 10% of this catalyst was extracted and replaced with a separately prepared tellurium component enriched catalyst. Using the tellurium-containing solid and the tellurium-containing solid mixture thus obtained, a propylene ammoxidation reaction was carried out according to the activity test conditions (1) described above. As a result, the acrylonitrile yield improved and reached 80.1% after 3 hours. after that,
Although the reaction was continued for 5 hours, this level was maintained. The tellurium-enriched catalyst used here was prepared as follows. The experimental formula was Fe 10 Sb 25 W 0.25 Te 1.0 O 67.8 (SiO 2 ) 30 , and 2 kg of a fluidized catalyst whose activity had decreased due to long-term reaction was taken. 15.1 g of metallic tellurium powder was added and dissolved in 540 g of 45% nitric acid. 45% nitric acid was added to this to make 440 ml, which was poured onto the aged catalyst and mixed well for about 1 hour. This was fired at 200°C for 2 hours and then at 350°C for 4 hours. The tellurium content of this tellurium-enriched catalyst is 2.65% by weight
It is. Example 2 A fluidized catalyst with the empirical formula Fe 10 Sb 25 Cu 0.5 Mo 0.25 Te 1.0 O 68.3 (SiO 2 ) 60 was packed in a fluidized bed reactor with an inner diameter of 20 cm (8 inches), and a propylene ammoxidation reaction was carried out. I did this. Apparent linear velocity of gas supplied to reactor 18cm/sec Reaction pressure 0.5Kg/cm 2 G Supply gas molar ratio O 2 (supplied as air)/propylene
2.2 (molar ratio) NH 3 /propylene 1.1 (molar ratio) Reaction temperature 450°C When the reaction was carried out under the above reaction conditions for 670 hours, the acrylonitrile yield decreased and the production of carbon dioxide increased. I pulled out this deteriorated catalyst and took 2 kg of it. Metal tellurium powder is added at 0.2% to this deteriorated catalyst.
Additionally, a fluidized bed reactor with an internal diameter of 5 cm (2 inches) was filled and fluidized using nitrogen gas. The temperature was gradually increased and kept at 300°C for 1 hour. The catalyst thus treated was subjected to the ammoxidation reaction of propylene. Under the above activity test conditions (1), the acrylonitrile yield of the degraded catalyst was 76.3%, but the acrylonitrile yield of the catalyst treated in this way was improved to 77.8%. Example 3 A propylene ammoxidation reaction was carried out using a catalyst whose empirical formula was Fe 10 Sb 25 Cu 3 Mo 0.5 W 0.3 Te 1.5 O 73.4 (SiO 2 ) 60 . The catalyst deteriorated because the oxygen/propylene molar ratio decreased during the reaction. As a result, although the standard conditions were restored, the acrylonitrile yield had decreased to 83.2%. This catalyst was mixed with a separately prepared tellurium-enriched catalyst at a mixing ratio of 7%, and a reaction was carried out according to the activity test conditions (1) above. The acrylonitrile yield gradually increased and reached 85.0% after 3 hours of reaction. The tellurium-enriched catalyst used here was prepared as follows. 1.5 kg of the deteriorated catalyst generated in Example 2 was taken. Add approximately 13.5 g of metallic tellurium little by little to 45% nitric acid and dissolve. 3.75 g of ammonium paramolybdate in 10 g of pure water
ml and add this to the above tellurium nitric acid solution. After adding pure water and adjusting the liquid volume to 420ml,
In addition to the aged catalyst, the mixture was thoroughly mixed in a blender for 1 hour. After heat treatment at 200℃ for 5 hours and 400℃ for 2 hours,
It was baked at 550°C for 4 hours. Example 4 The following experiment was conducted using the same catalyst as in Example 3. The catalyst deteriorated because the oxygen/propylene molar ratio decreased during the reaction. As a result, although the standard conditions were restored, the acrylonitrile yield had decreased to 82.8%. To this catalyst, 3% of the same tellurium-enriched catalyst as in Example 3 was added and the reaction was carried out again. The acrylonitrile yield gradually improved and reaction 5
After hours, it was 84.8%. The contents of Examples 1 to 4 above are summarized in Table 1 below.
