JP3376105B2 - Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst - Google Patents

Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst

Info

Publication number
JP3376105B2
JP3376105B2 JP15055694A JP15055694A JP3376105B2 JP 3376105 B2 JP3376105 B2 JP 3376105B2 JP 15055694 A JP15055694 A JP 15055694A JP 15055694 A JP15055694 A JP 15055694A JP 3376105 B2 JP3376105 B2 JP 3376105B2
Authority
JP
Japan
Prior art keywords
catalyst
phosphorus
deteriorated
antimony
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15055694A
Other languages
Japanese (ja)
Other versions
JPH07328447A (en
Inventor
健一 宮気
洋 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP15055694A priority Critical patent/JP3376105B2/en
Publication of JPH07328447A publication Critical patent/JPH07328447A/en
Application granted granted Critical
Publication of JP3376105B2 publication Critical patent/JP3376105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄、アンチモンおよび
リンを必須成分として含有する金属酸化物触媒の再生方
法に関し、更に詳しくは有機化合物の酸化、アンモ酸化
または酸化脱水素反応に使用する鉄・アンチモン・リン
を必須成分として含む金属酸化物触媒において、活性な
いし触媒強度が劣化した該触媒の性能を回復させる方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a metal oxide catalyst containing iron, antimony and phosphorus as essential components, more specifically iron used for oxidation, ammoxidation or oxidative dehydrogenation of organic compounds. The present invention relates to a method of recovering the performance of a metal oxide catalyst containing antimony phosphorus as an essential component, the activity or the catalyst strength of which has deteriorated.

【0002】鉄・アンチモン・リン含有酸化物触媒が、
有機化合物の酸化によるアルデヒド類の製造、有機化合
物の酸化脱水素によるジエン類、アルケニルベンゼン
類、不飽和アルデヒド類または不飽和酸類の製造、さら
には有機化合物のアンモ酸化によるニトリル類の製造な
どに有用であることは公知である。たとえば、特公昭54
-39839号公報、特開平1-171640号公報、特開平1-257125
号公報にはメタノールのアンモ酸化の例が記載され、特
開平1-143643号公報、特開平3-26342 号公報にはメタノ
ールのアンモ酸化、プロピレンのアンモ酸化、イソブテ
ンのアンモ酸化、エチルベンゼンの酸化脱水素の例が記
載されている。
An oxide catalyst containing iron, antimony and phosphorus is
Useful for production of aldehydes by oxidation of organic compounds, production of dienes, alkenylbenzenes, unsaturated aldehydes or unsaturated acids by oxidative dehydrogenation of organic compounds, and production of nitriles by ammoxidation of organic compounds Is known. For example, Japanese Patent Publication Sho 54
-39839, JP 1-171640, JP 1-257125
JP-A No. 1-143643 and JP-A No. 3-26342 disclose an ammoxidation of methanol, an ammoxidation of methanol, an ammoxidation of propylene, an ammoxidation of isobutene, and an oxidative dehydration of ethylbenzene. Plain examples are given.

【0003】前記触媒は、活性、活性の持続性いずれも
良好で、とくにメタノールのアンモ酸化反応によるシア
ン化水素の製造において優れた触媒性能を示す。しか
し、長期の反応使用において徐々に活性が低下してくる
ことがある。また、反応条件の不適切によって活性の低
下が加速される場合もある。その多くは、目的生成物の
選択率低下による目的生成物収量の減少である。活性が
ある程度以上低下した場合、劣化触媒をそのまま使用す
るのは経済性の点からできなくなる。とくに、工業的な
生産規模が大きいもの(たとえば、アクリロニトリル生
産)は触媒性能の劣化が経済性に与える影響は大きい。
ある時点では新しい触媒に置換しないと、著しい経済的
損失が発生する。ところが、この種の触媒は高価なもの
なので、劣化した触媒を新しい触媒に置換するのもまた
大きな経済的負担が発生する。また、このような触媒、
鉄・アンチモン・リン含有金属酸化物触媒は長期の使用
により触媒強度が徐々に低下する場合がある。触媒強度
の低下は触媒飛散が増大する要因の一つであり、最悪の
場合には流路の閉塞などで安定的な操業が困難となる。
このような場合、適切な触媒再生方法が見いだされれば
経済的に非常に有利となる。
The above-mentioned catalyst is good in both activity and sustainability of activity, and particularly exhibits excellent catalytic performance in the production of hydrogen cyanide by the ammoxidation reaction of methanol. However, the activity may gradually decrease with long-term reaction use. In addition, the decrease in activity may be accelerated due to inappropriate reaction conditions. Most of them are reductions in the target product yield due to a decrease in the selectivity of the target product. When the activity decreases to a certain extent or more, it becomes impossible to use the deteriorated catalyst as it is from the economical point of view. In particular, in the case of a large industrial production scale (for example, acrylonitrile production), the deterioration of the catalyst performance has a great influence on the economical efficiency.
At some point, if not replaced with fresh catalyst, significant economic losses will occur. However, since this kind of catalyst is expensive, replacing a deteriorated catalyst with a new catalyst also causes a large economic burden. Also, such a catalyst,
The iron / antimony / phosphorus-containing metal oxide catalyst may gradually decrease in catalyst strength after long-term use. Decrease in catalyst strength is one of the factors that increase catalyst scattering, and in the worst case, stable operation becomes difficult due to blockage of the flow path.
In such a case, it will be very economically advantageous if a suitable catalyst regeneration method is found.

【0004】[0004]

【従来の技術】これまでに劣化したアンチモン含有触媒
の再生法について種々提案されている。例えばアンチモ
ン−ウラン酸化物触媒を対象とした特開昭47-8615 号公
報や、鉄・アンチモン・テルル含有触媒を対象とした特
公昭57-44375号公報がある。特開昭47-8615 号公報の方
法は、合体されていない酸素、又は所望により活性窒素
を合体した形で有する酸素を含有する再生用ガス混合物
をアンチモン・ウラン酸化物触媒錯体に、427−10
38℃の温度においてその錯体が再生されるまでの滞在
時間接触させることを特徴とするものである。また特公
昭57-44375号公報の方法はオレフィンの酸化反応、アン
モ酸化反応または酸化的脱水素による不飽和アルデヒ
ド、不飽和ニトリルまたはジオレフィンの製造時に使用
し、活性の低下した(1)Fe; (2)Sb;(3)V ,M
o,W からなる群から選ばれた少なくとも一つの元素;
(4)Teの(1)〜(4)の元素を必須成分として含む
金属酸化物触媒を焼成して触媒活性を再生するに際し、
前記触媒が鉄・アンチモン酸化物化合物の結晶構造を保
ち、遊離の三酸化アンチモンが実質的に生成していない
もので、かつ前記触媒を600℃ないし950℃の温度
範囲で、しかも触媒製造時における最終焼成温度の近傍
ないしはそれ以下の温度で、非還元的雰囲気下に焼成す
ることを特徴とする鉄・アンチモン含有酸化物触媒の再
生方法である。
2. Description of the Related Art Various methods for regenerating deteriorated antimony-containing catalysts have been proposed. For example, there is JP-A-47-8615 for an antimony-uranium oxide catalyst and JP-B-57-44375 for an iron-antimony-tellurium-containing catalyst. The method of JP-A-47-8615 discloses a method in which a regenerating gas mixture containing uncombined oxygen or oxygen optionally combined with active nitrogen is added to an antimony-uranium oxide catalyst complex at 427-10.
It is characterized by contacting at a temperature of 38 ° C. for a residence time until the complex is regenerated. The method disclosed in Japanese Examined Patent Publication No. 57-44375 is used in the production of unsaturated aldehydes, unsaturated nitriles or diolefins by olefin oxidation reaction, ammoxidation reaction or oxidative dehydrogenation, and has decreased activity (1) Fe; (2) Sb; (3) V, M
at least one element selected from the group consisting of o and W;
(4) When regenerating the catalytic activity by firing a metal oxide catalyst containing the elements (1) to (4) of Te as an essential component,
The catalyst retains the crystal structure of an iron / antimony oxide compound and substantially no free antimony trioxide is produced, and the catalyst is used in the temperature range of 600 ° C. to 950 ° C., and at the time of producing the catalyst. This is a method for regenerating an iron / antimony-containing oxide catalyst, which comprises calcination in a non-reducing atmosphere at or near the final calcination temperature.

