JPH0140875B2 - - Google Patents

Info

Publication number
JPH0140875B2
JPH0140875B2 JP55008478A JP847880A JPH0140875B2 JP H0140875 B2 JPH0140875 B2 JP H0140875B2 JP 55008478 A JP55008478 A JP 55008478A JP 847880 A JP847880 A JP 847880A JP H0140875 B2 JPH0140875 B2 JP H0140875B2
Authority
JP
Japan
Prior art keywords
tower
absorption
ammonia
absorption liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55008478A
Other languages
Japanese (ja)
Other versions
JPS56104994A (en
Inventor
Tomihisa Ikeura
Fumio Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP847880A priority Critical patent/JPS56104994A/en
Publication of JPS56104994A publication Critical patent/JPS56104994A/en
Publication of JPH0140875B2 publication Critical patent/JPH0140875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】 本発明はコークス炉ガス中に含有される硫化水
素、シアン化水素、二酸化炭素等の酸性ガス、ア
ンモニアガス等の揮発性ガス成分を安定して除去
すると共に、上記のような揮発性ガス成分を含有
する工業廃水から該ガス成分を除去して工業廃水
を精製し、しかも、該工業廃水から除去された揮
発性ガス成分とコークス炉ガスから除去された揮
発性ガス成分とを集中的に且つ効率よく回収する
ことができる精製コークス炉ガスの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention stably removes acid gases such as hydrogen sulfide, hydrogen cyanide, and carbon dioxide, and volatile gas components such as ammonia gas contained in coke oven gas. Purifying industrial wastewater by removing gas components from industrial wastewater containing volatile gas components, and further, purifying the volatile gas components removed from the industrial wastewater and the volatile gas components removed from coke oven gas. The present invention relates to a method for producing purified coke oven gas that can be recovered intensively and efficiently.

室炉式コークス炉等によるコークス炉ガス製造
工場においては、製造されるコークス炉ガス(以
下、COGという。)中に硫化水素(H2S)、二酸
化炭素(CO2)、シアン化水素(HCN)、アンモ
ニア(NH3)等の揮発性ガス成分を含有するの
で、これらを除去して精製されたCOGを得る必
要がある。一方、コークス炉において製造される
COGの冷却洗浄等には多量の洗浄水が用いられ
るが、その廃水中にも上記のような揮発性ガス成
分が含まれている。
In a coke oven gas production plant using an indoor coke oven, hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), hydrogen cyanide (HCN), Since it contains volatile gas components such as ammonia (NH 3 ), these must be removed to obtain purified COG. On the other hand, produced in a coke oven
A large amount of cleaning water is used for cooling and cleaning COG, but the wastewater also contains volatile gas components such as those mentioned above.

このような揮発性ガス成分を含有する工業廃水
は、上記の例に限らず、各種工場設備、例えば、
火力発電所、アンモニア製造工場からの排ガス中
のCO2あるいはNH3を水で吸収除去する際等にも
多量排出される。これらの工業廃水はそのまま放
流すると水質汚染の原因になるので、揮発性ガス
成分を除去した後に放流する必要がある。
Industrial wastewater containing such volatile gas components is not limited to the above examples, but is also used in various factory equipment, such as
Large amounts are also emitted when CO 2 or NH 3 in exhaust gas from thermal power plants and ammonia manufacturing plants is absorbed and removed with water. If these industrial wastewaters are discharged as they are, they may cause water pollution, so it is necessary to remove volatile gas components before discharging them.