【表】【table】
【表】
第1表中のテルル表面濃度は、電子分光(X−
線フオトスペクトロスコピー)により測定し、検
出元素の原子%で表示した。
測定にはPH1550型装置を用い、試料は銅テー
プに担持した。
こゝで用いたテルル含有固体のうち、テルルを
富化した触媒については、それのみによる活性試
験結果も表中にあわせ記した。いずれも、触媒に
比べアクリロニトリル収率が低く、反応速度も小
さくなつている。
このようなテルル富化触媒を加えて反応を行な
つたとき、触媒単独の場合に比べ、反応成績が低
下するどころか向上するということは予想しなか
つたことである。
実施例 5
実験式が
Fe10Sb25Cu0.5Mo0.25Te1.0O68.3(SiO2)60である
流動触媒を、内径20cm(8インチ)の流動床反応
器に充填し、プロピレンのアンモ酸化反応を行な
つた。
反応器へ供給するガスの見掛け線速度 1cm/sec
反応圧力 0.5Kg/cm2G
供給ガスモル比
O2(空気として供給)/プロピレン
2.2(モル比)
NH3/プロピレン 1.1(モル比)
反応温度 450℃
上記の反応条件で670時間反応を行なつたとこ
ろ、アクリロニトリル収率が低下し、二酸化炭素
の生成が増大した。
この劣化触媒を抜き出して、その2Kgをとつ
た。この劣化触媒に対して、別途調製したテルル
富化触媒が10%になるように混合し、前記活性試
験条件(1)に従つて反応を行なつた。アクリロニト
リル収率は徐々に向上し、反応3時間後にアクリ
ロニトリル収率は78.1%となつた。
なお、劣化触媒のみを使用して前記の活性試験
条件(1)に従つて反応を行なつた場合のアクリロニ
トリル収率は、76.3%であつた。
この実施例で使用したテルル富化触媒は、次の
ようにして調製したものである。
上記の実験式をもつ流動触媒(使用前の劣化し
ていないもの)1Kgをとる。テルル酸56gを水
0.27リツトルに溶解し、この溶液を触媒とよく混
合した。ついで、120℃で5時間乾燥後、350℃で
2時間焼成した。このようにして調製したテルル
富化触媒中のテルル含量は4.4%である。
実施例 6
Te0.5Mo10W1Fe2Co3Ni3Bi1O43.5(SiO2)50であ
る流動床触媒を、活性試験条件(2)に従い、メタノ
ールのアンモ酸化反応に用いた。
供給ガスの酸素/メタノールモル比を低めた反
応により、徐々に青酸収率が低下してきた。この
モル比を活性試験の標準条件にもどしたが、初期
には84.0%であつた青酸収率が81.9%にまで低下
していた。
この劣化触媒に対し金属テルル粉を0.1%加え
再び反応を行つた。時間の経過と共に青酸収率は
向上し、3時間後には青酸収率が83.5%となつ
た。[Table] The tellurium surface concentration in Table 1 is determined by electron spectroscopy (X-
It was measured by line photospectroscopy) and expressed as atomic % of the detected element. A PH1550 type device was used for the measurement, and the sample was supported on a copper tape. Among the tellurium-containing solids used here, the activity test results for the tellurium-enriched catalyst alone are also listed in the table. In both cases, the acrylonitrile yield is lower than that of the catalyst, and the reaction rate is also lower. It was unexpected that when the reaction was carried out with the addition of such a tellurium-enriched catalyst, the reaction performance would be improved rather than degraded compared to when the catalyst was used alone. Example 5 A fluidized catalyst with the empirical formula Fe 10 Sb 25 Cu 0.5 Mo 0.25 Te 1.0 O 68.3 (SiO 2 ) 60 was packed into a fluidized bed reactor with an inner diameter of 20 cm (8 inches), and the ammoxidation reaction of propylene was carried out. I did it. Apparent linear velocity of gas supplied to reactor 1cm/sec Reaction pressure 0.5Kg/cm 2 G Supply gas molar ratio O 2 (supplied as air)/propylene
2.2 (molar ratio) NH 3 /propylene 1.1 (molar ratio) Reaction temperature 450°C When the reaction was carried out under the above reaction conditions for 670 hours, the acrylonitrile yield decreased and the production of carbon dioxide increased. I pulled out this deteriorated catalyst and took 2 kg of it. This degraded catalyst was mixed with a separately prepared tellurium-enriched catalyst at a concentration of 10%, and a reaction was carried out according to the activity test conditions (1). The acrylonitrile yield gradually improved, reaching 78.1% after 3 hours of reaction. The yield of acrylonitrile was 76.3% when the reaction was carried out according to the activity test conditions (1) above using only the degraded catalyst. The tellurium-enriched catalyst used in this example was prepared as follows. Take 1 kg of a fluidized catalyst (undegraded before use) having the above experimental formula. 56g of telluric acid in water
0.27 liters and this solution was mixed well with the catalyst. Then, after drying at 120°C for 5 hours, it was fired at 350°C for 2 hours. The tellurium content in the tellurium-enriched catalyst thus prepared is 4.4%. Example 6 A fluidized bed catalyst of Te 0.5 Mo 10 W 1 Fe 2 Co 3 Ni 3 Bi 1 O 43.5 (SiO 2 ) 50 was used for the ammoxidation reaction of methanol according to the activity test conditions (2). The yield of hydrocyanic acid gradually decreased due to the reaction in which the oxygen/methanol molar ratio of the feed gas was lowered. Although this molar ratio was returned to the standard conditions for the activity test, the hydrocyanic acid yield, which was initially 84.0%, had decreased to 81.9%. To this deteriorated catalyst, 0.1% of metallic tellurium powder was added and the reaction was carried out again. The hydrocyanic acid yield improved with the passage of time, reaching 83.5% after 3 hours.