【0005】ところがこれらの方法を触媒組成がウラン
やテルルを含まない鉄・アンチモン・リン含有触媒にそ
のまま適用した場合には必ずしも再生効果が十分に認め
られないばかりか、逆に触媒性能を悪化せしめることも
あった。例えば、特にリン成分を多く含有する鉄・アン
チモン・リン含有酸化物触媒を特公昭57-44375号公報や
特開昭47-8615 号公報に記載の方法に準じて焼成する
と、触媒が固結しやすく、特に静置状態で焼成した場合
はその現象が甚だしいことがわかった。また触媒粒子同
志が付着し、焼成炉から触媒の抜き出しが困難になった
り、触媒をほぐす等の作業が必要となるなど、作業性が
悪化する欠点もある。さらにまた、触媒の再生を不活性
ガス、例えば窒素雰囲気下で行うと再生効果を示さない
ばかりかむしろ触媒性能を悪化させることもあった。こ
のように、鉄・アンチモン・リン含有酸化物触媒、特に
リン成分を多く含有する触媒の再生には特有の問題が存
在することがわかった。
However, when these methods are directly applied to an iron / antimony / phosphorus-containing catalyst whose catalyst composition does not contain uranium or tellurium, not only the regeneration effect is not sufficiently observed but, on the contrary, the catalyst performance is deteriorated. There were things. For example, when an iron / antimony / phosphorus-containing oxide catalyst containing a large amount of phosphorus component is fired according to the method described in JP-B-57-44375 or JP-A-47-8615, the catalyst is solidified. It was easy to understand, and it was found that the phenomenon was remarkable especially when baked in a stationary state. Further, the catalyst particles adhere to each other, which makes it difficult to remove the catalyst from the firing furnace, and the work such as loosening the catalyst is required. Furthermore, when the catalyst is regenerated in an atmosphere of an inert gas such as nitrogen, not only the regeneration effect is not shown but the catalyst performance is rather deteriorated. As described above, it was found that there is a peculiar problem in the regeneration of the iron / antimony / phosphorus-containing oxide catalyst, particularly the catalyst containing a large amount of phosphorus component.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような従
来法における問題点を解決すべくなされたもので、その
目的は工業的に有利に実施することのできる鉄、アンチ
モンおよびリンを必須成分として含有する金属酸化物触
媒の再生方法を提供することにあり、具体的にはリン成
分を多く含有する鉄・アンチモン・リン含有酸化物触媒
の再生においても触媒の固結や触媒粒子同志の付着を起
こすことなく、当該触媒の活性や触媒強度を効果的に回
復させることのできる鉄・アンチモン・リン含有金属酸
化物触媒の再生方法を提供することにある。
The present invention has been made to solve the above problems in the conventional method, and its purpose is to contain iron, antimony and phosphorus as essential components which can be industrially advantageously implemented. The purpose of the present invention is to provide a method for regenerating a metal oxide catalyst contained as a catalyst. Specifically, even in the case of regenerating an iron-antimony-phosphorus-containing oxide catalyst containing a large amount of phosphorus component, the solidification of the catalyst and the adhesion of the catalyst particles adhere to each other. An object of the present invention is to provide a method for regenerating an iron-antimony-phosphorus-containing metal oxide catalyst that can effectively recover the activity and the catalyst strength of the catalyst without causing the above.

【0007】[0007]

【問題を解決するための手段】 すなわち、本発明の第
1は、有機化合物の酸化、アンモ酸化または酸化脱水素
反応に使用して触媒性能が劣化した鉄・アンチモン・リ
ンを必須成分として含む金属酸化物触媒にリン成分を含
浸または吹き付けした後、酸素存在下に流動化させなが
ら600ないし900℃の温度範囲で加熱処理すること
を特徴とする鉄・アンチモン・リン含有金属酸化物触媒
の再生方法に関する。また、本発明の第2は、有機化合
物の酸化、アンモ酸化または酸化脱水素反応に使用して
触媒性能が劣化した下記実験式で示される組成を有する
触媒を、酸素含有ガスの空塔線速度7cm/sec以上
で流動化させながら600ないし900℃の温度範囲で
加熱処理することを特徴とする鉄・アンチモン・リン含
有金属酸化物触媒の再生方法に関する。 実験式 FeaSbbPcXdQeRfOg(SiO2)h 但し、上式中、XはV,MoおよびWからなる群から選
ばれた少なくとも一種の元素、QはLi,Na,K,C
s,Be,Mg,Ca,Sr,Ba,Sc,Y,La,
Ce,Pr,Nd,Sm,Th,Ti,Zr,Hf,T
a,Cr,Mn,Re,Co,Ni,Ru,Rh,P
d,Os,Ir,Pt,Cu,Ag,Au,Zn,C
d,Hg,Al,Ga,In,Tl,Ge,Snおよび
Pbからなる群から選ばれた少なくとも一種の元素、
はB、As、BiおよびSeからなる群から選ばれた少
なくとも一種の元素を示し、添字a,b,c,d,e,
f,gおよびhは原子比を示し、それぞれ次の範囲にあ
る。a=10のとき、b=5〜60,c=3〜40,d
=0〜10,e=0〜15,f=0〜10,g=上記各
成分が結合して生成する酸化物に対応する数,h=10
〜200。
[Means for Solving the Problems] That is, the first aspect of the present invention is to use a metal containing iron, antimony, or phosphorus as an essential component, which is used in an oxidation, ammoxidation, or oxidative dehydrogenation reaction of an organic compound and has deteriorated catalytic performance. A method for regenerating an iron / antimony / phosphorus-containing metal oxide catalyst, which comprises subjecting an oxide catalyst to impregnation or spraying with a phosphorus component, and then performing heat treatment in the temperature range of 600 to 900 ° C. while fluidizing in the presence of oxygen. Regarding In the second aspect of the present invention, a catalyst having a composition represented by the following empirical formula, which is used in an oxidation, ammoxidation, or oxidative dehydrogenation reaction of an organic compound and has a deteriorated catalytic performance, is used to obtain a superficial linear velocity of an oxygen-containing gas. The present invention relates to a method for regenerating an iron-antimony-phosphorus-containing metal oxide catalyst, which comprises performing heat treatment in a temperature range of 600 to 900 ° C while fluidizing at 7 cm / sec or more. Empirical formula FeaSbbPcXdQeRfOg (SiO2) h where X is at least one element selected from the group consisting of V, Mo and W, and Q is Li, Na, K, C.
s, Be, Mg, Ca, Sr, Ba, Sc, Y, La,
Ce, Pr, Nd, Sm, Th, Ti, Zr, Hf, T
a, Cr, Mn, Re, Co, Ni, Ru, Rh, P
d, Os, Ir, Pt, Cu, Ag, Au, Zn, C
at least one element selected from the group consisting of d, Hg, Al, Ga, In, Tl, Ge, Sn and Pb, R
Is a minority selected from the group consisting of B, As, Bi and Se.
At least a kind of element is shown, and subscripts a, b, c, d, e,
f, g and h represent atomic ratios and are in the following ranges respectively. When a = 10, b = 5 to 60, c = 3 to 40, d
= 0 to 10, e = 0 to 15, f = 0 to 10, g = number corresponding to an oxide formed by combining the above components, h = 10
~ 200.

