JP4889866B2 - Method for producing acrylonitrile - Google Patents

Method for producing acrylonitrile Download PDF

Info

Publication number
JP4889866B2
JP4889866B2 JP2001029319A JP2001029319A JP4889866B2 JP 4889866 B2 JP4889866 B2 JP 4889866B2 JP 2001029319 A JP2001029319 A JP 2001029319A JP 2001029319 A JP2001029319 A JP 2001029319A JP 4889866 B2 JP4889866 B2 JP 4889866B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
propylene
acrylonitrile
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001029319A
Other languages
Japanese (ja)
Other versions
JP2002233759A5 (en
JP2002233759A (en
Inventor
敏雄 中村
八郎 荒井
義一 沢田
雅則 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP2001029319A priority Critical patent/JP4889866B2/en
Publication of JP2002233759A publication Critical patent/JP2002233759A/en
Publication of JP2002233759A5 publication Critical patent/JP2002233759A5/en
Application granted granted Critical
Publication of JP4889866B2 publication Critical patent/JP4889866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流動層反応器を用いたプロピレンのアンモ酸化反応によるアクリロニトリルの製造に関する。更に詳しくは、アクリロニトリル製造を開始するに際して、流動層反応器内で触媒の前処理を行うことにより、反応開始直後から高いレベルで、かつ長期間にわたり安定したアクリロニトリル収率を得る方法に関する。
【0002】
【従来の技術】
プロピレンのアンモ酸化反応によるアクリロニトリル製造の開始に際して予め触媒を反応器内で前処理する方法の具体的提案はされていない。類似技術としては、触媒製造時の加熱処理、性能の低下した触媒の再生・賦活のための加熱処理法が知られている。
【0003】
プロピレンをアンモ酸化して、アクリロニトリルを製造するための触媒は多数提案されている。例えば、特公昭38―17967号公報にはモリブデン、ビスマスおよび鉄を含む酸化物触媒が、特公昭38―19111号公報にはアンチモンおよび鉄を含む酸化物触媒が提案されており、これらの触媒系に対して数々の改良提案がなされている。これらの改良例としては、特開昭49―101335号公報、特公昭51―33888号公報、特開昭52―125124号公報、特公昭53−18014、特開昭57―180431号公報、特公昭58―38424号公報、特開昭59―204163号公報、特公昭61―43094号公報、特公昭61―26419号公報、特開平4―118051号公報、特開平7―289901号公報、特開平7―328441号公報および特開平10―43595号公報などの提案がなされている。これら触媒の具体的製造方法は、個々に異なっているが次のような工程を経て製造される。触媒構成物である各種金属成分、シリカなどの触媒担体成分などからなる原料スラリーを調製する工程、該原料スラリーを噴霧乾燥して球形粉体を得る工程、該粉体を乾燥させる工程、該乾燥粉体を最終的に焼成する工程から成り立っている。最終的焼成工程は、その最適条件は触媒により異なるが、通常500ないし950℃、1時間ないし50時間、空気雰囲気下の高温度で処理される。
【0004】
また、別の類似技術として、長時間の使用により性能の低下した触媒の再生法がある。プロピレンのアンモ酸化反応に使われる触媒を再生する方法としては、触媒を高温度で焼成する方法、触媒中の有効成分を追加する方法、触媒に新たな成分を加える方法およびこれらの方法の組み合わせがある。具体的提案の例として、特開昭54―62193号公報には劣化した鉄・アンチモン系触媒を600℃ないし950℃の温度範囲で焼成する方法、特公昭63―33903号公報には劣化したモリブデン含有触媒を焼成する方法、特公昭55―49541号公報、特開平7―289901および特開平11―319562号公報には劣化したモリブデン含有触媒にモリブデンを追加して最終的に焼成する方法が示されている。これらは、いずれも最終的に500ないし1000℃の高温度で触媒を焼成している。
【0005】
上記従来技術によって、製造または再生された触媒は包装材料により包装されドラム缶などに詰められたり、ホッパーなどの金属製容器に直接充填された状態で貯蔵される。貯蔵期間は、一概には言えないが数ヶ月以上の長期に及ぶこともある。このような触媒を反応器に充填して、アクリロニトリル製造に使用開始した時、アクリロニトリル収率が反応開始から数ヶ月の間、期待される値より低い値であったり、甚だしい時には、時間の経過に拘わらず低い水準に止まることがある。従来は、このような問題点の解決に関しては何らの開示もなされていない。
【0006】
【発明が解決しようとする課題】
本発明は、流動層反応器においてプロピレンをアンモ酸化してアクリロニトリルを製造するに際して、反応開始直後から高く、かつ経時的に安定したアクリロニトリル収率を得るためのアクリロニトリルの製造方法を提案するものである。
【0007】
【課題を解決するための手段】
本発明者らは、課題解決のため鋭意検討した結果、流動層反応器を用いてプロピレンのアンモ酸化反応によりアクリロニトリル製造を開始するに際して、反応開始に先立って流動層反応器にて特定条件下で触媒前処理することにより、反応開始直後から高いアクリロニトリル収率が得られ、かつ長期にわたり安定した反応成績が得られる工業的に実施容易な方法を見出し本発明に到達した。
【0008】
すなわち、本発明は流動層反応器を用いてプロピレンのアンモ酸化反応によりアクリロニトリルを製造する方法であってアンモ酸化反応開始前に流動層反応器に触媒を充填して酸素濃度が5ないし30%のガス雰囲気下で触媒を300℃ないし450℃の温度範囲で1時間ないし100時間加熱するアクリロニトリルの製造方法を要旨とするものである。
【0009】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
本発明では、アンモ酸化反応開始前、すなわち原料供給前に流動層反応器内にて触媒を特定条件下で加熱するという前処理を行うことが特徴である。通常、触媒は製造または再生・賦活処理の最終工程において高温度の焼成処理がなされているにも拘わらず、本発明の比較的低温度の前処理で顕著な効果が発現する原因は不明であるが、触媒が貯蔵中の水分や雰囲気ガスの影響により被毒され本発明の方法により被毒が除去されたものと考えられる。
【0010】
本発明における加熱処理は酸素濃度が5ないし30%の含酸素雰囲気、ガス流通下で行う。酸素濃度が低過ぎても高過ぎても効果の発現は不十分である。含酸素ガスとしては空気の使用が便利であるが、酸素または空気を不活性ガスで希釈したり、酸素富化空気を使うことができる。
【0011】
本発明における加熱処理温度は300ないし450℃とする。温度が300℃以下では効果が不十分であり、450℃を越える高温は特に効果の促進がなく、通常の反応器内で実施することに困難が伴い実用的でない。また、加熱処理時間は1時間ないし100時間行う。加熱時間1時間以下では効果が不十分であり、100時間以上の長時間加熱をすると効果の増大がないうえ触媒表面積の減少など悪影響が起きる場合がある。加熱処理方法は、特に限定されるものではなく、反応器外壁のヒーターにより加熱する方法、熱交換器を介して加熱されたガスを反応器に導入する方法、高温度の燃焼ガスに含酸素ガス、不活性ガスなどを混合した高温ガスを直接反応器に導入する方法、含酸素ガスとアンモニアなどの可燃性ガスを反応器に導入して触媒層で可燃性ガスを燃焼させる方法など種々の方法から任意に選択することができる。
【0012】
