JPH0140866B2 - - Google Patents

Info

Publication number
JPH0140866B2
JPH0140866B2 JP16665282A JP16665282A JPH0140866B2 JP H0140866 B2 JPH0140866 B2 JP H0140866B2 JP 16665282 A JP16665282 A JP 16665282A JP 16665282 A JP16665282 A JP 16665282A JP H0140866 B2 JPH0140866 B2 JP H0140866B2
Authority
JP
Japan
Prior art keywords
molecular weight
diisocyanate
average molecular
polyether polyol
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16665282A
Other languages
Japanese (ja)
Other versions
JPS5956474A (en
Inventor
Tooru Tsumenaga
Hiroshi Yoshida
Shunkai Morifusa
Masaaki Handa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP16665282A priority Critical patent/JPS5956474A/en
Publication of JPS5956474A publication Critical patent/JPS5956474A/en
Publication of JPH0140866B2 publication Critical patent/JPH0140866B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)
  • Sealing Material Composition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスラブ軌道における軌道スラブとコン
クリート路盤の隙間などにてん充する組成物に関
するものである。 新幹線軌道などに採用されているスラブ軌道の
隙間てん充用組成物として、普通スラブにはセメ
ント、アスフアルト乳剤、砂などを混合したセメ
ントアスフアルトモルタルを、また分岐器および
斜角スラブには、ウレタンやエポキシ系の樹脂モ
ルタルが使用されている。ところが、セメントア
スフアルトモルタルは安価であるが、有道床軌道
に相当する弾性が得られず、脆質である。 樹脂モルタルは各種スラブ軌道てん充層の要求
性能に適合するものを容易に調整でき、強度が大
きく弾性に富む。しかし、樹脂モルタルの価格は
セメントアスフアルトモルタルに比較して10倍以
上も高く、現在は普通スラブより高い性能を要求
される分岐器および斜角スラブのみに使用を限定
されている。 そこで本発明は現行のイソシアネートとポリエ
ーテルポリオール又は(and/or)アミン化合物
を主成分とするウレタン系樹脂モルタルに近似し
た物理性能、化学性能を有し、かつ低コストのス
ラブ軌道てん充用組成物を提供せんとするもので
ある。 そして本発明の特徴とするところは、体質顔
料、複環芳香族炭化水素樹脂(以下、アロマ基プ
ロセスオイル重合物という)、石油系高沸点炭化
水素油(以下、プロセスオイルという)、ジイソ
シアネート、末端ヒドロキシル化ポリブタジエ
ン、ポリエーテルポリオール、微量の有機金属触
媒、吸水剤からなるところにあり、ポリエーテル
ポリオールの種類、添加量により硬化物弾性率を
自在に変え得るものである。 本発明に用いる代表的な体質顔料は炭酸カルシ
ウム、タルク、シリカ粉末であり、これらの体質
顔料の粒径、水分濃度および硬化物内の体積顔料
濃度を等しくすれば、ほぼ近似した物理性能を示
す硬化物を得る。 そして体質顔料の混合割合は20〜40%(重量
%、以下同じ)の範囲内であることが望ましい。
何故ならば体質顔料が20%未満であると粉末の補
強強化が十分に期待できず、40%を越えると流動
性が低下して作業性が悪化する恐れがあるからで
ある。 本発明に使用したアロマ基プロセスオイル重合
物およびプロセスオイルは、ジイソシアネートや
ポリブタジエンジオールとの相溶性は極めて良好
であり、この相溶性は最終的に硬化物性能の良否
を左右するポイントとなる。即ち、ジイソシアネ
ートと末端ヒドロキシル化ポリブタジエンの反応
時や反応後に相溶性不良成分は分離滲出し、均質
安定な硬化物を得ることができない。 市販されているアロマ基プロセスオイル重合物
は、分子量250〜650のものが多く、平均分子量が
350以上となると常温で固形状を呈するものが多
い。 本発明にはなるべく組成を増粘させないものが
好ましく、例えば平均分子量が260の液状型であ
る。 またプロセスオイルは組成に対して減粘効果の
あるものが好ましく分子量150〜200のものを用い
た。 そしてアロマ基プロセスオイル重合物の混合割
合は、30〜50%であることが望ましい。アロマ基
プロセスオイル重合物が30%未満であると他のも
のを入れることになるがそれはコスト的に望まし
くなく、50%を越えると流動性が低下し、作業性
が悪化することがある。 またプロセスオイルの混合割合は、5〜15%で
あることが望ましい。何故ならばプロセスオイル