本出願人等は、COG中の揮発性ガス成分を除
去して精製COGを製造する方法として、粗COG
にアンモニア吸収液を向流接触させ、該COG中
に含まれる揮発性酸性ガス性分を吸収除去する吸
収工程、この酸性ガス成分を吸収した吸収液を加
熱することにより揮発性酸性ガス成分を分離して
再生したのち前記吸収液として循環使用する脱酸
工程、アンモニア及び/又は揮発性酸性ガス成分
を含有する工業廃水を脱酸工程の温度よりも高い
温度に加熱してNH3及び/又は揮発性酸性ガス
成分を含む高圧水蒸気を駆出する廃水精製工程の
各工程を含み、得られた高圧水蒸気を脱酸工程へ
導入する方法を先に提案した(特開昭53―145807
号公報)。
Applicants have proposed a method for producing purified COG by removing volatile gas components from COG.
An absorption process in which ammonia absorption liquid is brought into countercurrent contact with COG to absorb and remove volatile acidic gas components contained in the COG, and volatile acidic gas components are separated by heating the absorption liquid that has absorbed this acidic gas component. In the deoxidation step, the industrial wastewater containing ammonia and/or volatile acidic gas components is heated to a higher temperature than the temperature in the deoxidation step to evaporate NH 3 and/or volatile acid gas components. We have previously proposed a method that includes each step of the wastewater purification process in which high-pressure steam containing acidic gas components is ejected, and the resulting high-pressure steam is introduced into the deoxidation process (Japanese Patent Application Laid-Open No. 145807-1982).
Publication No.).

ところが、上記の方法では廃水精製工程が高
温、高圧であるため、該工程から排出される排出
水中のアンモニア濃度が高く、また操作エネルギ
ーの損失が大きく且つ耐圧容器を必要とするので
設備建設費及び運転経費が割高となる欠点があ
る。
However, in the above method, since the wastewater purification process is at high temperature and high pressure, the concentration of ammonia in the waste water discharged from the process is high, the loss of operating energy is large, and a pressure-resistant container is required, resulting in high equipment construction costs and high pressure. The disadvantage is that operating costs are relatively high.

そこで、本発明者等はこれら欠点の解消策につ
き種々検討を重ねた結果、廃水精製工程の熱作圧
力を低下させることにより、該工程から排出され
る処理水中のアンモニア濃度が低減できると共
に、該工程で消費する水蒸気量が削減できること
を見出し、本発明を完成した。
Therefore, the inventors of the present invention have repeatedly studied various measures to solve these drawbacks, and have found that by lowering the thermal operating pressure of the wastewater purification process, it is possible to reduce the ammonia concentration in the treated water discharged from the process, and to reduce the ammonia concentration in the treated water discharged from the process. They discovered that the amount of water vapor consumed in the process could be reduced and completed the present invention.

すなわち、本発明の要旨は、(A)吸収塔でCOG
とアンモニア吸収液とを向流接触させて、該
COC中の揮発性酸性ガス成分を吸収除去する吸
収工程、(B)前記吸収塔より導出される吸収液を、
塔頂部内の温度が40℃以下に保持される脱酸塔に
導入し、110〜160℃の温度に加熱することにより
該吸収液中の揮発性酸性ガス成分を実質的に分離
除去した後、前記吸収塔の吸収液として導入循環
する脱酸工程、(C)NH3及び/又は揮発性酸性ガ
ス成分を含有する工業廃水を、前記脱酸塔内圧力
よりも低い圧力下、90〜140℃の温度に加熱する
ことにより、該工業廃水中のNH3及び/又は揮
発性酸性ガス成分を含有する低圧水蒸気を駆出す
る廃水精製工程、(D)前記吸収工程を経たCOGか
らNH3を回収するアンモニア回収工程、の各工
程を含み、前記廃水精製工程から駆出される低圧
水蒸気の一部又は全部を、5Kg/cm2・G以上の圧
力を有する水蒸気で駆動されるエジエクターの吸
引口に導入し、前記脱酸塔内の圧力よりも高い圧
力に昇圧した後、脱酸塔内へ導入して吸収液に直
接接触させることを特徴とする精製COGの製造
方法に存する。
In other words, the gist of the present invention is (A) COG
and the ammonia absorption liquid are brought into countercurrent contact, and the
Absorption step of absorbing and removing volatile acidic gas components in COC, (B) absorbing liquid derived from the absorption tower,
After introducing the absorbent into a deoxidizing tower in which the temperature in the top of the tower is maintained at 40°C or lower and heating it to a temperature of 110 to 160°C, volatile acidic gas components in the absorption liquid are substantially separated and removed. In the deoxidation step, industrial wastewater containing (C) NH 3 and/or volatile acidic gas components is introduced and circulated as an absorption liquid in the absorption tower, and is heated at 90 to 140°C under a pressure lower than the internal pressure of the deoxidation tower. A wastewater purification step in which low-pressure steam containing NH 3 and/or volatile acid gas components is ejected from the industrial wastewater by heating to a temperature of (D) recovering NH 3 from COG that has undergone the absorption step. Ammonia recovery step, and a part or all of the low-pressure steam discharged from the wastewater purification step is introduced into the suction port of an ejector driven by steam having a pressure of 5 kg/cm 2 · G or more. The method for producing purified COG is characterized in that the pressure is raised to a higher pressure than the pressure inside the deoxidizing tower, and then the COG is introduced into the deoxidizing tower and brought into direct contact with the absorption liquid.