本発明の方法では、加熱処理を効率的に行うためにはガス空塔速度に配慮するのが効果的であり、0.1m/sないし1m/sの範囲とするのが好ましい。ガス空塔速度0.1m/s以下では工業規模の装置では触媒の流動化が不良になるため十分な加熱処理効果が得られない場合がある。また、ガス流速が過大になるとガスに同伴・輸送される触媒量が多くなるため触媒の飛散損失が増加する傾向がある。加熱処理における圧力は、特に限定されるものではないが大気圧ないし2×10Paの範囲が好ましく用いられる。
【0013】
本発明の方法に用いる触媒は特に限定されるものではないが、鉄及びアンチモン、またはモリブデン及びビスマスを必須成分とする触媒系に特に有効である。これらの触媒系の具体例は「従来の技術」の項に記載した従来文献で挙げられているものなどを例示することができる。
【0014】
本発明の効果を充分に発揮するためには、加熱処理に引き続き可及的速やかに、原料プロピレン、アンモニアを送入して反応を開始することが望ましい。反応開始以降の製造方法は、当該事業者が従来から用いている通常の方法を採用すればよい。反応開始時には特に安全上の理由から、反応器の入口および出口において爆鳴気を形成させないために酸素濃度を十分に低下させることが重要であり、具体的には、米国特許公報4386228号公報や、此木恵三著「プロセスシステムの設計(上)」68〜71頁(丸善 1974年)などに開示されている常法を用いることができる。
【0015】
【実施例】
以下実施例により、更に具体的に説明するが、本発明はこれら実施例に限定されるものでない。なお、実施例中のプロピレン転化率、アクリロニトリル収率は下記の式で定義する。
プロピレン転化率(%)=(反応したプロピレンのモル数)/(供給したプロピレンのモル数)× 100
アクリロニトリル収率(%)=(生成アクリロニトリルのモル数)/(供給したプロピレンのモル数)× 100
【0016】
(実施例1)
特開平4―118051号公報の実施例1に示されている実験式がFe10Sb10Mo8.5Bi1.50.2Ni5.00.750.5575.25(SiO45である触媒を開示された方法で製造した。この触媒をポリエチレン製の袋に入れて、空気雰囲気中、室温下に3ヶ月間保存した後、この触媒2.93Kgを採取して、3インチ、高さ2mのステンレス製流動層反応器に充填した。熱交換器において約400℃に加熱された空気を触媒層に導入しつつ、反応器外壁に設けられた電熱ヒーターにより触媒層を加熱した。この時、触媒層温度が300℃に到達後、ガス空塔速度を約0.15m/sないし0.18m/sに維持して2時間の加熱処理を行いつつ400℃迄昇温した。触媒層温度が400℃に到達後、触媒層にプロピレンとアンモニアを供給した。反応条件は温度430℃、モル比が空気:アンモニア:プロピレン=9.5:1.2:1.0、見かけ接触時間が3.5秒および圧力は反応器出口が大気圧となるよう調整した。
反応成績は、反応開始から10時間後においてプロピレン転化率98.5%、アクリロニトリル収率85.0%、反応開始から700時間後においてプロピレン転化率98.0%、アクリロニトリル収率84.8%であった。
【0017】
(実施例2)
実施例1と同じ触媒、同じ反応器を用いて、触媒層の加熱処理方法を300℃から400℃までを1時間、ガス空塔速度を約0.15m/sないし0.18m/sで昇温して、引き続き400℃において空気80vol.%、水蒸気20vol.%の混合ガスをガス空塔速度0.18m/sで流通させた以外は実施例1と同様な方法でプロピレンのアンモ酸化反応を行った。
反応成績は、反応開始から10時間後においてプロピレン転化率98.3%、アクリロニトリル収率85.2%、反応開始から700時間後においてプロピレン転化率97.7%、アクリロニトリル収率84.9%であった。
【0018】
(比較例1)
実施例1と同じ触媒、同じ反応器を用いて、触媒層の加熱処理方法を300℃から400℃までを0.5時間で昇温した以外は実施例1と同様な方法でプロピレンのアンモ酸化反応を行った。
反応成績は、反応開始から10時間後においてプロピレン転化率96.5%、アクリロニトリル収率83.0%、反応開始から700時間後においてプロピレン転化率96.8%、アクリロニトリル収率83.5%であった。
【0019】
(比較例2)
実施例1と同じ触媒、同じ反応器を用いて、触媒層の加熱処理方法を温度300℃から400℃迄をガス空塔速度を約0.05m/sないし0.06m/sに維持しつつ2時間で昇温した以外は実施例1と同様な方法でプロピレンのアンモ酸化反応を行った。
反応成績は、反応開始から10時間後においてプロピレン転化率97.0%、アクリロニトリル収率83.3%、反応開始から700時間後においてプロピレン転化率97.8%、アクリロニトリル収率84.2%であった。
【0020】
【発明の効果】
本発明によれば、反応開始直後から高いアクリロニトリル収率が得られ、かつ長期間経時的に安定したアクリロニトリル収率が容易に達成できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production of acrylonitrile by ammoxidation of propylene using a fluidized bed reactor. More specifically, the present invention relates to a method for obtaining a stable acrylonitrile yield at a high level for a long period of time immediately after the start of the reaction by pretreating the catalyst in a fluidized bed reactor when starting the acrylonitrile production.
[0002]
[Prior art]
There is no specific proposal of a method for pretreating the catalyst in the reactor in advance at the start of acrylonitrile production by ammoxidation reaction of propylene. As a similar technique, a heat treatment for producing a catalyst and a heat treatment method for regenerating and activating a catalyst with reduced performance are known.
[0003]
Many catalysts for ammoxidizing propylene to produce acrylonitrile have been proposed. For example, Japanese Patent Publication No. 38-17967 proposes an oxide catalyst containing molybdenum, bismuth and iron, and Japanese Patent Publication No. 38-19111 proposes an oxide catalyst containing antimony and iron. Numerous improvement proposals have been made. Examples of these improvements include JP-A-49-101335, JP-B-51-33888, JP-A-52-125124, JP-B-53-18014, JP-A-57-180431, 58-38424, JP-A-59-204163, JP-B-61-43094, JP-B-61-26419, JP-A-4-118051, JP-A-7-289901, JP-A-7 JP-A-328441 and JP-A-10-43595 have been proposed. Although the specific manufacturing method of these catalysts differs individually, it manufactures through the following processes. A step of preparing a raw material slurry comprising various metal components which are catalyst constituents, a catalyst carrier component such as silica, a step of spray-drying the raw material slurry to obtain a spherical powder, a step of drying the powder, the drying It consists of the process of finally firing the powder. The final calcination process is usually performed at a high temperature in an air atmosphere at 500 ° C. to 950 ° C. for 1 hour to 50 hours, although the optimum conditions vary depending on the catalyst.