が5%以下の場合は粘度の低下が十分に期待でき
ず、15%を越えると、揮発性が高いため、経時的
に収縮を起すことがあるからである。 市販されているプロセスオイルは、通常パラフ
イン、ナフテン、アロマ系に大別されるが、本発
明の組成に対する相溶性はいずれのプロセスオイ
ルを使用しても良好で、硬化性能も大差なくプロ
セスオイルの種別を限定する必要はない。 したがつて整理の都合上、本発明の実施例にお
いてはアロマ系のプロセスオイルを用いた。 本発明に用いるジイソシアネート、硬化成分で
あるポリブタジエンジオールおよびポリエーテル
ポリオールの反応性が高く、更に有機金属触媒を
用いるためジイソシアネートの種別を限定する必
要はない。したがつて、価格の低いトリレンジイ
ソシアネートや粗製ジフエニルメタンジイソシア
ネートが適切であるが、トリレンジイソシアネー
トは反応性がやや低く毒性もやや強いため粗製ジ
フエニルメタンジイソシアネートを使用すること
が望ましい。 ジイソシアネートが3%未満であると、一定の
強度の硬化物の確保が困難となり逆に15%を越え
るとその分末端ヒドロキシル化ポリブタジエンも
多く必要となり、消費量が多くなつてコスト的に
望ましくないこととなる。 本発明に用いた末端ヒドロキシル化ポリブタジ
エンは1,4ブタジエンを80%、1,2ブタジエ
ンを20%含むポリブタジエンの末端にアリル型の
第一級水酸基を有した平均分子量2800のジオール
であり、分子内に不飽和な二重結合を多く有し、
かつ末端の水酸基は第一級であるためジイソシア
ネートに対し良好な反応性を示す。 同様のポリブタジエンとして1,2ブタジエン
を60〜70%含むポリブタジエンも市販されてい
る。このように、1,2ブタジエンを多く含むポ
リブタジエンは粘性が大きく、使用目的によつて
は必ずしも望ましくないことがある。 また、ポリブタジエンは分子内非極性であるた
め(分子内にエーテル、エステル結合等がない)
各種の樹脂に対し良好な相溶性を示す。 本発明に用いるポリエーテルポリオールは、3
個以上の活性水素を有する多価アルコールを開始
剤とし、プロピレンオキサイドを重合して得る末
端ヒドロキシルポリエーテル(平均分子量300〜
1000)又は、プロピレンオキサイドとエチレンオ
キサイドを共重合して得る末端ヒドロキシルポリ
エーテル(平均分子量300〜1000)に限定したも
の。多価アルコールは、グリセリン、トリメチロ
ールプロパン、ジグリセリン、ペンタエリスリト
ール、シユークローズ等で、3官能以上8官能ま
での市販品である。 ポリエーテルポリオールの硬化物性能に及ぼす
効果は、ポリエーテルポリオールの官能基数、分
子量、添加量により硬化性能を変え得ることであ
る。 例えば、1)分子量700の3官能ポリエーテル
ポリオールを全量の4%含む本発明組成、2)分
子量700の4官能ポリエーテルポリオールを全量
の3%含む本発明組成、3)分子量700の4官能
ポリエーテルポリオールを全量の4%含む本発明
組成、4)分子量400の4官能ポリエーテルポリ
オールを全量の4%含む本発明組成の4組成の硬
化物の硬度を測定した結果、各組成硬化物の硬度
は、1)37,2)38,3)47,4)56となつた。
即ちこの結果は硬化物の硬度が三次元網状構造を
生成する官能基の導入量にある範囲内では比例し
ていることを示す。但しこの時のジイソシアネー
トは液状ジフエニルメタンジイソシアネートを用
い、ジイソシアネートによる三次元網状構造を抑
える配慮をしている。 また、ポリエーテルポリオールは本発明組成に
対し少量添加して用いるものであり、有機金属触
媒を用いるため、ポリオキシプロピレン系とポリ
オキシプロピレンポリオキシエチレン系の違いに
よる性能差はほとんど生じない。 ウレタン反応を促進させる有効な触媒として、
一般にジブチル錫ジラウレート、オクチル酸鉛等
の有機金属が用いられており、本発明のポリブタ
ジエン系組成に対しても有効である。 本発明に用いる吸水剤は主に体質顔料中の水分
を吸着する目的で使用し、可溶性無水石コウまた
は合成ゼオライトを用いる。 そして吸水剤の混合割合は体質顔料の量によつ
て異なるが、5〜15%の範囲内が望ましい。何故
ならば、吸水剤が5%未満では体質顔料中の水分
の吸収が十分でなく、また15%を越えると粘性が
高くなつて実用性が低下してくるからである。 本発明で用いるジイソシアネートは、ジフエニ
ルメタンジイソシアネート(粗製ジフエニルメタ
ンジイソシアネートを含む)、トリレンジイソシ
アネートそしてイソシアネートプレポリマーに限
定したものである。 末端ヒドロキシル化ポリブタジエンとジイソシ
アネートの反応についてジイソシアネートをトリ
レンジイソシアネートを例にとると、2官能ポリ
オールと2官能イソシアネートの反応であり、通
常線状主鎖延長が主体であるが、この系に多官能
ポリエーテルポリオールを併用すれば、ポリブタ
ジエン間に高頻度で三次元網状結合が発生し、併
用しないものに比べはるかに硬質の硬化物を得
る。 そして、ポリエーテルポリオールの官能基数の
多いものを用いるほど、またその添加量を増すほ
ど、ポリブタジエン間の三次元網状結合の発生頻
度は上昇し、より硬質の硬化物を得る。 即ち、組成中のポリオールの官能基数、分子
量、添加量の選択により異なる弾性率の硬化物が
得られるし、体質顔料の高分子材料充てん効果と
併用すれば更に巾広い弾性率のコントロールが可
能である。 実施例の説明について述べる。 実施例―1〜4(表―1)の製法は、まず粗製