Claims (1)
びテルル富化触媒からなる群から選ばれた少なく
とも一種のテルル含有固体とを気体雰囲気中で
900℃までの温度で加熱することを特徴とする、
テルル含有金属酸化物触媒の活性向上法。 2 テルル含有固体が、テルル含有金属酸化物触
媒に対して0.01重量%以上の割合で存在する、特
許請求の範囲第1項記載の方法。 3 テルル含有固体のテルル含量が1重量%以上
である、特許請求の範囲第1項または第2項記載
の方法。 4 テルル含有金属酸化物触媒が、粒径5ないし
200ミクロンの範囲の流動触媒であり、その流動
化状態においてテルル含有固体と混合される、特
許請求の範囲第1項〜第3項のいずれかに記載の
方法。 5 テルル含有固体のかさ密度とテルル含有金属
酸化物触媒のかさ密度の比が0.2ないし6の範囲
にある、特許請求の範囲第1項〜第4項のいずれ
かに記載の方法。 6 テルル含有固体としてのテルル富化触媒が、
金属酸化物触媒または使用済みの金属酸化物触媒
にテルル成分を富化したものである、特許請求の
範囲第1項〜第5項のいずれかに記載の方法。 7 テルル富化触媒が、下記の(1)〜(6)のいずれか
の方法によつて調製したテルル含有溶液を、テル
ル含有金属酸化物触媒に含浸させ、これを乾燥後
300℃ないし850℃の温度で焼成することにより調
製したものである、特許請求の範囲第1項〜第6
項のいずれかに記載の方法。 (1) 金属テルルの硝酸酸化、 (2) 二酸化テルルまたは亜テルル酸の硝酸への溶
解、 (3) テルル酸の水または硝酸への溶解、 (4) 金属テルルを、下記の群から選んだイオンお
よび(または)化合物の存在下に過酸化水素酸
化 (イ) アンモニウムイオン (ロ) アルカリ金属イオン (ハ) バナジウム、モリブデンおよびタングステ
ンからなる群から選ばれた少なくとも一種の
金属の酸化物、酸素酸または酸素酸塩 (5) 金属テルルを硝酸共存下に過酸化水素酸化 (6) 金属テルルを硝酸酸化したのち、鉄イオン共
存下に過酸化水素酸化 8 テルル含有金属酸化物触媒が、有機化合物の
酸化、アンモ酸化または酸化脱水素反応による不
飽和アルデヒド、不飽和ニトリルまたはシアノ化
水素あるいはジオレフインの製造に使用されるも
のである、特許請求の範囲第1項〜第7項のいず
れかに記載の方法。[Claims] 1. A tellurium-containing metal oxide catalyst and at least one tellurium-containing solid selected from the group consisting of tellurium alone and tellurium-enriched catalyst in a gas atmosphere.
Characterized by heating at temperatures up to 900℃,
A method for improving the activity of tellurium-containing metal oxide catalysts. 2. The method according to claim 1, wherein the tellurium-containing solid is present in a proportion of 0.01% by weight or more based on the tellurium-containing metal oxide catalyst. 3. The method according to claim 1 or 2, wherein the tellurium content of the tellurium-containing solid is 1% by weight or more. 4 The tellurium-containing metal oxide catalyst has a particle size of 5 to
4. A process according to any of claims 1 to 3, wherein the catalyst is fluidized in the range of 200 microns and is mixed with the tellurium-containing solid in its fluidized state. 5. The method according to any one of claims 1 to 4, wherein the ratio of the bulk density of the tellurium-containing solid to the bulk density of the tellurium-containing metal oxide catalyst is in the range of 0.2 to 6. 6 The tellurium-enriched catalyst as a tellurium-containing solid is
The method according to any one of claims 1 to 5, wherein a metal oxide catalyst or a used metal oxide catalyst is enriched with a tellurium component. 7 The tellurium-enriched catalyst is obtained by impregnating a tellurium-containing metal oxide catalyst with a tellurium-containing solution prepared by any of the methods (1) to (6) below, and drying this.