[0004]
As another similar technique, there is a method for regenerating a catalyst whose performance has deteriorated due to long-term use. As a method for regenerating the catalyst used for the ammoxidation reaction of propylene, there are a method of calcining the catalyst at a high temperature, a method of adding an active component in the catalyst, a method of adding a new component to the catalyst, and a combination of these methods. is there. As examples of specific proposals, Japanese Patent Laid-Open No. 54-62193 discloses a method of calcining a deteriorated iron / antimony catalyst in a temperature range of 600 ° C. to 950 ° C., and Japanese Patent Publication No. 63-33903 discloses a deteriorated molybdenum. Japanese Patent Publication No. 55-49541, Japanese Patent Application Laid-Open No. 7-289901 and Japanese Patent Application Laid-Open No. 11-319562 show a method of adding molybdenum to a deteriorated molybdenum-containing catalyst and finally calcination. ing. All of these finally calcinate the catalyst at a high temperature of 500 ° C. to 1000 ° C.
[0005]
According to the above-described conventional technology, the produced or regenerated catalyst is packed with a packaging material and packed in a drum can, or stored in a state of being directly packed in a metal container such as a hopper. The storage period can be as long as several months or more, although it cannot be generally stated. When such a catalyst is charged into a reactor and used for acrylonitrile production, the acrylonitrile yield is lower than expected for several months from the start of the reaction, Nevertheless, it may remain at a low level. Conventionally, no disclosure has been made regarding the solution of such problems.
[0006]
[Problems to be solved by the invention]
The present invention proposes a method for producing acrylonitrile for obtaining an acrylonitrile yield that is high immediately after the start of the reaction and is stable over time when producing acrylonitrile by ammoxidizing propylene in a fluidized bed reactor. .
[0007]
[Means for Solving the Problems]
As a result of diligent investigations to solve the problems, the present inventors have found that when starting acrylonitrile production by propylene ammoxidation reaction using a fluidized bed reactor, the fluidized bed reactor is used under specific conditions prior to the start of the reaction. By carrying out catalyst pretreatment, a high acrylonitrile yield was obtained immediately after the start of the reaction, and an industrially easy-to-implement method capable of obtaining stable reaction results over a long period of time was found and the present invention was achieved.
[0008]
That is, the present invention is a method for producing acrylonitrile by propylene ammoxidation reaction using a fluidized bed reactor, and the fluidized bed reactor is filled with a catalyst before starting the ammoxidation reaction, so that the oxygen concentration is 5 % to 30 %. The gist is a method for producing acrylonitrile in which the catalyst is heated in a temperature range of 300 ° C. to 450 ° C. for 1 hour to 100 hours in a% gas atmosphere.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The present invention is characterized in that a pretreatment is performed in which the catalyst is heated under specific conditions in the fluidized bed reactor before the start of the ammoxidation reaction, that is, before the raw material is supplied. In general, although the catalyst is subjected to a high-temperature calcination treatment in the final step of the production or regeneration / activation process, the cause of the remarkable effect obtained by the relatively low-temperature pretreatment of the present invention is unknown. However, it is considered that the catalyst was poisoned by the influence of moisture and atmospheric gas during storage, and the poisoning was removed by the method of the present invention.