【0008】以下、本発明を具体的に説明する。 触媒 本発明で再生の対象となる触媒は、炭化水素その他の有
機化合物の酸化、アンモ酸化または酸化脱水素反応によ
る不飽和アルデヒド、不飽和ニトリルまたはシアン化水
素、あるいはジオレフィンの製造に使用され、反応使用
中にまたは何らかの事情により目的生成物の収率が低下
した鉄・アンチモン・リン系金属酸化物触媒である。具
体的には、鉄・アンチモン・リンを必須成分として含む
金属酸化物触媒であり、その触媒組成は次の実験式で示
される範囲に入るものが好ましい。 Fea Sbb Pc Xd Qe Rf Og (SiO2 )h 但し、上式中、XはV,MoおよびWからなる群から選
ばれた少なくとも一つの元素、QはLi,Na,K,C
s,Be,Mg,Ca,Sr,Ba,Sc,Y,La,
Ce,Pr,Nd,Sm,Th,Ti,Zr,Hf,N
d,Ta,Cr,Mn,Re,Co,Ni,Ru,R
h,Pd,Os,Ir,Pt,Cu,Ag,Au,Z
n,Cd,Hg,Al,Ga,In,Tl,Ge,Sn
およびPbからなる群から選ばれた少なくとも一種の元
素(好ましくはLi,Na,K,Cs,Mg,Ca,B
a,Ce,Ti,Zr,Cr,Mn,Co,Ni,C
u,Zn,Al,SnおよびPbからなる群から選ばれ
た少なくとも一種の元素)、RはB,As,Bi,およ
びSeからなる群から選ばれた少なくとも一種の元素
(好ましくはBおよびBiからなる群から選ばれた少な
くとも一種の元素)を示し、添字a ,b,c,d,e,
f,g およびhは原子比を示し、それぞれ次の範囲にあ
る。a=10のとき、b=5〜60(好ましくは15〜
40),c=3〜40(好ましくは5〜20),d=0
〜10(好ましくは0.1〜5),e=0〜15(好ま
しくは0.1〜5),f=0〜10(好ましくは0〜
3),i=上記各成分が結合して生成する酸化物に対応
する数,h=10〜200(好ましくは30〜10
0)。
The present invention will be specifically described below. Catalyst The catalyst to be regenerated in the present invention is used for the production of unsaturated aldehyde, unsaturated nitrile or hydrogen cyanide, or diolefin by oxidation, ammoxidation or oxidative dehydrogenation of hydrocarbons or other organic compounds, and the reaction is used. This is an iron / antimony / phosphorus-based metal oxide catalyst in which the yield of the target product has decreased during or for some reason. Specifically, a metal oxide catalyst containing iron, antimony, and phosphorus as essential components, and the catalyst composition thereof is preferably within the range shown by the following empirical formula. Fea Sbb Pc Xd Qe Rf Og (SiO 2 ) h where X is at least one element selected from the group consisting of V, Mo and W, and Q is Li, Na, K, C
s, Be, Mg, Ca, Sr, Ba, Sc, Y, La,
Ce, Pr, Nd, Sm, Th, Ti, Zr, Hf, N
d, Ta, Cr, Mn, Re, Co, Ni, Ru, R
h, Pd, Os, Ir, Pt, Cu, Ag, Au, Z
n, Cd, Hg, Al, Ga, In, Tl, Ge, Sn
And at least one element selected from the group consisting of Pb (preferably Li, Na, K, Cs, Mg, Ca, B
a, Ce, Ti, Zr, Cr, Mn, Co, Ni, C
u, Zn, Al, Sn and at least one element selected from the group consisting of Pb), R is at least one element selected from the group consisting of B, As, Bi and Se (preferably from B and Bi) At least one element selected from the group consisting of the subscripts a, b, c, d, e,
f, g and h represent atomic ratios and are in the following ranges respectively. When a = 10, b = 5 to 60 (preferably 15 to
40), c = 3-40 (preferably 5-20), d = 0
-10 (preferably 0.1-5), e = 0-15 (preferably 0.1-5), f = 0-10 (preferably 0)
3), i = the number corresponding to the oxide formed by combining the above components, h = 10 to 200 (preferably 30 to 10)
0).

【0009】触媒の形状は任意であるが、本発明では触
媒の再生を流動化状態で行うため、その粒径は1〜50
0ミクロン、好ましくは5〜200ミクロンの範囲にあ
るのがよい。重量平均中位径としては20〜120ミク
ロンの範囲にあるのが好ましい。
The shape of the catalyst is arbitrary, but in the present invention, since the catalyst is regenerated in a fluidized state, its particle size is 1 to 50.
It should be in the range of 0 micron, preferably 5-200 microns. The weight average median diameter is preferably in the range of 20 to 120 microns.

【0010】触媒は噴霧乾燥法などを用いる公知の任意
の方法により製造することができる。たとえば、特公昭
42-22476号公報、特公昭47-18722号公報、特公昭47-187
23号公報、特開平1-143643号公報、特開平1-171640号公
報、特開平1-257125号公報、特開平3-26342 号公報など
に記載の方法を挙げることができる。
The catalyst can be produced by any known method using a spray drying method or the like. For example,
42-22476, JP 47-18722, JP 47-187
23, JP-A 1-143643, JP-A 1-171640, JP-A 1-257125, JP-A 3-26342, and the like.

【0011】再生処理 本発明は、上記のような特定の劣化触媒に限って、それ
を加熱処理して再生するが、その時の処理条件として
は、600ないし900℃の温度範囲で、しかも酸素存
在下に当該触媒を流動化させながら加熱処理することが
必要である。劣化した触媒は、通常の手段ではその変化
を見出すことが難しく、どのように変化しているか明ら
かでないが、恐らく触媒表面の活性点における構造変化
をきたしているものと思われる。再生時の温度が600
℃より低い時には十分な活性ないし触媒強度の回復が得
られない。また900℃より高い温度では選択率の低
下、触媒強度の低下などが起きたり、触媒粒子同志の付
着性が増大して作業性が悪化したりすることがある。
Regeneration Treatment In the present invention, the specific deteriorated catalyst as described above is heat-treated and regenerated, but the treatment conditions at that time are in the temperature range of 600 to 900 ° C., and the presence of oxygen. It is necessary to heat-treat while fluidizing the catalyst below. It is difficult to find the change of the deteriorated catalyst by the usual means, and it is not clear how it is changed, but it is considered that the deteriorated catalyst probably causes a structural change at the active site of the catalyst surface. The temperature during playback is 600
When the temperature is lower than ℃, sufficient activity or recovery of catalyst strength cannot be obtained. If the temperature is higher than 900 ° C., the selectivity may decrease, the catalyst strength may decrease, or the adhesion between the catalyst particles may increase to deteriorate the workability.