以下、本発明を添付図面と共に詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明を実施する一例の系統図であ
る。
FIG. 1 is a system diagram of an example of implementing the present invention.

図中、Aは揮発性酸性ガスの吸収工程であり、
アンモニア吸収液が上部より散液され、COGが
これに向流接触するような泡鐘塔、多孔板塔、充
填塔、スプレー塔等の吸収塔2より構成されてい
る。
In the figure, A is the absorption process of volatile acidic gas,
It consists of an absorption tower 2, such as a bubble tower, perforated plate tower, packed tower, or spray tower, in which an ammonia absorption liquid is dispersed from the top and COG is brought into countercurrent contact therewith.

Bは脱酸工程であり、前記吸収塔2から導出さ
れるアンモニア吸収液を加熱して揮発性酸性ガス
成分を分離する脱酸塔12より構成されている。
B is a deoxidation step, which is comprised of a deoxidation tower 12 that heats the ammonia absorption liquid derived from the absorption tower 2 to separate volatile acidic gas components.

Cは廃水精製工程であり、アンモニア及び/又
は揮発性酸性ガス成分を含有する廃水を直接水蒸
気等の加熱によりアンモニア及び/又は揮発性酸
性ガス成分を駆出するストリツピング塔15より
構成されている。
C is a wastewater purification process, which is comprised of a stripping column 15 that drives out ammonia and/or volatile acidic gas components by directly heating the wastewater containing ammonia and/or volatile acidic gas components with steam or the like.

DはCOG中のNH3の回収工程であり、COGか
らのアンモニア分離設備28から構成されてい
る。
D is a recovery process for NH 3 in COG, and is comprised of ammonia separation equipment 28 from COG.

26は前記脱酸塔12から駆出される酸性ガス
成分を有用物質として回収する設備である。
26 is equipment for recovering the acidic gas components discharged from the deoxidizing tower 12 as useful substances.

コークス炉から発生したCOGはプライマリー
クーラーで冷却された後、導管1から吸収塔2へ
導入される。導入されたCOGは吸収塔2内を上
昇する間に、塔頂の導管3から導入され、好まし
くは複数段階で散布される30〜60℃のアンモニ吸
収液と向流接触し、H2S,CO2,HCN等の揮発
性酸性ガス成分が吸収除去される。アンモニア吸
収液中のアンモニア濃度は、吸収塔2内の温度を
調節することにより4〜10g/に制御される。
揮発性酸性ガス成分を吸収したアンモニア吸収液
は、導管5を通して吸収塔2より導出され、脱酸
塔12頂部への導管7と中間部へ導管9とを通し
てれぞれ脱酸塔12へ分割導入される。脱酸塔1
2においては、塔頂部内の温度が40℃以下に保持
され、導入された吸収液はリボイラー14等によ
り110〜160℃に加熱される。吸収液中の揮発性酸
性ガス成分は濃縮分離され、塔頂より導管27を
通して駆出される。
COG generated from the coke oven is cooled in a primary cooler and then introduced into an absorption tower 2 through a conduit 1. While the introduced COG rises in the absorption tower 2, it comes into countercurrent contact with the ammonia absorption liquid at 30 to 60° C., which is introduced from the conduit 3 at the top of the tower and is preferably sprayed in multiple stages, to generate H 2 S, Volatile acid gas components such as CO 2 and HCN are absorbed and removed. The ammonia concentration in the ammonia absorption liquid is controlled to 4 to 10 g/by adjusting the temperature inside the absorption tower 2.
The ammonia absorption liquid that has absorbed volatile acidic gas components is led out from the absorption tower 2 through a conduit 5, and dividedly introduced into the deoxidation tower 12 through a conduit 7 to the top of the deoxidation tower 12 and a conduit 9 to the middle part of the deoxidation tower 12. be done. Deoxidizing tower 1
In step 2, the temperature inside the column top is maintained at 40°C or lower, and the introduced absorption liquid is heated to 110 to 160°C by the reboiler 14 or the like. The volatile acidic gas components in the absorption liquid are concentrated and separated, and are discharged from the top of the column through a conduit 27.