[0010]
The heat treatment in the present invention is performed in an oxygen-containing atmosphere and gas flow with an oxygen concentration of 5 % to 30%. If the oxygen concentration is too low or too high, the effect is insufficient. The use of air is convenient as the oxygen-containing gas, but oxygen or air can be diluted with an inert gas or oxygen-enriched air can be used.
[0011]
The heat treatment temperature in the present invention is set to 300 ° C. to 450 ° C. When the temperature is 300 ° C. or lower, the effect is insufficient, and when the temperature exceeds 450 ° C., the effect is not particularly promoted, and it is difficult to carry out in a normal reactor and is not practical. The heat treatment time is 1 hour to 100 hours. If the heating time is 1 hour or less, the effect is insufficient, and if the heating is performed for a long time of 100 hours or more, there is a case where the effect does not increase and a bad influence such as a decrease in the catalyst surface area may occur. The heat treatment method is not particularly limited, a method of heating with a heater on the outer wall of the reactor, a method of introducing a gas heated through a heat exchanger into the reactor, an oxygen-containing gas in a high-temperature combustion gas Various methods such as a method of directly introducing a high-temperature gas mixed with an inert gas into the reactor, a method of introducing a combustible gas such as oxygen-containing gas and ammonia into the reactor, and burning the combustible gas in the catalyst layer Can be selected arbitrarily.
[0012]
In the method of the present invention, in order to efficiently perform the heat treatment, it is effective to consider the gas superficial velocity, and it is preferable that the range is 0.1 m / s to 1 m / s. When the gas superficial velocity is 0.1 m / s or less, the fluidization of the catalyst becomes poor in an industrial scale apparatus, so that a sufficient heat treatment effect may not be obtained. Further, when the gas flow rate is excessive, the amount of catalyst entrained and transported with the gas increases, so that the scattering loss of the catalyst tends to increase. The pressure in the heat treatment is not particularly limited, but a range of atmospheric pressure to 2 × 10 5 Pa is preferably used.
[0013]
The catalyst used in the method of the present invention is not particularly limited, but is particularly effective for a catalyst system containing iron and antimony, or molybdenum and bismuth as essential components. Specific examples of these catalyst systems include those listed in the conventional literature described in the section “Prior Art”.
[0014]
In order to fully demonstrate the effects of the present invention, it is desirable to start the reaction by feeding raw material propylene and ammonia as soon as possible following the heat treatment. As a manufacturing method after the start of the reaction, a normal method conventionally used by the operator may be adopted. At the start of the reaction, for safety reasons, it is important to sufficiently reduce the oxygen concentration in order to prevent the formation of squealing gas at the inlet and outlet of the reactor. Specifically, US Pat. No. 4,386,228 and Ordinary methods disclosed in Kozoki Keizo, “Process System Design (Part 1)”, pp. 68-71 (Maruzen 1974) and the like can be used.
[0015]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The propylene conversion rate and acrylonitrile yield in the examples are defined by the following formulas.