【0012】触媒の加熱処理は、触媒を流動化させなが
ら加熱することが触媒の均一加熱、触媒の固結防止の点
から好ましい。使用する装置としては、回転炉、流動炉
などが挙げられる。触媒が流動層触媒の場合は、流動焼
成炉を適用するのが便利であり、好ましい。その際、触
媒を流動化するための供給ガスの空塔線速度としては7
〜60cm/secの範囲が好ましい。
The heat treatment of the catalyst is preferably performed while fluidizing the catalyst from the viewpoint of uniform heating of the catalyst and prevention of solidification of the catalyst. Examples of the apparatus used include a rotary furnace and a fluidized furnace. When the catalyst is a fluidized bed catalyst, it is convenient and preferable to apply a fluidized bed calciner. At that time, the superficial linear velocity of the feed gas for fluidizing the catalyst was 7
The range of -60 cm / sec is preferred.

【0013】触媒加熱時の雰囲気は、酸素存在雰囲気下
とする必要がある。非還元的雰囲気であっても酸素が存
在しないと、触媒の性能はさらに悪化する可能性が大き
く、完全酸化活性が増大する。酸素の存在量は5ないし
50vol.%の範囲が好ましい。実用上は、空気流通下で
行うのが便利であるが、純酸素あるいは空気を水蒸気、
二酸化炭素、窒素等の不活性ガスで希釈したものの存在
下でおこなうこともできる。処理時間は0.5ないし2
0時間の範囲で選択される。0.5時間以下では十分な
活性の回復が得られず、また20時間以上は実用的では
ない。
The atmosphere at the time of heating the catalyst needs to be an atmosphere in which oxygen is present. If oxygen is not present even in a non-reducing atmosphere, the performance of the catalyst is likely to be further deteriorated and the complete oxidation activity is increased. The amount of oxygen present is preferably in the range of 5 to 50 vol.%. In practice, it is convenient to carry out under air flow, but pure oxygen or air is vaporized,
It can also be carried out in the presence of a substance diluted with an inert gas such as carbon dioxide or nitrogen. Processing time is 0.5 to 2
It is selected in the range of 0 hours. If it is less than 0.5 hours, sufficient activity cannot be recovered, and if it is more than 20 hours, it is not practical.

【0014】また、触媒の物性や活性の一層の向上を目
的として、劣化した触媒にモリブデン、リン等の特定成
分を含浸または吹き付けした後に焼成することもでき
る。特にリンの含浸または吹き付けが効果的で、触媒活
性の回復と同時に触媒強度も改善される。その場合、含
浸または吹き付けに用いられるリンの量は、触媒中のア
ンチモンに対し原子比で0.2以下の範囲が好ましい。
これより多いと触媒粒子同志の付着が起こりやすくな
り、均一な焼成が出来ない、触媒の抜き出しが困難にな
るなど問題が生じることがある。含浸または吹き付けに
用いるリン成分原料としてはリン酸(市販のオルトリン
酸など)を用いるのが便利であるが、その他各種リン含
有化合物溶液を用いることもできる。また、必要により
リン成分以外の成分も同時に含浸または吹き付けし、再
生処理を施すこともできる。
Further, for the purpose of further improving the physical properties and activity of the catalyst, the deteriorated catalyst may be impregnated with or sprayed with a specific component such as molybdenum or phosphorus, followed by firing. Particularly, impregnation or spraying with phosphorus is effective, and the catalyst strength is improved at the same time as the recovery of the catalyst activity. In that case, the amount of phosphorus used for impregnation or spraying is preferably in the range of 0.2 or less in atomic ratio with respect to antimony in the catalyst.
If the amount is larger than this, the catalyst particles are likely to adhere to each other, which may cause problems such as not being able to perform uniform calcination and making it difficult to extract the catalyst. It is convenient to use phosphoric acid (commercial orthophosphoric acid, etc.) as the phosphorus component raw material used for impregnation or spraying, but various other phosphorus-containing compound solutions can also be used. Also, if necessary, a component other than the phosphorus component may be impregnated or sprayed at the same time to perform a regeneration treatment.

【0015】[0015]

【作用ならびに効果】本発明による方法で再生された触
媒は、活性面では収率、反応速度が未使用の触媒とほぼ
同程度に回復し、また触媒物性も改善される。そのため
最適反応条件もほとんど変化しないので未使用触媒と同
様に扱うことができ、またそれと混合して用いることも
できる。なお、本発明の触媒再生方法は多数回、繰返し
行うことが可能である。このように本発明による鉄・ア
ンチモン・リン含有金属酸化物触媒の再生方法は、その
工業的意義が極めて大きく、その結果得られる経済的効
果は非常に大である。
FUNCTION AND EFFECT The catalyst regenerated by the method of the present invention recovers the yield and the reaction rate to the same extent as the unused catalyst in terms of activity, and also improves the catalyst physical properties. Therefore, the optimum reaction conditions hardly change, so that the catalyst can be treated in the same manner as the unused catalyst, or can be used as a mixture with it. The catalyst regeneration method of the present invention can be repeated many times. As described above, the method for regenerating an iron / antimony / phosphorus-containing metal oxide catalyst according to the present invention has a great industrial significance, and the resulting economic effect is very large.

【0016】[0016]

【実施例】以下、実施例によって本発明の効果を具体的
に示す
EXAMPLES The effects of the present invention will be specifically described below with reference to examples.

【0017】触媒A 実験式がFe10Sb25P12V0.5Mo0.1Al3K0.3Bi0.8O102.4(SiO
2)50である流動層触媒を以下の方法で調製した。 (I ) 三酸化アンチモン粉末326.7g をとる。 (II)硝酸(比重1. 38)390mlと純水480mlと
を混合して加温し、この中に電解鉄粉50.1g を少しず
つ加えて溶解させる。 (III )シリカゾル(SiO2 20重量%)1347g を
とる。 (IV)パラモリブデン酸アンモニウム2.64gを純水
7mlに溶解させる。 (V )メタバナジン酸アンモニウム5.24g を530
g に溶解させる。 (VI)硝酸アルミニウム112.1g を純水560g に
溶解させる。 (VII )硝酸カリウム3.02g を純水15g に溶解さ
せる。 (VIII)硝酸(比重1.38)2.8mlと純水36mlを
混合し、この中に硝酸ビスマス36.2g を加えて溶解
させる。(II)に(III )、(I )、(IV)〜(VIII)
の順に、よく撹拌しながら加え、15%アンモニア水に
よりpH2に調整する。このスラリーを撹拌しながら、9
8℃3時間加熱処理した。 (IV)リン酸(含量85重量%)120.6g をとる。 以上のように調製したスラリーに、(IV)を加えよく撹
拌する。このようにして得られた水性スラリーを、回転
円盤式の噴霧乾燥装置を用いて噴霧乾燥した。得られた
微細な球状粒子を、200℃で2時間、400℃で3時
間焼成し、さらに800℃で3時間焼成した。
The catalyst A has an empirical formula of Fe 10 Sb 25 P 12 V 0.5 Mo 0.1 Al 3 K 0.3 Bi 0.8 O 102.4 (SiO 2
2 ) A fluidized bed catalyst of 50 was prepared by the following method. (I) Take 326.7 g of antimony trioxide powder. (II) 390 ml of nitric acid (specific gravity 1.38) and 480 ml of pure water are mixed and heated, and 50.1 g of electrolytic iron powder is gradually added and dissolved therein. (III) 1347 g of silica sol (20% by weight of SiO 2 ) is taken. (IV) 2.64 g of ammonium paramolybdate is dissolved in 7 ml of pure water. 530 g of (V) ammonium metavanadate (5.24 g)
Dissolve in g. (VI) 112.1 g of aluminum nitrate is dissolved in 560 g of pure water. (VII) 3.02 g of potassium nitrate is dissolved in 15 g of pure water. (VIII) 2.8 ml of nitric acid (specific gravity 1.38) and 36 ml of pure water are mixed, and 36.2 g of bismuth nitrate is added and dissolved therein. (II) to (III), (I), (IV) to (VIII)
In that order, add well while stirring well, and adjust to pH 2 with 15% ammonia water. While stirring this slurry,
Heat treatment was performed at 8 ° C. for 3 hours. (IV) Take 120.6 g of phosphoric acid (content 85% by weight). (IV) is added to the slurry prepared as above, and the mixture is stirred well. The thus-obtained aqueous slurry was spray-dried using a rotary disk type spray dryer. The obtained fine spherical particles were fired at 200 ° C. for 2 hours, 400 ° C. for 3 hours, and further fired at 800 ° C. for 3 hours.