Claims 1 to 6, which are prepared by firing at a temperature of 300°C to 850°C.
The method described in any of the paragraphs. (1) Oxidation of tellurium metal with nitric acid, (2) Dissolution of tellurium dioxide or tellurite acid in nitric acid, (3) Dissolution of telluric acid in water or nitric acid, (4) Tellurium metal selected from the following group. Hydrogen peroxide oxide in the presence of ions and/or compounds (a) ammonium ions (b) alkali metal ions (c) oxides and oxygen acids of at least one metal selected from the group consisting of vanadium, molybdenum and tungsten. or oxygen salt (5) Metal tellurium is oxidized with hydrogen peroxide in the coexistence of nitric acid (6) Metal tellurium is oxidized with nitric acid and then hydrogen peroxide is oxidized in the coexistence of iron ions. The method according to any one of claims 1 to 7, which is used for producing unsaturated aldehydes, unsaturated nitriles, hydrogen cyanide, or diolefins by oxidation, ammoxidation, or oxidative dehydrogenation reactions. Method.
Priority Applications (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56073144A JPS57187039A (en) | 1981-05-15 | 1981-05-15 | Activity improving method for metallic oxide catalyst containing tellurium |
DE19823217700 DE3217700A1 (en) | 1981-05-15 | 1982-05-11 | METHOD FOR IMPROVING THE ACTIVITY OF METAL OXIDE CATALYSTS CONTAINING TELLUR |
CA000402825A CA1189844A (en) | 1981-05-15 | 1982-05-12 | Process for improving activity of tellurium containing metal oxide catalysts |
GB08213931A GB2101004B (en) | 1981-05-15 | 1982-05-13 | Process for improving activity of tellurium containing metal oxide catalysts |
IT8248402A IT1154303B (en) | 1981-05-15 | 1982-05-13 | PROCEDURE TO IMPROVE THE ACTIVITY OF METALLIC OXIDE CATALYST CONTAINING TELLURIUM |
AT0189882A AT384558B (en) | 1981-05-15 | 1982-05-14 | METHOD FOR REGENERATING TELLURAL METAL OXIDE CATALYSTS |
SU823440811A SU1367844A3 (en) | 1981-05-15 | 1982-05-14 | Method of activating tellurium-containing metal-oxide catalyst |
MX192687A MX162726A (en) | 1981-05-15 | 1982-05-14 | PROCEDURE TO IMPROVE THE ACTIVITY OF METALLIC OXIDE CATALYSTS CONTAINING TELURIO, USED FOR OXIDATION, AMOXIDATION OR OXIDATIVE DEHYDROGENATION REACTIONS OF ORGANIC COMPOUNDS |
FR8208507A FR2505675A1 (en) | 1981-05-15 | 1982-05-14 | PROCESS FOR IMPROVING THE ACTIVITY OF METAL OXIDE CATALYSTS CONTAINING TELLURE |
BG056664A BG50715A3 (en) | 1981-05-15 | 1982-05-14 | Method for improving the activity of tellurium containing metal oxide catalysts |
BR8202794A BR8202794A (en) | 1981-05-15 | 1982-05-14 | PROCESS TO IMPROVE THE ACTIVITY OF METALLIC OXIDE CATALYST CONTAINING TELURIO |
ES512235A ES512235A0 (en) | 1981-05-15 | 1982-05-14 | A PROCEDURE TO IMPROVE THE ACTIVITY OF METALLIC OXIDE CATALYSTS CONTAINING TELURO. |
NL8202012A NL8202012A (en) | 1981-05-15 | 1982-05-14 | PROCESS FOR IMPROVING THE ACTIVITY OF TELLURIUM-CONTAINING METAL OXIDE CATALYSTS. |
RO82107533A RO86276A (en) | 1981-05-15 | 1982-05-14 | PROCEDURE FOR REGENERATION OF A TELOROUS BASED CATALYST |
IN550/CAL/82A IN156786B (en) | 1981-05-15 | 1982-05-15 | |
KR8202141A KR890003702B1 (en) | 1981-05-15 | 1982-05-15 | Process for improving activity of tellurium containing metal oxide catalysts |
DD82250185A DD210218A5 (en) | 1981-05-15 | 1982-05-17 | METHOD FOR IMPROVING THE ACTIVITY OF METAL OXIDE CATALYSTS CONTAINING TELLURES |
US06/379,205 US4618593A (en) | 1981-05-15 | 1982-05-17 | Process for improving activity of tellurium containing metal oxide catalysts |
DD82239913A DD202630A5 (en) | 1981-05-15 | 1982-05-17 | METHOD FOR IMPROVING THE ACTIVITY OF METAL OXIDE CATALYSTS CONTAINING TELLURES |
ES519785A ES519785A0 (en) | 1981-05-15 | 1983-02-14 | A PROCEDURE TO IMPROVE THE ACTIVITY OF METALLIC OXIDE CATALYSTS CONTAINING TELURO. |
IN625/MAS/84A IN162232B (en) | 1981-05-15 | 1984-08-22 | |