Propylene conversion rate (%) = (number of moles of reacted propylene) / (number of moles of supplied propylene) × 100
Acrylonitrile yield (%) = (Mole number of acrylonitrile produced) / (Mole number of supplied propylene) × 100
[0016]
Example 1
The experimental formula shown in Example 1 of Japanese Patent Laid-Open No. 4-118051 is Fe 10 Sb 10 Mo 8.5 Bi 1.5 K 0.2 Ni 5.0 B 0.75 P 0.55 O 75. A catalyst of 25 (SiO 2 ) 45 was prepared by the disclosed method. This catalyst is put in a polyethylene bag and stored in an air atmosphere at room temperature for 3 months. Then, 2.93 kg of this catalyst is collected and filled into a stainless steel fluidized bed reactor having a height of 3 inches and a height of 2 m. did. While introducing air heated to about 400 ° C. in the heat exchanger to the catalyst layer, the catalyst layer was heated by an electric heater provided on the outer wall of the reactor. At this time, after the catalyst layer temperature reached 300 ° C., the gas superficial velocity was maintained at about 0.15 m / s to 0.18 m / s, and the temperature was raised to 400 ° C. while performing heat treatment for 2 hours. After the catalyst layer temperature reached 400 ° C., propylene and ammonia were supplied to the catalyst layer. The reaction conditions were such that the temperature was 430 ° C., the molar ratio was air: ammonia: propylene = 9.5: 1.2: 1.0, the apparent contact time was 3.5 seconds, and the pressure was adjusted so that the reactor outlet was at atmospheric pressure. .
The reaction results were as follows: 10 hours after the start of the reaction, propylene conversion 98.5%, acrylonitrile yield 85.0%, 700 hours after the start of the reaction, propylene conversion 98.0%, acrylonitrile yield 84.8% there were.
[0017]
(Example 2)
Using the same catalyst and the same reactor as in Example 1, the heat treatment method of the catalyst layer is from 300 ° C. to 400 ° C. for 1 hour, and the gas superficial velocity is about 0.15 m / s to 0.18 m / s. The temperature was raised, and subsequently at 80 ° C. air 80 vol. %, Water vapor 20 vol. The ammoxidation reaction of propylene was carried out in the same manner as in Example 1 except that 1% of the mixed gas was circulated at a gas superficial velocity of 0.18 m / s.
The reaction results were: propylene conversion rate 98.3%, acrylonitrile yield 85.2% 10 hours after the start of the reaction, propylene conversion rate 97.7%, acrylonitrile yield 84.9% 700 hours after the start of the reaction. there were.
[0018]
(Comparative Example 1)
Using the same catalyst and the same reactor as in Example 1, the ammoxidation of propylene was carried out in the same manner as in Example 1 except that the temperature of the catalyst layer was increased from 300 ° C. to 400 ° C. in 0.5 hours. Reaction was performed.
The reaction results were as follows: 10 hours after the start of the reaction, propylene conversion 96.5%, acrylonitrile yield 83.0%, 700 hours after the start of the reaction, propylene conversion 96.8%, acrylonitrile yield 83.5% there were.
[0019]
(Comparative Example 2)
Using the same catalyst and the same reactor as in Example 1, the heat treatment method of the catalyst layer was maintained at a temperature of 300 ° C. to 400 ° C., and the gas superficial velocity was maintained at about 0.05 m / s to 0.06 m / s. However, the ammoxidation reaction of propylene was performed in the same manner as in Example 1 except that the temperature was raised in 2 hours.
The reaction results were as follows: 10 hours after the start of the reaction, propylene conversion 97.0%, acrylonitrile yield 83.3%, 700 hours after the reaction started, propylene conversion 97.8%, acrylonitrile yield 84.2% there were.
[0020]
【Effect of the invention】
According to the present invention, a high acrylonitrile yield can be obtained immediately after the start of the reaction, and a stable acrylonitrile yield can be easily achieved over time.