再生されたアンモニア吸収液は、塔底部より導
管10を通して導出されたのち分割され、一部は
導管3を通して吸収塔2へ導入循環されると共
に、残部は導管11を通して廃水精製工程Cのス
トリツピング塔15へ導入される。また他の系か
らくるアンモニア及び/又は揮発性酸性ガス成分
を含有する工業廃水は、導管17より導入され前
記アンモニア吸収液に混合される。また、ストリ
ツピング塔15においては、脱酸塔12における
圧力よりも低い圧力下、90〜140℃の温度に加熱
される。すなわち、脱酸塔12内の圧力は、操作
温度110〜160℃に対応して約2.5〜約7.3Kg/cm2
Gであるから、ストリツピング塔15内の圧力は
7Kg/cm2・G以下であればよいが、常圧〜3Kg/
cm2・Gの範囲で実施するのが好ましい。ストリツ
ピング塔内の圧力は圧力制御弁20により所定圧
に制御される。加熱により前記廃水中の揮発性ガ
ス成分は水蒸気と共に駆出される。揮発性ガス成
分を駆出して精製された廃水は、導管19を通し
て活性汚泥廃水処理設備(図示せず)等に供給さ
れる。
The regenerated ammonia absorption liquid is led out from the bottom of the tower through conduit 10 and then divided. A part is introduced and circulated through conduit 3 to absorption tower 2, and the remainder is passed through conduit 11 to stripping tower 15 of wastewater purification process C. will be introduced to Further, industrial wastewater containing ammonia and/or volatile acid gas components coming from other systems is introduced through the conduit 17 and mixed with the ammonia absorption liquid. Further, in the stripping tower 15, the material is heated to a temperature of 90 to 140°C under a pressure lower than that in the deoxidizing tower 12. That is, the pressure inside the deoxidizing tower 12 is about 2.5 to about 7.3 Kg/cm 2 ·corresponding to the operating temperature of 110 to 160°C.
G, the pressure inside the stripping column 15 should be 7 kg/cm 2 ·G or less, but the pressure should be between normal pressure and 3 kg/cm 2 ·G.
It is preferable to carry out in the range of cm 2 ·G. The pressure inside the stripping column is controlled to a predetermined pressure by a pressure control valve 20. By heating, volatile gas components in the wastewater are driven out together with water vapor. The wastewater purified by removing volatile gas components is supplied to an activated sludge wastewater treatment facility (not shown) or the like through a conduit 19.

