JPH0140956B2 - - Google Patents

Info

Publication number
JPH0140956B2
JPH0140956B2 JP56066604A JP6660481A JPH0140956B2 JP H0140956 B2 JPH0140956 B2 JP H0140956B2 JP 56066604 A JP56066604 A JP 56066604A JP 6660481 A JP6660481 A JP 6660481A JP H0140956 B2 JPH0140956 B2 JP H0140956B2
Authority
JP
Japan
Prior art keywords
current
cable
leakage current
amount
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56066604A
Other languages
Japanese (ja)
Other versions
JPS57179761A (en
Inventor
Susumu Shimokuchi
Akio Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP56066604A priority Critical patent/JPS57179761A/en
Publication of JPS57179761A publication Critical patent/JPS57179761A/en
Publication of JPH0140956B2 publication Critical patent/JPH0140956B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【発明の詳細な説明】 本発明は電気機器(ケーブルも含む)の直流漏
れ電流試験法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved DC leakage current testing method for electrical equipment (including cables).

電気機器の絶縁診断法として、電気機器に直流
高電圧を課電し、該課電下での漏れ電流を測定す
ることが公知である。この測定方法を実施する場
合、高電圧側で漏れ電流を測定することがあり、
第1図はケーブル線路を対象とする場合のその測
定方法を示している。
As a method for diagnosing the insulation of electrical equipment, it is known to apply a DC high voltage to the electrical equipment and measure the leakage current under the applied voltage. When performing this measurement method, leakage current may be measured on the high voltage side.
FIG. 1 shows a method for measuring cable lines.

第1図において、1′はケーブルを示し、ケー
ブル遮蔽層は接地線2′により接地されている。
31′,32′はケーブルブツシングを、4′は直
流高電圧電源を、5′は電流計を、6′は電流記録
計をそれぞれ示している。71′,72′はケーブ
ルブツシング31′,32′にそれぞれ取付けたガ
ード電極であり、これらはガード線8′によつて
接続されれいる。9′はケーブル遠端側ブツシン
グ32′の高圧側を包囲せるシールド電極である。
10′は電流計5′並びに電流記録計6′を包囲せ
るシールド電極であり、ケーブル近端ブツシング
31′のガード電極71′並びに電源リード線4
0′に電気的に連通されている。従つてシールド
電極9′,10′は電源電圧と同電圧に保たれてい
る。
In FIG. 1, 1' indicates a cable, and the cable shielding layer is grounded by a grounding wire 2'.
31' and 32' are cable bushings, 4' is a DC high voltage power supply, 5' is an ammeter, and 6' is a current recorder. Guard electrodes 71' and 72' are respectively attached to the cable bushings 31' and 32', and these are connected by a guard wire 8'. 9' is a shield electrode that can surround the high voltage side of the bushing 32' at the far end of the cable.
10' is a shield electrode that surrounds the ammeter 5' and the current recorder 6', and the guard electrode 71' of the bushing 31' at the near end of the cable and the power lead wire 4.
0'. Therefore, the shield electrodes 9', 10' are maintained at the same voltage as the power supply voltage.

上記において、A′…は大地からブツシングの
ガード電極に流れるブツシング表面電流を、
B′−・−は高圧−大地間を流れる電流をそれぞ
れ示し、これらの電流はシールド電極9′,1
0′のために電流計5′、電流記録計6′には侵入
することがなく、これらの電流の影響を受けるこ
となく、ケーブル絶縁体電流を高精度で測定でき
る。
In the above, A'... is the bushing surface current flowing from the ground to the guard electrode of the bushing,
B′-・- indicate the currents flowing between the high voltage and the ground, and these currents are connected to the shield electrodes 9′ and 1.
0', the current does not enter the ammeter 5' and the current recorder 6', and the cable insulator current can be measured with high accuracy without being affected by these currents.

しかしながら、第1図に示した測定方法では電
流測定回路が高電圧側にあるので、電流計、記録
計の操作が困難であり、その回路構成も複雑にな
るといつた不利がある。
However, in the measuring method shown in FIG. 1, since the current measuring circuit is located on the high voltage side, it is difficult to operate the ammeter and recorder, and the circuit configuration is complicated.

本発明に係る電気機器の直流漏れ電流試験法
は、上記の不利を解消できる方法であり、電気機
器に直流高電圧を課電し、該課電下での漏れ電流
を測定して絶縁診断を行う方法において、高圧側
に電気一光変換器を挿入し、上記漏れ電流量を光
量に変換し、該光量を光ガイドを介して光一電気
変換器により電流量に変換し、該電流量を測定す
ることを特徴とする方法である。
The DC leakage current testing method for electrical equipment according to the present invention is a method that can eliminate the above-mentioned disadvantages, and conducts insulation diagnosis by applying a DC high voltage to the electrical equipment and measuring the leakage current under the applied voltage. In this method, an electric-to-optical converter is inserted on the high-voltage side to convert the amount of leakage current into a light amount, and the light amount is converted to a current amount by the optical-to-electrical converter via a light guide, and the amount of current is measured. This method is characterized by:

以下、図面により本発明を説明する。 The present invention will be explained below with reference to the drawings.