US06/669,978 US4709070A (en) | 1981-05-15 | 1984-11-09 | Process for improving activity of tellurium containing metal oxide catalysts |
GB08522898A GB2163365B (en) | 1981-05-15 | 1985-09-17 | Process for improving activity of tellurium containing metal oxide catalysts |
US06/847,074 US4709071A (en) | 1981-05-15 | 1986-05-21 | Process for improving activity of tellurium containing metal oxide catalysts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56073144A JPS57187039A (en) | 1981-05-15 | 1981-05-15 | Activity improving method for metallic oxide catalyst containing tellurium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57187039A JPS57187039A (en) | 1982-11-17 |
JPH0245499B2 true JPH0245499B2 (en) | 1990-10-09 |
Family
ID=13509704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56073144A Granted JPS57187039A (en) | 1981-05-15 | 1981-05-15 | Activity improving method for metallic oxide catalyst containing tellurium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS57187039A (en) |
RO (1) | RO86276A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060122055A1 (en) * | 2004-12-06 | 2006-06-08 | Gaffney Anne M | (Amm)oxidation catalyst and catalytic (amm)oxidation process for conversion of lower alkanes |
US9328063B2 (en) | 2012-02-29 | 2016-05-03 | Mitsubishi Rayon Co., Ltd. | Method for producing acrylonitrile |
US9181178B2 (en) | 2012-02-29 | 2015-11-10 | Mitsubishi Rayon Co., Ltd. | Method for producing acrylonitrile |
-
1981
- 1981-05-15 JP JP56073144A patent/JPS57187039A/en active Granted
-
1982
- 1982-05-14 RO RO82107533A patent/RO86276A/en unknown
Also Published As
Publication number | Publication date |
---|---|
RO86276A (en) | 1985-11-30 |
RO86276B (en) | 1985-11-01 |
JPS57187039A (en) | 1982-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4709071A (en) | Process for improving activity of tellurium containing metal oxide catalysts | |
JP5379475B2 (en) | Catalyst for oxidizing methacrolein and its production and use | |
EP1223163B1 (en) | Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same | |
EP1452231A1 (en) | Method for producing ammoxidation catalyst | |
JPS6112488B2 (en) | ||
KR100537591B1 (en) | Method for regenerating molybdenum-containing oxide fluidized-bed catalyst | |
US4208303A (en) | Process for regenerating iron-antimony oxide containing catalyst | |
US4330429A (en) | Process for regenerating an antimony containing oxide catalyst | |
JP3819192B2 (en) | Production method of acrylonitrile | |
EP0109775B1 (en) | Process for regeneration of iron-antimony metallic oxide catalysts | |
EP1223162A1 (en) | Method for producing acrylonitrile, catalyst for use therein and the method for preparing the same | |
KR102356413B1 (en) | Ammoxidation catalyst with selective by-product HCN production | |
JP4159759B2 (en) | Method for producing molybdenum-bismuth-iron-containing composite oxide fluidized bed catalyst | |
US4374758A (en) | Preparation of stable tellurium-containing solution from metallic tellurium and process for producing tellurium-antimony containing oxide catalyst using said solution | |
KR19980032802A (en) | Method of Maintaining Activity of Metal Oxide Catalyst Containing Molybdenum | |
JP3875011B2 (en) | Acrylonitrile manufacturing process | |
KR830002071B1 (en) | Process for regeneration of antimony containing oxide catalyst | |
JPH0245499B2 (en) | ||
JP3720625B2 (en) | Method for preparing molybdenum-bismuth-iron-containing composite oxide catalyst | |
GB2144049A (en) | Process for improving activity of tellurium-containing metal oxide catalysts | |
JP3796132B2 (en) | Preparation of composite oxide catalyst for gas phase ammoxidation reaction | |
JP3872270B2 (en) | Production method of hydrogen cyanide | |
JP2002097016A (en) | Method for producing hydrogen cyanide | |
JP2002097017A (en) | Method for producing hydrogen cyanide | |
JPH0128741B2 (en) |