ジフエニルメタンジイソシアネートを除く各成分
を予め均質に混練分散し、更に所量の粗製ジフエ
ニルメタンジイソシアネートを添加混合すること
により、表―2に示す性能の硬化物を得る。 以上説明したように本発明の物理性能、化学性
能は、ウレタン系樹脂モルタルに近似し十分に軌
道の要求性能を充足しているもので、またコスト
的にはウレタン系樹脂モルタルに比較して著しく
安価であつて実用上顕著な効果を発揮するもので
ある。
The present invention relates to a composition for filling the gap between a track slab and a concrete roadbed in a slab track. As a gap filling composition for slab tracks used in Shinkansen tracks, etc., cement-asphalt mortar mixed with cement, asphalt emulsion, sand, etc. is used for ordinary slabs, and urethane or epoxy is used for turnouts and beveled slabs. A type of resin mortar is used. However, although cement asphalt mortar is inexpensive, it does not have the elasticity equivalent to bedded track and is brittle. Resin mortar can be easily adjusted to meet the performance requirements of various slab track filling layers, and has high strength and high elasticity. However, the price of resin mortar is more than 10 times higher than cement asphalt mortar, and its use is currently limited to turnouts and angle slabs that require higher performance than ordinary slabs. Therefore, the present invention aims to provide a low-cost slab track filling composition that has physical and chemical properties similar to those of the current urethane resin mortar whose main components are isocyanate and polyether polyol or (and/or) amine compounds. We aim to provide the following. The features of the present invention include extender pigment, multicyclic aromatic hydrocarbon resin (hereinafter referred to as aroma group process oil polymer), petroleum-based high boiling point hydrocarbon oil (hereinafter referred to as process oil), diisocyanate, terminal It consists of hydroxylated polybutadiene, polyether polyol, a small amount of organometallic catalyst, and a water absorbing agent, and the elastic modulus of the cured product can be freely changed depending on the type and amount of polyether polyol added. Typical extender pigments used in the present invention are calcium carbonate, talc, and silica powder, and if these extender pigments have the same particle size, water concentration, and volumetric pigment concentration in the cured product, they exhibit approximately similar physical properties. Obtain a cured product. The mixing ratio of the extender pigment is preferably within the range of 20 to 40% (weight %, same hereinafter).