【0018】触媒B 実験式がFe10Sb19P8V1Mg2O77.5(SiO2)80である流動層触
媒を触媒Aと同様の方法で調製した。ただし、Mg原料
として硝酸マグネシウムを純水に溶解させて三酸化アン
チモンの次に加えた。また最終焼成は820℃3時間と
した。
Catalyst B A fluidized bed catalyst having an empirical formula of Fe 10 Sb 19 P 8 V 1 Mg 2 O 77.5 (SiO 2 ) 80 was prepared in the same manner as Catalyst A. However, magnesium nitrate was dissolved in pure water as a Mg raw material and added after antimony trioxide. The final firing was 820 ° C. for 3 hours.

【0019】触媒C 実験式がFe10Sb23P14Mo0.5W0.2Mn2Co1O101.1(SiO2)55
ある流動層触媒を触媒Aと同様の方法で調製した。ただ
し、W原料としてパラタングステン酸アンモニウム、M
n原料として硝酸マンガン、Co原料として硝酸コバル
トをそれぞれ純水に溶解させて三酸化アンチモンの次に
加えた。また最終焼成は850℃3時間とした。
Catalyst C A fluidized bed catalyst having an empirical formula of Fe 10 Sb 23 P 14 Mo 0.5 W 0.2 Mn 2 Co 1 O 101.1 (SiO 2 ) 55 was prepared in the same manner as Catalyst A. However, as the W raw material, ammonium paratungstate, M
Manganese nitrate as an n raw material and cobalt nitrate as a Co raw material were dissolved in pure water and added next to antimony trioxide. The final firing was 850 ° C. for 3 hours.

【0020】触媒D 実験式がFe10Sb31P7.5V0.4Mo0.1Zn2.5Li0.1Na0.1B0.4O
100.25(SiO2)50 である流動層触媒を触媒Aと同様の方
法で調製した。ただし、Zn原料として硝酸亜鉛、B原
料として無水ホウ酸、Na原料として硝酸ナトリウム、
Li原料として硝酸リチウムをそれぞれ純水に溶解して
三酸化アンチモンの次に加えた。また最終焼成は800
℃3時間とした。
The catalyst D has an empirical formula of Fe 10 Sb 31 P 7.5 V 0.4 Mo 0.1 Zn 2.5 Li 0.1 Na 0.1 B 0.4 O
A fluidized bed catalyst of 100.25 (SiO 2 ) 50 was prepared in the same manner as Catalyst A. However, Zn nitrate is zinc nitrate, B raw material is anhydrous boric acid, Na raw material is sodium nitrate,
Lithium nitrate as a Li raw material was dissolved in pure water and added after antimony trioxide. The final firing is 800
The temperature was 3 hours.

【0021】触媒E 実験式がFe10Sb28P9V0.2Mo0.4W0.1Cu2Bi1B0.5O99.75(Si
O2)60 である流動層触媒を以下の方法で調製した。 (I )三酸化アンチモン粉末331.3g をとる。 (II)硝酸(比重1.38)350mlと純水440g を
混合して加温し、この中に電解鉄粉45.3g を少しず
つ加え溶解させる。ついで、この溶液に硝酸銅39.2
g を加え溶解させる。 (III )シリカゾル(シリカ濃度20重量%)1463
g をとり、これにリン酸(含量85重量%)84.2g
を加えよく撹拌する。 (IV)パラモリブデン酸アンモニウム5.7g を純水1
4mlに溶解させる。 (V )メタバナジン酸アンモニウム1.9g を純水19
0mlに溶解させる。 (VI)パラタングステン酸アンモニウム2.1g を純水
11mlに溶解させる。 (VII )硝酸(比重1.38)2.9mlと純水36mlと
を混合し、この中に硝酸ビスマス39.4g を加え、溶
解させる。 (VIII)オルトホウ酸2.5g を純水13mlに溶解す
る。 よく撹拌しながら、(II)に(III )を加え、ついで
(I )、(IV)〜(VIII)を加える。このようにして得
られたスラリーをよく撹拌しながら100℃で8時間加
熱した。このようにして得られたスラリーを回転円盤式
の噴霧乾燥装置を用いて噴霧乾燥した。得られた微細な
球状粒子を250℃8時間、ついで400℃5時間焼成
し、最後に流動焼成炉で710℃3時間焼成した。
The catalyst E has an empirical formula of Fe 10 Sb 28 P 9 V 0.2 Mo 0.4 W 0.1 Cu 2 Bi 1 B 0.5 O 99.75 (Si
A fluidized bed catalyst of O 2 ) 60 was prepared by the following method. (I) Take 331.3 g of antimony trioxide powder. (II) 350 ml of nitric acid (specific gravity 1.38) and 440 g of pure water are mixed and heated, and 45.3 g of electrolytic iron powder is gradually added and dissolved therein. Then, add 39.2 copper nitrate to this solution.
Add g and dissolve. (III) Silica sol (silica concentration 20% by weight) 1463
84.2g of phosphoric acid (content 85% by weight)
Add and stir well. (IV) 5.7 g of ammonium paramolybdate was added to pure water 1
Dissolve in 4 ml. (V) Ammonium metavanadate 1.9 g of pure water 19
Dissolve in 0 ml. (VI) 2.1 g of ammonium paratungstate is dissolved in 11 ml of pure water. (VII) 2.9 ml of nitric acid (specific gravity 1.38) and 36 ml of pure water are mixed, and 39.4 g of bismuth nitrate is added and dissolved therein. (VIII) 2.5 g of orthoboric acid is dissolved in 13 ml of pure water. With good stirring, (III) is added to (II), and then (I) and (IV) to (VIII) are added. The slurry thus obtained was heated at 100 ° C. for 8 hours with good stirring. The slurry thus obtained was spray-dried using a rotary disk type spray dryer. The obtained fine spherical particles were fired at 250 ° C. for 8 hours, then 400 ° C. for 5 hours, and finally in a fluidized firing furnace at 710 ° C. for 3 hours.