Claims (2)

流動層反応器を用いてプロピレンのアンモ酸化反応によりアクリロニトリルを製造する方法であって、アンモ酸化反応開始前に流動層反応器に触媒を充填して酸素濃度が5%ないし30%のガス雰囲気下で、ガス空塔速度を0.1m/sから1m/sの範囲に保持して、触媒を300℃ないし450℃の温度範囲で1時間ないし100時間、流動化しつつ加熱するアクリロニトリルの製造方法。A method for producing acrylonitrile by ammoxidation of propylene using a fluidized bed reactor, before the start ammoxidation, the oxygen concentration is 5% to 30% of the atmosphere by filling the catalyst into the fluidized bed reactor A process for producing acrylonitrile in which the gas superficial velocity is maintained in the range of 0.1 m / s to 1 m / s and the catalyst is heated while fluidizing in the temperature range of 300 ° C. to 450 ° C. for 1 hour to 100 hours . . 触媒が鉄及びアンチモン、またはモリブデン及びビスマスを必須成分とすることを特徴とする請求項1の方法。  2. The process of claim 1, wherein the catalyst comprises iron and antimony or molybdenum and bismuth as essential components.
JP2001029319A 2001-02-06 2001-02-06 Method for producing acrylonitrile Expired - Fee Related JP4889866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029319A JP4889866B2 (en) 2001-02-06 2001-02-06 Method for producing acrylonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029319A JP4889866B2 (en) 2001-02-06 2001-02-06 Method for producing acrylonitrile