This is because if the extender content is less than 20%, sufficient reinforcement and strengthening of the powder cannot be expected, and if it exceeds 40%, fluidity may decrease and workability may deteriorate. The aroma group process oil polymer and process oil used in the present invention have extremely good compatibility with diisocyanates and polybutadiene diols, and this compatibility is a key point that ultimately determines the quality of the cured product performance. That is, during or after the reaction between the diisocyanate and the terminally hydroxylated polybutadiene, components with poor compatibility separate and ooze out, making it impossible to obtain a homogeneous and stable cured product. Most commercially available aroma group process oil polymers have a molecular weight of 250 to 650, and the average molecular weight is
When the number is 350 or higher, many of them are solid at room temperature. In the present invention, it is preferable to use a composition that does not increase the viscosity as much as possible, such as a liquid type with an average molecular weight of 260. The process oil preferably has a viscosity-reducing effect based on its composition, and has a molecular weight of 150 to 200. The mixing ratio of the aroma group process oil polymer is preferably 30 to 50%. If the aroma group process oil polymer content is less than 30%, other substances must be added, which is undesirable in terms of cost, and if it exceeds 50%, fluidity may decrease and workability may deteriorate. Further, the mixing ratio of process oil is preferably 5 to 15%. This is because if the process oil is less than 5%, a sufficient reduction in viscosity cannot be expected, and if it exceeds 15%, it may shrink over time due to its high volatility. Commercially available process oils are generally classified into paraffin, naphthenic, and aromatic types, but the compatibility with the composition of the present invention is good regardless of the use of any process oil, and there is no significant difference in curing performance between the process oils. There is no need to limit the type. Therefore, for convenience of organization, an aromatic process oil was used in the examples of the present invention. The diisocyanate used in the present invention, the curing components polybutadiene diol and polyether polyol, have high reactivity, and since an organometallic catalyst is used, there is no need to limit the type of diisocyanate. Therefore, tolylene diisocyanate and crude diphenylmethane diisocyanate, which are inexpensive, are suitable. However, since tolylene diisocyanate has a rather low reactivity and a rather strong toxicity, it is preferable to use crude diphenylmethane diisocyanate. If the diisocyanate content is less than 3%, it will be difficult to secure a cured product with a certain strength, and if it exceeds 15%, a correspondingly large amount of terminal hydroxylated polybutadiene will be required, which will increase consumption and be undesirable in terms of cost. becomes. The terminal hydroxylated polybutadiene used in the present invention is a diol with an average molecular weight of 2800 and has an allyl-type primary hydroxyl group at the end of polybutadiene containing 80% 1,4-butadiene and 20% 1,2-butadiene. It has many unsaturated double bonds,
In addition, since the terminal hydroxyl group is primary, it exhibits good reactivity with diisocyanates. Similar polybutadiene containing 60 to 70% 1,2-butadiene is also commercially available. As described above, polybutadiene containing a large amount of 1,2-butadiene has a high viscosity, which may not necessarily be desirable depending on the purpose of use. In addition, since polybutadiene is non-polar within the molecule (there are no ether or ester bonds within the molecule)
Shows good compatibility with various resins. The polyether polyol used in the present invention is 3
Terminal hydroxyl polyether (average molecular weight 300 to
1000) or limited to terminal hydroxyl polyethers (average molecular weight 300 to 1000) obtained by copolymerizing propylene oxide and ethylene oxide. Polyhydric alcohols include glycerin, trimethylolpropane, diglycerin, pentaerythritol, seurose, and the like, which are commercially available products with trifunctional to octafunctional functions. The effect of polyether polyol on the performance of cured products is that the curing performance can be changed depending on the number of functional groups, molecular weight, and amount added of polyether polyol. For example, 1) the composition of the present invention containing 4% of the total amount of trifunctional polyether polyol with a molecular weight of 700; 2) the composition of the present invention containing 3% of the total amount of tetrafunctional polyether polyol with a molecular weight of 700; 3) the composition of the present invention containing 4% of the total amount of trifunctional polyether polyol with a molecular weight of 700; As a result of measuring the hardness of the cured products of 4 compositions of the present invention containing 4% of the total amount of ether polyol and 4) the present composition of the present invention containing 4% of the total amount of tetrafunctional polyether polyol with a molecular weight of 400, the hardness of the cured product of each composition was determined. became 1) 37, 2) 38, 3) 47, 4) 56.
That is, this result shows that the hardness of the cured product is proportional within a certain range to the amount of introduced functional groups that form a three-dimensional network structure. However, liquid diphenylmethane diisocyanate is used as the diisocyanate at this time, and consideration is given to suppressing the three-dimensional network structure caused by the diisocyanate. Furthermore, since the polyether polyol is used by adding a small amount to the composition of the present invention, and an organic metal catalyst is used, there is almost no difference in performance due to the difference between polyoxypropylene type and polyoxypropylene polyoxyethylene type. As an effective catalyst for promoting urethane reactions,
Generally, organic metals such as dibutyltin dilaurate and lead octylate are used, and are also effective for the polybutadiene composition of the present invention. The water absorbing agent used in the present invention is mainly used for the purpose of adsorbing water in extender pigments, and soluble anhydrite or synthetic zeolite is used. The mixing ratio of the water absorbing agent varies depending on the amount of extender pigment, but is preferably within the range of 5 to 15%. This is because if the water-absorbing agent content is less than 5%, water absorption in the extender pigment will not be sufficient, and if it exceeds 15%, the viscosity will increase and the practicality will decrease. The diisocyanates used in the present invention are limited to diphenylmethane diisocyanate (including crude diphenylmethane diisocyanate), tolylene diisocyanate, and isocyanate prepolymers. Regarding the reaction between terminally hydroxylated polybutadiene and diisocyanate, taking diisocyanate and tolylene diisocyanate as an example, this is a reaction between a bifunctional polyol and a bifunctional isocyanate, and usually the main chain extension is linear main chain extension. If ether polyol is used in combination, three-dimensional network bonds will frequently occur between polybutadienes, resulting in a cured product that is much harder than when it is not used in combination. The more a polyether polyol with a larger number of functional groups is used, or the more its added amount is increased, the frequency of occurrence of three-dimensional network bonds between polybutadienes increases, and a harder cured product is obtained. In other words, by selecting the number of functional groups, molecular weight, and amount added of the polyol in the composition, cured products with different elastic moduli can be obtained, and if used in combination with the polymer material filling effect of extender pigments, it is possible to control the elastic modulus over a wider range. be. An explanation of the embodiment will be given below. The manufacturing methods of Examples 1 to 4 (Table 1) are as follows: First, each component except crude diphenylmethane diisocyanate is homogeneously kneaded and dispersed in advance, and then a predetermined amount of crude diphenylmethane diisocyanate is added and mixed. Obtain a cured product with the performance shown in -2. As explained above, the physical and chemical performance of the present invention is close to that of urethane resin mortar and fully satisfies the required performance of the orbit, and in terms of cost, it is significantly lower than urethane resin mortar. It is inexpensive and exhibits significant practical effects.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 体質顔料、複環芳香族炭化水素樹脂(平均分
子量200〜400)と石油系高沸点炭化水素油(平均
分子量150〜300のもの)と末端ヒドロキシル化ポ
リブタジエン(平均分子量1000〜3000)と、ポリ
エーテルポリオール(平均分子量300〜1000)と、
有機金属触媒と、吸水剤と、ジイソシアネートと
の組成を有し、 上記体質顔料は 20〜40% (重要パーセント、以下同じ)、 上記複環芳香族炭化水素樹脂 30〜50%、 上記石油系高沸点炭化水素油 5〜15%、 上記末端ヒドロキシル化ポリブタジエン
8〜20%、 上記ポリエーテルポリオール 1〜10%、 上記有機金属触媒 5%以下、 上記吸水剤 5〜20% 上記ジイソシアネート 3〜15% の配合からなることを特徴とするスラブ軌道てん
充用組成物。
[Scope of Claims] 1 Extender, a polycyclic aromatic hydrocarbon resin (average molecular weight 200 to 400), petroleum-based high boiling point hydrocarbon oil (average molecular weight 150 to 300), and terminal hydroxylated polybutadiene (average molecular weight 1000) ~3000), polyether polyol (average molecular weight 300~1000),
It has a composition of an organometallic catalyst, a water-absorbing agent, and a diisocyanate, and the extender pigment is 20 to 40% (important percentage, the same applies hereinafter), the polycyclic aromatic hydrocarbon resin is 30 to 50%, and the petroleum-based high-carbon resin is 30 to 50%. Boiling point hydrocarbon oil 5-15%, above-mentioned terminal hydroxylated polybutadiene
8 to 20% of the above polyether polyol, 1 to 10% of the above organometallic catalyst, 5 to 20% of the above water absorbing agent, and 3 to 15% of the above diisocyanate. .
JP16665282A 1982-09-27 1982-09-27 Composition for packing in slab track Granted JPS5956474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16665282A JPS5956474A (en) 1982-09-27 1982-09-27 Composition for packing in slab track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16665282A JPS5956474A (en) 1982-09-27 1982-09-27 Composition for packing in slab track

Publications (2)

Publication Number Publication Date
JPS5956474A JPS5956474A (en) 1984-03-31
JPH0140866B2 true JPH0140866B2 (en) 1989-08-31

Family

ID=15835231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16665282A Granted JPS5956474A (en) 1982-09-27 1982-09-27 Composition for packing in slab track

Country Status (1)

Country Link
JP (1) JPS5956474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2244714A (en) * 1990-05-31 1991-12-11 Sanyo Chemical Ind Ltd Foamed polyurethane-forming composition, foamed polyurethane, and process making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2244714A (en) * 1990-05-31 1991-12-11 Sanyo Chemical Ind Ltd Foamed polyurethane-forming composition, foamed polyurethane, and process making the same
GB2244714B (en) * 1990-05-31 1993-10-06 Sanyo Chemical Ind Ltd Foamed polyurethane-forming composition,foamed polyurethane and process for making the same

Also Published As

Publication number Publication date
JPS5956474A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
JP5265993B2 (en) Modified asphalt and two-component resin composition
US3136732A (en) Thermosetting paving material
CN110036049A (en) Flexible poly urethane cement base hybrid composition
DE3531892C2 (en)
EP2193107A1 (en) Method for producing mineral-bearing cover layers for floor coverings
DE3735305A1 (en) PROCESS FOR THE PRODUCTION OF A BELAG AND ITS USE
JPH02115209A (en) Castor oil base polyurethane
US4036797A (en) Polyurethane precursors containing thixotropic agents
JPH0140866B2 (en)
EP2785667B1 (en) Repair method for road pavings, in particular for open-pore asphalts
US20070026142A1 (en) One-step process for rapid structure repair
SU635879A3 (en) Method of obtaining polyurethane
JPH08311349A (en) Asphalt binder composition for pavement and road-paving material for water-draining road using the same
EP2370636A1 (en) Recycling of road surfaces
CN1341685A (en) Bitumen polyurethane hard foamed plastics and preparation method thereof
JP2018044431A (en) Repair material for slab type track, cured body, repair method for slab type track, slab type track and resin composition
JPH0140871B2 (en)
RU2151160C1 (en) Method of production of compound material for polyurethane coat
GB1348707A (en) Surfacing material and surfaces produced therefrom
JP4995452B2 (en) Paving material
JP4074526B2 (en) Room temperature asphalt mixture and its construction method
DE102010031311A1 (en) Method for the production of cover layer or supporting layer for roads, paths and other traffic areas, comprises producing a mixture containing mineral materials, and a polymer reaction mixture and/or if necessary further additives
JPS5941501A (en) Polyurethane paving material
JPH09279016A (en) Composition for preventing scattering of gravel and method for binding ballast using it
JP2802643B2 (en) Construction materials including bituminous materials