【0022】触媒の活性試験 活性試験はメタノール、空気、アンモニアを、触媒流動
部の内径が2.5cm、高さ40cmの流動層反応器に充填
された触媒層へ通じることによって行った。反応圧力は
常圧である。ただし、実施例、比較例におけるメタノー
ルの転化率、目的生成物の収率、選択率は次の定義によ
る。
Activity test of catalyst The activity test was conducted by passing methanol, air and ammonia to a catalyst bed packed in a fluidized bed reactor having an inner diameter of the catalyst flow section of 2.5 cm and a height of 40 cm. The reaction pressure is normal pressure. However, the conversion rate of methanol, the yield of the target product, and the selectivity in Examples and Comparative Examples are defined as follows.

【0023】反応条件は次の通りである。 (1)O2 (空気として供給)/メタノール=4.3
(モル/モル) NH3 /メタノール=1.1(モル/モル) (2)O2 (空気として供給)/メタノール=1.6
(モル/モル) NH3 /メタノール=1.1(モル/モル)
The reaction conditions are as follows. (1) O 2 (supplied as air) /methanol=4.3
(Mol / mol) NH 3 /methanol=1.1 (mol / mol) (2) O 2 (supplied as air) /methanol=1.6
(Mol / mol) NH 3 /methanol=1.1 (mol / mol)

【0024】触媒強度試験 流動接触分解触媒(FCC触媒)の試験法として知られ
ている「Test Methodsfor Synthetic Cracking」Americ
ann Cyanamid Co. 6/31-4m-1/57 記載の方法に準じて行
った。試験には63ないし105 μの粒径範囲の触媒粒子を
供した。摩耗損失R(%)は次式により求めたものであ
る。 R=(B/C−A)×100 ただし、A;0〜5時間に摩耗した触媒の重量(g) B;5〜15時間に摩耗した触媒の重量(g) C;試験に供した触媒の重量(g)
Catalyst Strength Test "Test Methods for Synthetic Cracking" America known as a test method for fluid catalytic cracking catalyst (FCC catalyst)
It was carried out according to the method described in ann Cyanamid Co. 6 / 31-4m-1 / 57. The test was provided with catalyst particles in the size range 63 to 105 μ. The wear loss R (%) is obtained by the following equation. R = (B / C−A) × 100 where A; weight of catalyst worn in 0 to 5 hours (g) B; weight of catalyst worn in 5 to 15 hours (g) C; catalyst used in test Weight of (g)

【0025】実施例1 触媒Aを触媒流動部の内径が4.3cm、高さが70cmの
反応器に充填し、O2(空気として供給)/メタノール
=0.8(モル/モル)、NH3 /メタノール=1.0
(モル/モル)、接触時間6sec 、温度420℃の条件
下で反応させたところ経時的にシアン化水素収率の低下
が認められた。この条件下で反応を4時間継続した。抜
き出した触媒(劣化触媒とする)を内径28m/m φの流
動焼成炉に充填し、空気で触媒を流動化させながら70
0℃3時間焼成処理した(再生処理触媒とする)。空気
の空塔線速度は10cm/secであった。新品触媒、劣化触
媒、再生処理触媒の活性試験結果を表1に示す。再生処
理した触媒の活性は新品触媒と同等であった。
Example 1 Catalyst A was charged into a reactor having an inner diameter of the catalyst flow section of 4.3 cm and a height of 70 cm, and O 2 (supplied as air) /methanol=0.8 (mol / mol), NH 3 / methanol = 1.0
When the reaction was conducted under the conditions of (mol / mol), contact time of 6 sec and temperature of 420 ° C., it was observed that the yield of hydrogen cyanide decreased with time. The reaction was continued for 4 hours under these conditions. The extracted catalyst (used as a deteriorated catalyst) is charged into a fluidized-bed calcining furnace with an inner diameter of 28 m / mφ, and the catalyst is fluidized with air to 70
It was calcined at 0 ° C. for 3 hours (used as a regenerated catalyst). The superficial linear velocity of air was 10 cm / sec. Table 1 shows the activity test results of the new catalyst, the deteriorated catalyst and the regenerated catalyst. The activity of the regenerated catalyst was comparable to the fresh catalyst.

【0026】実施例2 実施例1と同一の劣化触媒を実施例1と同様にして80
0℃3時間焼成処理した。新品触媒、劣化触媒、再生処
理触媒の活性試験結果を表1に示す。再生処理した触媒
の活性は新品触媒と同等であった。
Example 2 The same deteriorated catalyst as in Example 1 was used as in Example 1.
It was baked at 0 ° C. for 3 hours. Table 1 shows the activity test results of the new catalyst, the deteriorated catalyst and the regenerated catalyst. The activity of the regenerated catalyst was comparable to the fresh catalyst.

【0027】実施例3 実施例1と同一の劣化触媒を実施例1と同様にして85
0℃3時間焼成処理した。ただし空気の空塔線速度は8
cm/secとした。新品触媒、劣化触媒、再生処理触媒の活
性試験結果を表1に示す。再生処理した触媒の活性は新
品触媒と同等であった。
Example 3 The same deteriorated catalyst as in Example 1 was used in the same manner as in Example 1.
It was baked at 0 ° C. for 3 hours. However, the linear velocity of the superficial air is 8
It was set to cm / sec. Table 1 shows the activity test results of the new catalyst, the deteriorated catalyst and the regenerated catalyst. The activity of the regenerated catalyst was comparable to the fresh catalyst.

【0028】実施例4 触媒Bを用いて実施例1と同一の条件下で反応させたと
ころ経時的なシアン化水素収率の低下が認められた。こ
の条件下で反応を4時間継続した。抜き出した触媒(劣
化触媒)を実施例1と同様にして850℃1時間焼成処
理した(再生処理触媒)。新品触媒、劣化触媒、再生処
理触媒の活性試験結果を表1に示す。再生処理した触媒
の活性は新品触媒と同等であった。
Example 4 When a reaction was carried out using the catalyst B under the same conditions as in Example 1, a decrease in the hydrogen cyanide yield with time was observed. The reaction was continued for 4 hours under these conditions. The extracted catalyst (deteriorated catalyst) was calcined in the same manner as in Example 1 at 850 ° C. for 1 hour (regenerated catalyst). Table 1 shows the activity test results of the new catalyst, the deteriorated catalyst and the regenerated catalyst. The activity of the regenerated catalyst was comparable to the fresh catalyst.

【0029】実施例5 触媒Cを用いて実施例1と同一の条件下で反応させたと
ころ経時的なシアン化水素収率の低下が認められた。こ
の条件で反応を4時間継続した。抜き出した触媒(劣化
触媒)を実施例1と同様にして800℃3時間焼成処理
した(再生処理触媒)。新品触媒、劣化触媒、再生処理
触媒の活性試験結果を表1に示す。再生処理した触媒の
活性は新品触媒と同等であった。
Example 5 When a reaction was carried out using the catalyst C under the same conditions as in Example 1, a decrease in the hydrogen cyanide yield with time was observed. The reaction was continued for 4 hours under these conditions. The extracted catalyst (deteriorated catalyst) was calcined in the same manner as in Example 1 at 800 ° C. for 3 hours (regenerated catalyst). Table 1 shows the activity test results of the new catalyst, the deteriorated catalyst and the regenerated catalyst. The activity of the regenerated catalyst was comparable to the fresh catalyst.

【0030】実施例6 触媒Dを用いて実施例1と同一の条件下で反応させたと
ころ経時的なシアン化水素収率の低下が認められた。こ
の条件下で反応を4時間継続した。抜き出した触媒(劣
化触媒)を実施例1と同様にして800℃8時間焼成処
理した(再生処理触媒)。新品触媒、劣化触媒、再生処
理触媒の活性試験結果を表1に示す。再生処理した触媒
の活性は新品触媒と同等であった。
Example 6 When using Catalyst D under the same conditions as in Example 1, a decrease in the hydrogen cyanide yield with time was observed. The reaction was continued for 4 hours under these conditions. The extracted catalyst (deteriorated catalyst) was calcined at 800 ° C. for 8 hours in the same manner as in Example 1 (regenerated catalyst). Table 1 shows the activity test results of the new catalyst, the deteriorated catalyst and the regenerated catalyst. The activity of the regenerated catalyst was comparable to the fresh catalyst.

【0031】実施例7 触媒Eを触媒流動部の内径が2.5cm、高さが40cmの
反応器に充填し、O2(空気として供給)/メタノール
=1.4(モル/モル)NH3 /メタノール=1.0
(モル/モル)、接触時間6sec 、温度420℃の条件
下で反応させたところ経時的なシアン化水素収率の低下
が認められた。この条件下で反応を100時間継続し
た。抜き出した触媒(劣化触媒)を実施例1と同様にし
て750℃3時間焼成処理した(再生処理触媒)。また
劣化触媒に原子比でP/Sb=0.04となるようにリ
ン酸を含浸し、750℃3時間焼成した(含浸再生触
媒)。新品触媒、劣化触媒、再生処理触媒および含浸再
生触媒の活性試験結果を表1に示す。再生処理触媒、含
浸再生触媒の活性は新品触媒と同等以上であった。
Example 7 Catalyst E was charged into a reactor having an inner diameter of the catalyst flow section of 2.5 cm and a height of 40 cm, and O2 (supplied as air) /methanol=1.4 (mol / mol) NH3 / methanol = 1.0
(Mole / mole), contact time 6 sec, temperature 420 ° C. When the reaction was carried out, a decrease in hydrogen cyanide yield with time was observed. The reaction was continued for 100 hours under these conditions. The extracted catalyst (deteriorated catalyst) was calcined in the same manner as in Example 1 at 750 ° C. for 3 hours (regenerated catalyst). Further, the deteriorated catalyst was impregnated with phosphoric acid so that the atomic ratio of P / Sb was 0.04 and calcined at 750 ° C. for 3 hours (impregnated regenerated catalyst). Table 1 shows the activity test results of the new catalyst, the deteriorated catalyst, the regenerated catalyst and the impregnated regenerated catalyst. The activity of the regenerated catalyst and impregnated regenerated catalyst was equal to or higher than that of the new catalyst.

【0032】また、新品触媒、劣化触媒、再生処理触媒
および含浸再生触媒の触媒強度測定結果を下記に示す。
再生処理触媒、含浸再生触媒の触媒強度は新品触媒と同
等以上であった。
Further, the results of measuring the catalyst strength of a new catalyst, a deteriorated catalyst, a regenerated catalyst and an impregnated regenerated catalyst are shown below.
The catalyst strength of the regenerated catalyst and the impregnated regenerated catalyst was equal to or higher than that of the new catalyst.

【0033】比較例1 実施例1と同一の劣化触媒を実施例1と同様にして50
0℃3時間焼成処理した(再生処理触媒)。新品触媒、
劣化触媒、再生処理触媒の活性試験結果を表2に示す。
再生処理触媒の活性は不十分であり、新品触媒のレベル
に到達していない。
Comparative Example 1 The same deteriorated catalyst as in Example 1 was used in the same manner as in Example 1.
It was calcined at 0 ° C. for 3 hours (regenerated catalyst). New catalyst,
Table 2 shows the activity test results of the deteriorated catalyst and the regenerated catalyst.
The activity of the regenerated catalyst is insufficient and has not reached the level of fresh catalyst.

【0034】比較例2 実施例1と同一の劣化触媒を実施例1と同様にして95
0℃3時間焼成処理した(再生処理触媒)。新品触媒、
劣化触媒、再生処理触媒の活性試験結果を表2に示す。
再生処理触媒は粒子同志が付着していた。その活性は不
十分であり、新品触媒のレベルに到達していない。
Comparative Example 2 The same deteriorated catalyst as in Example 1 was used as in Example 1.
It was calcined at 0 ° C. for 3 hours (regenerated catalyst). New catalyst,
Table 2 shows the activity test results of the deteriorated catalyst and the regenerated catalyst.
The regenerated catalyst had particles attached to each other. Its activity is insufficient and has not reached the level of fresh catalyst.

【0035】比較例3 実施例1と同一の劣化触媒を実施例1と同様にして、た
だし空気の代わりに窒素を用いて820℃3時間焼成処
理した(再生処理触媒)。新品触媒、劣化触媒、再生処
理触媒の活性試験結果を表2に示す。再生処理触媒の活
性は劣化触媒のレベルよりも劣り、再生効果は全く認め
られないばかりかむしろ青酸収率は悪化した。
Comparative Example 3 The same deteriorated catalyst as in Example 1 was calcined in the same manner as in Example 1, except that nitrogen was used instead of air at 820 ° C. for 3 hours (regenerated catalyst). Table 2 shows the activity test results of the new catalyst, the deteriorated catalyst and the regenerated catalyst. The activity of the regenerated catalyst was inferior to that of the deteriorated catalyst, and no regeneration effect was observed, and the hydrocyanic acid yield was rather deteriorated.

【0036】比較例4 実施例5と同一の劣化触媒を実施例5と同様の処理を行
った。ただし、空気の空塔線速度を6cm/secとした。再
生処理した触媒は粒子同志が付着していた。新品触媒、
劣化触媒、再生処理触媒の活性試験結果を表2に示す。
処理触媒の活性は実施例5の場合と比べて不十分であ
る。
Comparative Example 4 The same deteriorated catalyst as in Example 5 was treated in the same manner as in Example 5. However, the linear velocity of the superficial air was set to 6 cm / sec. The regenerated catalyst had particles attached to each other. New catalyst,
Table 2 shows the activity test results of the deteriorated catalyst and the regenerated catalyst.
The activity of the treated catalyst is insufficient as compared with the case of Example 5.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機化合物の酸化、アンモ酸化または酸
化脱水素反応に使用して触媒性能が劣化した鉄・アンチ
モン・リンを必須成分として含む金属酸化物触媒にリン
成分を含浸または吹き付けした後、酸素存在下に流動化
させながら600ないし900℃の温度範囲で加熱処理
することを特徴とする鉄・アンチモン・リン含有金属酸
化物触媒の再生方法。
1. A metal oxide catalyst containing, as an essential component, iron, antimony, and phosphorus whose catalytic performance has been deteriorated by being used for oxidation, ammoxidation, or oxidative dehydrogenation of an organic compound, after impregnating or spraying with a phosphorus component, A method for regenerating an iron-antimony-phosphorus-containing metal oxide catalyst, which comprises heat-treating in the temperature range of 600 to 900 ° C while fluidizing in the presence of oxygen.
【請求項2】 有機化合物の酸化、アンモ酸化または酸
化脱水素反応に使用して触媒性能が劣化した下記実験式
で示される組成を有する触媒を、酸素含有ガスの空塔線
速度7cm/sec以上で流動化させながら600ない
し900℃の温度範囲で加熱処理することを特徴とする
鉄・アンチモン・リン含有金属酸化物触媒の再生方法。 実験式 FeaSbbPcXdQeRfOg(SiO2)h 但し、上式中、XはV,MoおよびWからなる群から選
ばれた少なくとも一種の元素、QはLi,Na,K,C
s,Be,Mg,Ca,Sr,Ba,Sc,Y,La,
Ce,Pr,Nd,Sm,Th,Ti,Zr,Hf,T
a,Cr,Mn,Re,Co,Ni,Ru,Rh,P
d,Os,Ir,Pt,Cu,Ag,Au,Zn,C
d,Hg,Al,Ga,In,Tl,Ge,Snおよび
Pbからなる群から選ばれた少なくとも一種の元素、
はB、As、BiおよびSeからなる群から選ばれた少
なくとも一種の元素を示し、添字a,b,c,d,e,
f,gおよびhは原子比を示し、それぞれ次の範囲にあ
る。a=10のとき、b=5〜60,c=3〜40,d
=0〜10,e=0〜15,f=0〜10,g=上記各
成分が結合して生成する酸化物に対応する数,h=10
〜200。
2. A catalyst having a composition represented by the following empirical formula, which has been used in an oxidation, ammoxidation or oxidative dehydrogenation reaction of an organic compound and has a deteriorated catalytic performance, and a superficial linear velocity of oxygen-containing gas is 7 cm / sec or more. A method for regenerating an iron-antimony-phosphorus-containing metal oxide catalyst, which comprises heat-treating in a temperature range of 600 to 900 ° C. while fluidizing the solution. Empirical formula FeaSbbPcXdQeRfOg (SiO2) h where X is at least one element selected from the group consisting of V, Mo and W, and Q is Li, Na, K, C.
s, Be, Mg, Ca, Sr, Ba, Sc, Y, La,
Ce, Pr, Nd, Sm, Th, Ti, Zr, Hf, T
a, Cr, Mn, Re, Co, Ni, Ru, Rh, P
d, Os, Ir, Pt, Cu, Ag, Au, Zn, C
at least one element selected from the group consisting of d, Hg, Al, Ga, In, Tl, Ge, Sn and Pb, R
Is a minority selected from the group consisting of B, As, Bi and Se.
At least a kind of element is shown, and subscripts a, b, c, d, e,
f, g and h represent atomic ratios and are in the following ranges respectively. When a = 10, b = 5 to 60, c = 3 to 40, d
= 0 to 10, e = 0 to 15, f = 0 to 10, g = number corresponding to an oxide formed by combining the above components, h = 10
~ 200.
【請求項3】 劣化触媒にリン成分を含浸または吹き付
けした後に加熱処理する請求項2に記載の鉄・アンチモ
ン・リン含有金属酸化物の触媒再生方法。
3. The method for regenerating a catalyst of iron-antimony-phosphorus-containing metal oxide according to claim 2, wherein the deteriorated catalyst is impregnated with or sprayed with a phosphorus component and then heat-treated.
【請求項4】 劣化触媒に添加するリン成分の量が、触
媒中のアンチモンに対し原子比で0.2以下である請求項
1、2または3に記載の触媒再生方法。
4. The method for regenerating a catalyst according to claim 1, 2 or 3, wherein the amount of the phosphorus component added to the deteriorated catalyst is 0.2 or less in atomic ratio with respect to antimony in the catalyst.
【請求項5】 劣化した触媒が、メタノールのアンモ酸
化反応によるシアン化水素の製造に使用して活性の劣化
した触媒である請求項1、2、3または4に記載の触媒
再生方法。
5. The catalyst regeneration method according to claim 1, 2, 3 or 4, wherein the deteriorated catalyst is a catalyst whose activity is deteriorated when used in the production of hydrogen cyanide by the ammoxidation reaction of methanol.
JP15055694A 1994-06-09 1994-06-09 Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst Expired - Lifetime JP3376105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15055694A JP3376105B2 (en) 1994-06-09 1994-06-09 Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15055694A JP3376105B2 (en) 1994-06-09 1994-06-09 Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst

Publications (2)

Publication Number Publication Date
JPH07328447A JPH07328447A (en) 1995-12-19
JP3376105B2 true JP3376105B2 (en) 2003-02-10

Family

ID=15499468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15055694A Expired - Lifetime JP3376105B2 (en) 1994-06-09 1994-06-09 Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst

Country Status (1)

Country Link
JP (1) JP3376105B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506872B2 (en) * 1997-03-13 2004-03-15 三菱レイヨン株式会社 Method for producing hydrocyanic acid
JP4889866B2 (en) * 2001-02-06 2012-03-07 ダイヤニトリックス株式会社 Method for producing acrylonitrile
US6710011B2 (en) * 2001-12-21 2004-03-23 Saudi Basic Industries Corporatioin Catalyst compositions for the ammoxidation of alkanes and olefins, methods of making and of using same
US6916763B2 (en) * 2002-11-27 2005-07-12 Solutia Inc. Process for preparing a catalyst for the oxidation and ammoxidation of olefins
JP2015171693A (en) * 2014-03-12 2015-10-01 Jfeケミカル株式会社 Regeneration process of hydrodesulfurization catalyst
JP6357047B2 (en) * 2014-08-05 2018-07-11 広栄化学工業株式会社 Method for producing nitrile compound

Also Published As

Publication number Publication date
JPH07328447A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP2950851B2 (en) Iron / antimony / phosphorus-containing metal oxide catalyst composition and method for producing the same
JP3337696B2 (en) Preparation of acrylonitrile and methacrylonitrile
CA1046044A (en) Catalyst for use in and process for preparing acrylonitrile
US5907052A (en) Process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US6746983B2 (en) Hydrothermally synthesized MO-V-M-X oxide catalysts for the selective oxidation of hydrocarbons
JP3371112B2 (en) Iron / antimony-containing metal oxide catalyst composition and method for producing the same
US4208303A (en) Process for regenerating iron-antimony oxide containing catalyst
JPH0256938B2 (en)
JPH0256939B2 (en)
US3956378A (en) Process for the manufacture of unsaturated aldehydes and acids from the corresponding olefins
SK279822B6 (en) Process for regenerating metal oxide containing catalysts
JPH0764555B2 (en) Prussic acid manufacturing method
JP3376105B2 (en) Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst
JPH0242540B2 (en)
EP0109259B1 (en) Method for production or activation of antimony-containing metal oxide catalysts
JP3506872B2 (en) Method for producing hydrocyanic acid
US3879435A (en) Process for the production of acrylonitrile
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
US4218382A (en) Production of maleic anhydride from four-carbon hydrocarbons using catalysts prepared by water reflux techniques
JPH0245500B2 (en)
JPS6246538B2 (en)
JPH0479696B2 (en)
JPH0583539B2 (en)
JP2001276618A (en) Catalyst for oxidation or ammoxidation
JP3999850B2 (en) Process for producing hydrocyanic acid by fluidized bed reaction

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

EXPY Cancellation because of completion of term