駆出された揮発性ガス成分を含んだ水蒸気は導
管21を通してエジエクター24の吸引口へ導入
し、導管23より導入される5Kg/cm2・G上、好
ましくは7〜40Kg/cm2・Gの高圧水蒸気により、
脱酸塔12における圧力よりも高い圧力に昇圧し
た後、導管25を通して脱酸塔12内へ導入され
る。導管25内の圧力は流量制御弁22により所
定圧に制御される。脱酸塔12内へ導入された揮
発性ガス成分を含んだ高圧蒸気は、ここで吸収液
と直接接触して、該吸収液の加熱に供されると共
に、含有する揮発性ガス成分のうち揮発性酸性ガ
ス成分が分離されて、前記吸収液から分離された
揮発性酸性ガス成分と共に脱酸塔頂部より導管2
7を通して駆出される。一方、水蒸気とNH3
吸収液中に移行し、脱酸塔底部より導管10を通
して抜出され、その一部は導管3を通して吸収塔
2へ導入され、他の一部は導管11を通して再び
ストリツピング塔15へ循環される。
The ejected steam containing volatile gas components is introduced into the suction port of the ejector 24 through the conduit 21, and is introduced from the conduit 23 at a rate of 5 kg/cm 2 ·G, preferably 7 to 40 kg/cm 2 ·G. By high pressure steam,
After increasing the pressure to a higher pressure than the pressure in the deoxidizing tower 12, it is introduced into the deoxidizing tower 12 through the conduit 25. The pressure within the conduit 25 is controlled to a predetermined pressure by the flow control valve 22. The high-pressure steam containing volatile gas components introduced into the deoxidizing tower 12 comes into direct contact with the absorption liquid, heats the absorption liquid, and removes the volatile gas components contained therein. The volatile acidic gas component is separated, and the volatile acidic gas component separated from the absorption liquid is passed from the top of the deoxidation tower to the conduit 2.
It is ejected through 7. On the other hand, water vapor and NH 3 move into the absorption liquid and are extracted from the bottom of the deoxidizing tower through conduit 10, part of which is introduced into absorption tower 2 through conduit 3, and the other part is stripped again through conduit 11. It is recycled to column 15.

脱酸塔12から駆出され、濃縮された揮発性酸
性ガス成分は、酸性ガス成分回収設備26へ導入
され有用物質として回収される。回収設備26と
しては、希硫酸製造設備、硫安製造設備、石膏製
造設備あるいはクラウス炉のような単体硫黄製造
設備等が採用される。
The volatile acidic gas component discharged from the deoxidizing tower 12 and concentrated is introduced into the acidic gas component recovery equipment 26 and recovered as a useful substance. As the recovery equipment 26, dilute sulfuric acid manufacturing equipment, ammonium sulfate manufacturing equipment, gypsum manufacturing equipment, or elemental sulfur manufacturing equipment such as a Claus furnace is employed.

吸収塔2を経て揮発性酸性ガス成分が除去され
たCOGは、アンモニア回収設備28へ導入され、
ここでNH3が回収される。
The COG from which volatile acidic gas components have been removed through the absorption tower 2 is introduced into the ammonia recovery equipment 28,
Here NH3 is recovered.

13,16は加熱用蒸気導管、8,18は熱交
換器、4,6は冷却器である。
13 and 16 are heating steam conduits, 8 and 18 are heat exchangers, and 4 and 6 are coolers.

なお、前述の例では脱酸塔から導出された吸収
液の一部をストリツピング塔へ導入しているが、
吸収塔から導出される吸収液の一部をストリツピ
ング塔へ導入することもできる。
In addition, in the above example, a part of the absorption liquid derived from the deoxidizing tower is introduced into the stripping tower,
A portion of the absorption liquid discharged from the absorption tower can also be introduced into the stripping tower.

以上詳述したように、本発明では廃水精製工程
の圧力が低いので、該廃水中に含有されるNH3
又はアンモニア及び酸性ガス成分の除去率が高
く、また耐圧容器を必要としない利点があり、さ
らに、廃水精製工程の加熱温度が低く、かつ余剰
熱エネルギーを脱酸工程の熱源としているので、
熱エネルギー効率が極めて高いという効果がある
から、精製コークス炉ガスの製造方法として有用
である。
As detailed above, in the present invention, since the pressure in the wastewater purification process is low, the NH3 contained in the wastewater is
Alternatively, it has the advantage of having a high removal rate of ammonia and acidic gas components, and does not require a pressure-resistant container, and furthermore, the heating temperature in the wastewater purification process is low, and surplus thermal energy is used as the heat source for the deoxidation process.
Since it has the effect of extremely high thermal energy efficiency, it is useful as a method for producing purified coke oven gas.

たとえば、本発明方法により、ストリツプ塔内
の圧力を1.1Kg/cm2G(温度約100℃)とした場合、
理論段数15段、アンモニア濃度:入口5100ppm、
出口250ppmpmで、ストリツプ用蒸気原単位は、
8Kg/廃水m3削減できる。
For example, when the pressure inside the strip column is set to 1.1 Kg/cm 2 G (temperature about 100°C) using the method of the present invention,
Number of theoretical plates: 15, ammonia concentration: inlet 5100ppm,
At an outlet of 250pppm, the steam consumption for strips is:
8kg/ m3 of wastewater can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示す系統図であ
る。 A:吸収工程、B:脱酸工程、C:廃水精製工
程、D:アンモニア回収工程、2:吸収塔、1
2:脱酸塔、15:ストリツピング塔、24:エ
ジエクター、26:酸性ガス成分回収設備、2
8:アンモニア回収設備。
FIG. 1 is a system diagram showing one embodiment of the present invention. A: Absorption process, B: Deoxidation process, C: Wastewater purification process, D: Ammonia recovery process, 2: Absorption tower, 1
2: Deoxidizing tower, 15: Stripping tower, 24: Ejector, 26: Acid gas component recovery equipment, 2
8: Ammonia recovery equipment.

Claims (1)

【特許請求の範囲】 1(A) 吸収塔でコークス炉ガスとアンモニア吸収
液とを向流接触させて、該コークス炉ガス中の
揮発性酸性ガス成分を吸収除去する吸収工程、 (B) 前記吸収塔より導出される吸収液を、塔頂部
内の温度が40℃以下に保持される脱酸塔に導入
し、110〜160℃の温度に加熱することにより該
吸収液中の揮発性酸性ガス成分を実質的に分離
除去した後、前記吸収塔の吸収液として導入循
環する脱酸工程、 (C) アンモニア及び/又は揮発性酸性ガス成分を
含有する工業廃水を、前記脱酸塔内圧力よりも
低い圧力下、90〜140℃の温度に加熱すること
により、該工業廃水中のアンモニア及び/又は
揮発性酸性ガス成分を含有する低圧水蒸気を駆
出する廃水精製工程、 (D) 前記吸収工程を経たコークス炉ガスからアン
モニアを回収するアンモニア回収工程、 の各工程を含み、前記廃水精製工程から駆出さ
れる水蒸気の一部又は全部を、5Kg/cm2・G以
上の圧力を有する水蒸気で駆動されるエジエク
ターの吸引口に導入し、前記脱酸塔内の圧力よ
りも高い圧力に昇圧した後、脱酸塔内へ導入し
て吸収液に直接接触させることを特徴とする精
製コークス炉ガスの製造方法。 2 工業廃水が、吸収塔底部から導出されるアン
モニア吸収液の一部及び/又は脱酸塔底部から導
出されるアンモニア吸収液の一部であることを特
徴とする、特許請求の範囲第1項記載の精製コー
クス炉ガスの製造方法。
[Scope of Claims] 1(A) An absorption step of bringing coke oven gas and ammonia absorption liquid into countercurrent contact in an absorption tower to absorb and remove volatile acidic gas components in the coke oven gas, (B) the above-mentioned The absorption liquid discharged from the absorption tower is introduced into a deoxidation tower in which the temperature inside the tower top is maintained at 40°C or lower, and volatile acidic gases in the absorption liquid are removed by heating to a temperature of 110 to 160°C. (C) a deoxidation step in which the components are substantially separated and removed and then introduced and recycled as an absorption liquid in the absorption tower; (D) a wastewater purification step in which low-pressure steam containing ammonia and/or volatile acidic gas components is ejected from the industrial wastewater by heating to a temperature of 90 to 140°C under a low pressure; (D) the absorption step; an ammonia recovery step in which ammonia is recovered from coke oven gas that has passed through the process, and a part or all of the water vapor ejected from the wastewater purification step is driven by water vapor having a pressure of 5 kg/cm 2 G or more. The refined coke oven gas is introduced into the suction port of the eductor to be heated to a pressure higher than that in the deoxidizing tower, and then introduced into the deoxidizing tower to directly contact the absorption liquid. Production method. 2. Claim 1, characterized in that the industrial wastewater is a part of the ammonia absorption liquid derived from the bottom of the absorption tower and/or a part of the ammonia absorption liquid derived from the bottom of the deoxidation tower. The method for producing purified coke oven gas as described.
JP847880A 1980-01-28 1980-01-28 Production of purified coke oven gas Granted JPS56104994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP847880A JPS56104994A (en) 1980-01-28 1980-01-28 Production of purified coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP847880A JPS56104994A (en) 1980-01-28 1980-01-28 Production of purified coke oven gas

Publications (2)

Publication Number Publication Date
JPS56104994A JPS56104994A (en) 1981-08-21
JPH0140875B2 true JPH0140875B2 (en) 1989-08-31

Family

ID=11694212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP847880A Granted JPS56104994A (en) 1980-01-28 1980-01-28 Production of purified coke oven gas

Country Status (1)

Country Link
JP (1) JPS56104994A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198694A (en) * 1987-10-12 1989-04-17 Mitsubishi Kakoki Kaisha Ltd Method of conducting optimized control of desulfurization of coke oven gas
JP2006232904A (en) * 2005-02-23 2006-09-07 Hitachi Ltd Gas refining method for coal gasification system
EP2014347A1 (en) * 2007-07-03 2009-01-14 ALSTOM Technology Ltd Removal of carbon dioxide from flue gas
JP5501730B2 (en) * 2009-10-22 2014-05-28 三菱重工業株式会社 Ammonia recovery device and recovery method
JP5751892B2 (en) * 2011-03-31 2015-07-22 日揮株式会社 Gas processing method and gas processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145807A (en) * 1977-05-25 1978-12-19 Mitsubishi Chem Ind Ltd Production of purified coke oven gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145807A (en) * 1977-05-25 1978-12-19 Mitsubishi Chem Ind Ltd Production of purified coke oven gas

Also Published As

Publication number Publication date
JPS56104994A (en) 1981-08-21

Similar Documents

Publication Publication Date Title
US4847057A (en) Process and installation for ammonia treatment of a gas
KR101839225B1 (en) Method for purification of coke oven gas and device for purification of coke oven gas
US4198378A (en) Process for removing CO2, H2 S and other gaseous impurities from gaseous mixtures
US4146569A (en) Process for removing gaseous impurities from a gaseous mixture containing the same
CN103977683A (en) Method and device for reducing regeneration energy consumption of decarburization absorption liquid
CA1176824A (en) Integrated cyclic scrubbing and condensate stripping process for the removal of gaseous impurities from gaseous mixtures
CN103303877A (en) Comprehensive multi-gas source low-concentration SO2 fume recycling acid-making technological process
JPH0576326B2 (en)
US4124685A (en) Method for substantially complete removal of hydrogen sulfide from sulfur bearing industrial gases
CN115105939A (en) Device and method for decarbonizing by graded absorption ammonia method
US4299801A (en) Regenerating alkanolamine desulfurizer solutions
CN108722118B (en) Low-energy-consumption desulfurizer regeneration method and desulfurization method
JPH0140875B2 (en)
JPS588501A (en) Removal of product from gas treated liquid
US4186181A (en) Process for the production of hydrogen
CN105056711B (en) SO in flue gas2The nested citrate technique for absorbing parsing of multistage of purification
CN102876828B (en) Reducing gas purification process and system matched with gas-based shaft furnace
CN115445423A (en) Ammonia process decarburization device and operation method thereof
JPH0378127B2 (en)
US3880617A (en) Process for preparing purified coke oven gas
CN105251315B (en) SO in flue gas2The citrate technique of the multistage absorption parsing of purification
JP3244855B2 (en) Prevention of silica scale precipitation from geothermal hot water
JP2948846B2 (en) Method for removing hydrogen sulfide from gas mixtures
JPS61234982A (en) Treatment of waste water containing ammonia, hydrogen sulfide, and so forth
JPH04310214A (en) Removing method of acidic gas