第2図において1はケーブルであり、遮蔽層は
接地されている。21,22はケーブル両終端の
ブツシングであり、各ブツシング21,22には
ガード電極31,32が取付けられている。4は
直流高電圧電源であり、電源リード線40を介し
てケーブル導体に接続されている。5は電源リー
ド線40に挿入した電気一光変換器、6は光一電
気変換器であり、この光一電気変換器6の入力端
と上記電気一光変換器5との間は光ガイド7(光
フアイバケーブル)により接続されている。8は
電流記録計であり、光一電気変換器6の出力端に
接続されている。9は光一電気変換器5を包囲せ
るシールド電極であり、電源リード線40並びに
ケーブル近端ブツシング21のガード電極31に
接続されている。10はケーブル遠端ブツシング
22の高圧側を包囲せるシールド電極であり、こ
のシールド電極10と上記シールド電極9とはガ
ード線11によつて接続されている。このガード
線11には電源高電圧が課電されるので耐電圧性
に秀れたケーブルを使用する必要があり、試験対
象外の他のケーブル線路を用いることができる。
12は保護抵抗であり、試験ケーブル1が万一地
絡した場合に大電流が流れるのを阻止するための
ものであり、そのインピーダンスは、電気一光変
換器5のインピーダンスよりも充分に大とされて
いる。
In FIG. 2, 1 is a cable, and the shielding layer is grounded. 21 and 22 are bushings at both ends of the cable, and guard electrodes 31 and 32 are attached to each bushing 21 and 22, respectively. 4 is a DC high voltage power supply, which is connected to the cable conductor via a power supply lead wire 40. 5 is an electrical-to-optical converter inserted into the power supply lead wire 40; 6 is an optical-to-electrical converter; a light guide 7 (optical) is connected between the input end of the optical-to-electrical converter 6 and the electrical-to-optical converter 5; fiber cable). 8 is a current recorder, which is connected to the output end of the optical electric converter 6. A shield electrode 9 surrounds the opto-electrical converter 5 and is connected to the power supply lead wire 40 and the guard electrode 31 of the bushing 21 at the proximal end of the cable. A shield electrode 10 surrounds the high voltage side of the bushing 22 at the far end of the cable, and the shield electrode 10 and the shield electrode 9 are connected by a guard wire 11. Since this guard wire 11 is charged with a high power supply voltage, it is necessary to use a cable with excellent voltage resistance, and other cable lines other than those to be tested can be used.
A protective resistor 12 is used to prevent a large current from flowing in the event that the test cable 1 has a ground fault, and its impedance is sufficiently larger than the impedance of the electrical-to-optical converter 5. has been done.

上記において、既述したブツシング表面電流、
高圧−大地間電流が電気一光変換器5に侵入しな
いことは、既述した説明から明らである。
In the above, the bushing surface current mentioned above,
It is clear from the above description that the high voltage-to-ground current does not enter the electrical-to-optical converter 5.

従つて、ケーブル絶縁体電流(漏れ電流)のみ
が電気一光変換器5を流れ、この漏れ電流量が電
気一光変換器5により光量に変換され、これが光
ガイド7を経て光一電気変換器6に伝送され、当
該変換器6により漏れ電流量に変換され、この漏
れ電流が記録計8で記録される。
Therefore, only the cable insulator current (leakage current) flows through the electro-optical converter 5, and this amount of leakage current is converted into a light amount by the electro-optical converter 5, which passes through the light guide 7 and passes through the electro-optical converter 6. The converter 6 converts the leakage current into a leakage current amount, and this leakage current is recorded by the recorder 8.

この場合、測定回路系は電源電圧から電気一光
変換器5により遮断されているので、電源電圧に
よる測定回路系の複雑化、測定操作の困難性は排
除できる。
In this case, since the measurement circuit system is isolated from the power supply voltage by the electrical-to-optical converter 5, it is possible to eliminate the complexity of the measurement circuit system and the difficulty of measurement operations caused by the power supply voltage.

第3図はケーブル線路の三相を同時に試験する
場合の試験回路を示し、光一電気変換器6には3
素子式光一電気変換器が用いられている。また、
記録計8には、ケーブル各相1a,1b,1cの
漏れ電流を分離し、それぞれの漏れ電流を同時に
記録できるものが用いられている。
Figure 3 shows a test circuit for simultaneously testing three phases of a cable line.
An element type opto-electrical converter is used. Also,
The recorder 8 used is one that can separate the leakage currents of the cable phases 1a, 1b, and 1c and simultaneously record each leakage current.

なお、第3図において、第2図と同一符号の構
成要素は第2図のそれと同一の構成要素を示して
いる。
In FIG. 3, components having the same reference numerals as those in FIG. 2 indicate the same components as those in FIG. 2.

上述した通り、本発明に係る直流漏れ電流試験
法によれば、測定回路系を試験高電圧から遮断し
て、ブツシング表面電流、高圧−大地間電流の影
響を受けることなく、漏れ電流を測定できる。
As described above, according to the DC leakage current testing method according to the present invention, the measurement circuit system is cut off from the test high voltage, and the leakage current can be measured without being affected by the bushing surface current or the high voltage-to-ground current. .

従つて、安定容易な測定操作で、高精度の漏れ
電流測定を行い得る。
Therefore, highly accurate leakage current measurement can be performed with a stable and easy measurement operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直流漏れ電流試験法を示す回路
図、第2図並びに第3図は本発明において使用す
る試験回路を示す説明図である。 図において、1,1a,1b,1cはケーブ
ル、4は直流電源、5…は電気一光変換器、7…
は光ガイド、6は光一電気変換器、8は電流記録
計である。
FIG. 1 is a circuit diagram showing a conventional DC leakage current testing method, and FIGS. 2 and 3 are explanatory diagrams showing a test circuit used in the present invention. In the figure, 1, 1a, 1b, 1c are cables, 4 is a DC power supply, 5... is an electrical-to-optical converter, 7...
is a light guide, 6 is a photoelectric converter, and 8 is a current recorder.

Claims (1)

【特許請求の範囲】[Claims] 1 電気機器に直流高電圧を課電し、該課電下で
の漏れ電流を測定することにより絶縁診断を行う
方法において、高圧側に電気一光変換器を挿入
し、上記漏れ電流量を光量に変換し、該光量を光
ガイドを介して光一電気変換器により電流量に変
換し、該電流量を測定することを特徴とする電気
機器の直流漏れ電流試験法。
1 In a method of diagnosing insulation by applying DC high voltage to electrical equipment and measuring leakage current under the applied voltage, an electrical-to-optical converter is inserted on the high voltage side, and the amount of leakage current is measured by the amount of light. 1. A method for testing direct current leakage current of electrical equipment, which comprises converting the amount of light into an amount of current using a light guide and measuring the amount of current.
JP56066604A 1981-04-30 1981-04-30 Test method for dc leak current of electric device Granted JPS57179761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56066604A JPS57179761A (en) 1981-04-30 1981-04-30 Test method for dc leak current of electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56066604A JPS57179761A (en) 1981-04-30 1981-04-30 Test method for dc leak current of electric device

Publications (2)

Publication Number Publication Date
JPS57179761A JPS57179761A (en) 1982-11-05
JPH0140956B2 true JPH0140956B2 (en) 1989-09-01

Family

ID=13320671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56066604A Granted JPS57179761A (en) 1981-04-30 1981-04-30 Test method for dc leak current of electric device

Country Status (1)

Country Link
JP (1) JPS57179761A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161069A (en) * 1984-08-31 1986-03-28 Toyota Motor Corp Automatic diagnosing device for insulation performance of power cable
JPS61187670A (en) * 1985-02-15 1986-08-21 Showa Electric Wire & Cable Co Ltd Apparatus for testing insulation of power cable
JPH02173579A (en) * 1988-12-27 1990-07-05 Showa Electric Wire & Cable Co Ltd Deciding method for insulation deterioration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158367A (en) * 1974-06-10 1975-12-22
JPS5746169A (en) * 1980-09-05 1982-03-16 Showa Electric Wire & Cable Co Ltd Method for measuring leaking dc current from cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158367A (en) * 1974-06-10 1975-12-22
JPS5746169A (en) * 1980-09-05 1982-03-16 Showa Electric Wire & Cable Co Ltd Method for measuring leaking dc current from cable

Also Published As

Publication number Publication date
JPS57179761A (en) 1982-11-05

Similar Documents

Publication Publication Date Title
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
JPH0726985B2 (en) Insulation deterioration diagnosis method for power cables
JPH0140956B2 (en)
GB2034486A (en) Method and apparatus for locating faults in electric cables
JPS644628B2 (en)
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JPH0439626B2 (en)
Terase et al. A new AC current testing method for non-destructive insulation tests
JP2564956B2 (en) Partial discharge measurement method
JPS629277A (en) Diagnostic method for cable insulation under hotline
JPS59225364A (en) Testing method of cable
JPS61288175A (en) Measuring instrument for insulation deterioration of electric power cable
JP3010371B2 (en) Diagnosis method for cable insulation deterioration
JPS61246671A (en) Dc leakage current measuring apparatus for power cable
JPS59202073A (en) Diagnosis of insulation deterioration of power cable
JP2568346Y2 (en) Cable loss tangent measurement device
JP2960782B2 (en) Partial discharge measurement method
JPS63281073A (en) Detecting method for water tree current of cv cable
JPH0336195Y2 (en)
JPS60216273A (en) Detection of sheath damage of power cable under live condition
JP2005010030A (en) Insulation degradation diagnostic method and system for power cable
JPH0820476B2 (en) Water tree current detection method for CV cable
JPH0619415B2 (en) Water tree current detector for CV cable
JPH01158369A (en) Method for measuring dc component of power cable
JPS60225072A (en) Diagnosis of deterioration in insulation for power cable