Publications (3)

Publication Number Publication Date
JP2002233759A JP2002233759A (en) 2002-08-20
JP2002233759A5 JP2002233759A5 (en) 2008-03-13
JP4889866B2 true JP4889866B2 (en) 2012-03-07

Family

ID=18893681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029319A Expired - Fee Related JP4889866B2 (en) 2001-02-06 2001-02-06 Method for producing acrylonitrile

Country Status (1)

Country Link
JP (1) JP4889866B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503444B2 (en) * 2004-02-05 2010-07-14 ダイヤニトリックス株式会社 Catalyst for producing acrylonitrile and method for producing acrylonitrile

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437589B2 (en) * 1975-03-14 1979-11-15
JPS5976544A (en) * 1982-10-26 1984-05-01 Nitto Chem Ind Co Ltd Regenerating method of iron-antimony type metallic oxide catalyst
US5093299A (en) * 1990-01-09 1992-03-03 The Standard Oil Company Catalyst for process for the manufacture of acrylonitrile and methacrylonitrile
JP3500680B2 (en) * 1992-12-24 2004-02-23 三菱化学株式会社 Method for producing catalyst for nitrile production
JP3376105B2 (en) * 1994-06-09 2003-02-10 三菱レイヨン株式会社 Method for regenerating iron / antimony / phosphorus-containing metal oxide catalyst
TW325461B (en) * 1995-09-11 1998-01-21 Air Prod & Chem Ammoxidation of alkanes and alkenes
JP3976824B2 (en) * 1996-11-06 2007-09-19 ダイヤニトリックス株式会社 Production method of acrylonitrile

Also Published As

Publication number Publication date
JP2002233759A (en) 2002-08-20

Similar Documents

Publication Publication Date Title
KR100277241B1 (en) Process for preparing unsaturated aldehyde and unsaturated carboxylic acid
JP2702864B2 (en) Catalyst regeneration method
JP3733382B2 (en) High performance VPO catalyst and method for producing the same
KR920009116B1 (en) Process for regenerating a catalyst
JP2003117397A (en) Production method of catalyst for ammoxidation
US4208303A (en) Process for regenerating iron-antimony oxide containing catalyst
WO1999058241A1 (en) Method for regenerating molybdenum-containing oxide fluidized-bed catalyst
JPH0533100B2 (en)
JP2015180663A (en) Poly-hydroxy compound dehydration system, catalyst composition and method
JP4889866B2 (en) Method for producing acrylonitrile
JP2520282B2 (en) Method for producing acrylonitrile
JPS6018212B2 (en) Regeneration method of catalyst for methacrylic acid production
JP4221060B2 (en) Gas phase catalytic oxidation of n-butane to maleic anhydride, including in situ catalyst calcination / activation
JP5187800B2 (en) Method for producing unsaturated acid or unsaturated nitrile
WO2020039985A1 (en) Method for producing ammoxidation catalyst, and method for producing acrylonitrile
JP4413368B2 (en) Oxidation or ammoxidation catalyst
JP2002233759A5 (en) Method for producing acrylonitrile
JPH0479696B2 (en)
KR870000522B1 (en) Contisuous process preparing indole
JPH07206427A (en) Production of hydrocyanic acid
JP4162915B2 (en) Preparation method of oxidation catalyst and production method of nitrile using the catalyst
JP2640356B2 (en) Acrylonitrile manufacturing method
JPH0256143B2 (en)
JPH0139418B2 (en)
JP4067316B2 (en) Catalyst preparation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4889866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees