JPH0140713B2 - - Google Patents

Info

Publication number
JPH0140713B2
JPH0140713B2 JP2466683A JP2466683A JPH0140713B2 JP H0140713 B2 JPH0140713 B2 JP H0140713B2 JP 2466683 A JP2466683 A JP 2466683A JP 2466683 A JP2466683 A JP 2466683A JP H0140713 B2 JPH0140713 B2 JP H0140713B2
Authority
JP
Japan
Prior art keywords
welding
steel
steel pipe
joining
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2466683A
Other languages
Japanese (ja)
Other versions
JPS59150674A (en
Inventor
Tsutomu Konuma
Toshimi Matsumoto
Tsutomu Sato
Shuji Soma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Hitachi Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2466683A priority Critical patent/JPS59150674A/en
Publication of JPS59150674A publication Critical patent/JPS59150674A/en
Publication of JPH0140713B2 publication Critical patent/JPH0140713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は溶接による鋼管の接合法に係り、特に
内径の均一な油圧シリンダーを製造するのに好適
な鋼管の接合法に関する。 〔従来技術〕 油圧シリンダーのような鋼管を円周方向に沿つ
て溶接して接合する場合、溶接部は溶融状態から
の収縮により変形する。第1図はこのような溶接
後の溶接部の断面形状を模式的に示す。すなわち
通常適正な溶接うら波4が得られても内径側の母
材溶接熱影響部3には収縮部5が生じて、内径が
大きくなる。このため、うら波4を削除しても内
径の均一な管を作るためには収縮部5の深さに相
当する収縮代を予め設けておき、円周面全体を切
削加工しなければならず内径の機械切削量が増大
する。 収縮部5が出来る理由は、溶融金属の冷却によ
るひけ巣と組織変態、残留応力などの重量によ
る。 そこで裏当金部材を使用して溶込みを完全に
し、かつ溶接熱をそこに逃がす方法があるが、こ
の場合では内径にくい違いが生じ易く、接合した
後、長手方向全長の内径を加工する必要性が生ず
ることもある。このため、2つの鋼管を溶接によ
つて接合し、内径の均一な鋼管を製造することは
困難であつた。 〔発明の目的〕 本発明の目的は、溶接で鋼管を接合するに際
し、内径側溶接熱影響部の収縮による変形を防止
し、内径の機械切削量を少なくして内径の長手方
向に寸法の均一な鋼管を容易に製造できる鋼管の
接合法を提供することにある。 〔発明の概要〕 本発明は2つの鋼管を溶接により接合して均一
な内径の鋼管を製造する鋼管の接合法において、
2つの鋼管はそれぞれ内径が異なり、内径の小さ
い鋼管の接合部内径側に円周に沿つて突起部を設
け、この突起部の外形側周面に内径の大きい接合
部外形側周面を密着させ、かつ両鋼管の接合部は
ルート間隙を実質的に零として開先を形成させた
後、アーク溶接で接合し、然る後、内径の小さい
鋼管の内周面を切削加工することを特徴とするも
のである。 〔発明の実施例〕 以下、添付図面によつて本発明を説明する。 第2図において、1Aは内径の小さい鋼管の母
材であり、母材1Aの接合部内径側に円周に沿つ
て突起部6が設けられている。この突起部6の外
形側周面に母材1Bの接合部外形側周面が密着し
実質的にルート間隙をなくしている。両母材1
A,1Bの突合せ部はV開先形状となつている。
突起部6のlの寸法は少なくとも2mm以上、突起
部6のtの寸法は1.5mm以上が望ましい。lが2
mmより小さいと、2つの母材1A,1Bの中心軸
を合せるのが困難であり、またtが1.0mm以下で
は溶融池が溶け落ちやすくなる。このような適当
な寸法の突起部は熱容量を適当に大きくするの
で、加熱し難く、冷却しにくい特徴を持つ。すな
わち熱影響の巾を小さくし、冷却時間を長くす
る。またこの突起部は拘束材としての作用があり
継手全体の変形を制御することは形状的に見て明
らかである。また、母材1A及び1Bの中心軸を
正しく設定するのに効果的である。更に溶接作業
後、鋼管の内径周面を切削加工する場合、内径の
小さい方の鋼管側の内周面のみ切削加工するだけ
でよく、鋼管の内周面全体を切削加工する必要は
ない。 次に油圧シリンダーは一般に高い内圧を受け、
更に内面が摺接摩耗を受けるので比較的高強度で
硬度の高い材料が用いられる。すなわち炭素当量
の多い鋼が用いられる。このような材料は溶接割
れが生じ易いため、溶接に際して予熱を行い溶接
部の冷却を遅くする。しかし予熱を行うと溶接熱
に高温に加熱される部分が広くなり、変形が大き
くなる。発明者らは炭素当量の多い鋼管の接合の
場合にもこの変形を極力小さくするため予熱を省
略することにした。そのため溶接割れの危険性が
増大するが、その防止のためつぎのような手段が
望ましい。すなわち発明者らのS35C(機械構造用
炭素鋼)の実験によると、溶接割れは予熱温度の
高いものほど割れ発生限界応力は高く、割れ発生
温度は高くなる。しかし、割れ発生までの時間が
長くなる。これは予熱温度を高くすると組織的に
改善されるためであり、また予熱が高いと冷却が
遅くなるため、割れ発生までの時間は長くなる。
なお、予熱なしの場合では溶接部の温度がほぼ50
℃未満になると、割れの発生する危険性が著しく
増大する。割れ発生迄の潜伏期間すなわち溶接部
が50℃に冷却する迄の時間は溶接入熱量約
14000J/cmで溶接終了後約600〜1500秒である。
したがつて炭素当量の多い鋼を用いた場合、その
鋼に特有の潜伏期間内に次の溶接を順次行い溶接
を終了させれば溶接割れのない継手が得られる。
溶接部の内径の変形を少なくするには予熱を省略
することが必要であり、割れ潜伏期間内に次の溶
接を行えば予熱を省略しても溶接割れも妨げるこ
とになる。 また上記のように予熱を省略する場合、母材よ
り高強度の溶接材料を用いると、溶接割れを生じ
易くなるので、延びのよい低強度の軟鋼用の溶接
材料を使用するのが望ましい。 低強度溶接材料の使用は、溶接割れの潜伏期間
を長くするとともに割れを軽減することができ
る。また鋼管、例えば油圧シリンダーの内径によ
つては予熱に要する時間はほぼ溶接時間に匹敵す
るので予熱を省略できることは溶接時間を短縮す
ることになり、機械切削加工の短縮化と相俟つて
鋼管の製造コストを低減できる。さらに低強度の
溶接材料も健全な溶接部が得られるのでこの点か
らも製造コストを低減できる。 本発明者らは、第2図に示す突起部を除去した
継手引張試験では、溶接部材を母材より低強度に
しても、破壊部は溶接金属に欠陥が無い限り母材
であり、溶融金属の靭性も母材と遜色ないことを
確認している。 本発明において、鋼管の長手方向において内圧
が変化する場合、内圧が高い側の鋼管に高強度の
鋼材料を用い、内圧が低い側の鋼管に前記高強度
の鋼材料よりも強度の低い鋼材料を用い、それぞ
れを溶接により接合することによつて鋼管の長手
方向に対して鋼材料を変化させることができる。 特に第3図に示すような油圧シリンダーでは、
軸方向の長いシリンダーで油圧の高い側の管7A
を管全体の軸方向長さの1/3程度とし、その他の
管7Bを管全体の2/3程度とすることによつて、
高強度鋼材料を全体の1/3程度使用するに足りる
ので油圧シリンダーを軽量化することができる。 以下、本発明の実施例を説明する。第4図は実
施した鋼管の溶接開先を示す。第1表は母材及び
[Industrial Field of Application] The present invention relates to a method for joining steel pipes by welding, and particularly to a method for joining steel pipes suitable for manufacturing hydraulic cylinders with uniform inner diameters. [Prior Art] When steel pipes such as hydraulic cylinders are joined by welding along the circumferential direction, the welded portion deforms due to contraction from the molten state. FIG. 1 schematically shows the cross-sectional shape of the welded part after such welding. That is, even if an appropriate welding wave 4 is normally obtained, a shrinkage portion 5 is generated in the base metal weld heat affected zone 3 on the inner diameter side, and the inner diameter becomes larger. For this reason, in order to create a tube with a uniform inner diameter even if the ridges 4 are removed, a shrinkage allowance corresponding to the depth of the shrinkage portion 5 must be provided in advance and the entire circumferential surface must be cut. The amount of mechanical cutting on the inner diameter increases. The reason why the shrinkage portion 5 is formed is due to the weight of shrinkage cavities and structural transformation due to cooling of the molten metal, residual stress, etc. Therefore, there is a method of using a backing metal member to achieve complete penetration and release the welding heat there, but in this case, it is easy to cause a difference in the inner diameter, and it is necessary to process the inner diameter of the entire length in the longitudinal direction after joining. Sexuality may also occur. For this reason, it has been difficult to join two steel pipes by welding to produce a steel pipe with a uniform inner diameter. [Objective of the Invention] The object of the present invention is to prevent deformation due to contraction of the welded heat-affected zone on the inner diameter side when joining steel pipes by welding, reduce the amount of mechanical cutting of the inner diameter, and achieve uniform dimensions in the longitudinal direction of the inner diameter. It is an object of the present invention to provide a method for joining steel pipes that can easily manufacture steel pipes. [Summary of the Invention] The present invention provides a steel pipe joining method for manufacturing a steel pipe with a uniform inner diameter by joining two steel pipes by welding.
The two steel pipes have different inner diameters, and a protrusion is provided along the circumference on the inner diameter side of the joint of the steel pipe with the smaller inner diameter, and the outer circumferential surface of the joint with the larger inner diameter is brought into close contact with the outer circumferential surface of this protrusion. , and the joining part of both steel pipes is characterized by forming a groove with the root gap substantially zero, and then joining by arc welding, and then cutting the inner peripheral surface of the steel pipe with a small inner diameter. It is something to do. [Embodiments of the Invention] The present invention will be described below with reference to the accompanying drawings. In FIG. 2, 1A is a base material of a steel pipe with a small inner diameter, and a protrusion 6 is provided along the circumference on the inner diameter side of the joint portion of the base material 1A. The outer circumferential surface of the joint portion of the base material 1B is in close contact with the outer circumferential surface of the protrusion 6, substantially eliminating the root gap. Both base materials 1
The abutting portions of A and 1B have a V-groove shape.
It is desirable that the l dimension of the protrusion 6 is at least 2 mm or more, and the t dimension of the protrusion 6 is 1.5 mm or more. l is 2
If it is smaller than mm, it will be difficult to align the central axes of the two base materials 1A and 1B, and if t is less than 1.0 mm, the molten pool will easily melt through. Such protrusions with appropriate dimensions appropriately increase heat capacity, making them difficult to heat and cool. In other words, the width of the thermal influence is reduced and the cooling time is lengthened. Moreover, it is clear from the shape that this protrusion functions as a restraining member and controls the deformation of the entire joint. Moreover, it is effective for correctly setting the central axes of the base materials 1A and 1B. Furthermore, when cutting the inner circumferential surface of the steel pipe after welding, it is only necessary to cut the inner circumferential surface on the side of the steel pipe with the smaller inner diameter, and there is no need to cut the entire inner circumferential surface of the steel pipe. Secondly, hydraulic cylinders are generally subject to high internal pressure,
Furthermore, since the inner surface is subject to sliding wear, a material with relatively high strength and hardness is used. That is, steel with a large carbon equivalent is used. Since such materials are prone to weld cracking, they are preheated during welding to slow down the cooling of the welded part. However, when preheating is performed, the area heated to a high temperature by welding heat becomes larger, resulting in greater deformation. The inventors decided to omit preheating in order to minimize this deformation even when joining steel pipes with a high carbon equivalent. This increases the risk of weld cracking, but the following measures are desirable to prevent it. That is, according to the inventors' experiments with S35C (carbon steel for mechanical structures), the higher the preheating temperature, the higher the critical cracking stress and the higher the cracking temperature. However, the time it takes for cracks to occur becomes longer. This is because a higher preheating temperature improves the structure, and a higher preheating results in slower cooling, which increases the time until cracking occurs.
In addition, in the case without preheating, the temperature of the welded part is approximately 50℃.
If the temperature is below ℃, the risk of cracking increases significantly. The incubation period until cracking occurs, that is, the time it takes for the weld to cool to 50°C, is approximately the amount of welding heat input.
Approximately 600 to 1500 seconds after welding is completed at 14000J/cm.
Therefore, when using steel with a high carbon equivalent, a joint without weld cracking can be obtained by performing the next weld one after another and completing the welding within the incubation period specific to that steel.
In order to reduce the deformation of the inner diameter of the welded part, it is necessary to omit preheating, and if the next welding is performed within the crack incubation period, weld cracking will be prevented even if preheating is omitted. Furthermore, when preheating is omitted as described above, if a welding material with a higher strength than the base metal is used, weld cracking is likely to occur, so it is desirable to use a welding material for low-strength mild steel with good elongation. The use of low strength welding materials can lengthen the incubation period of weld cracking and reduce cracking. Also, depending on the inner diameter of a steel pipe, such as a hydraulic cylinder, the time required for preheating is almost equal to the welding time, so being able to omit preheating will shorten the welding time, which, together with shortening the mechanical cutting process, will improve the welding time. Manufacturing costs can be reduced. Furthermore, since a sound weld can be obtained even with a low-strength welding material, manufacturing costs can be reduced from this point of view as well. In a joint tensile test with the protrusion removed, as shown in Figure 2, the inventors found that even if the strength of the welded member is lower than that of the base metal, the fractured part is the base metal as long as there is no defect in the weld metal, and the molten metal It has been confirmed that the toughness of the material is comparable to that of the base material. In the present invention, when the internal pressure changes in the longitudinal direction of the steel pipe, a high-strength steel material is used for the steel pipe on the side where the internal pressure is higher, and a steel material with lower strength than the high-strength steel material is used for the steel pipe on the side where the internal pressure is lower. By joining them by welding, it is possible to change the steel material in the longitudinal direction of the steel pipe. Especially in a hydraulic cylinder as shown in Figure 3,
Pipe 7A on the side with high oil pressure in a long cylinder in the axial direction
By making the length of the pipe 7B about 1/3 of the axial length of the whole pipe, and making the other pipe 7B about 2/3 of the whole pipe,
Since only about 1/3 of the total amount of high-strength steel is used, the weight of the hydraulic cylinder can be reduced. Examples of the present invention will be described below. Figure 4 shows the welding groove of the steel pipe that was carried out. Table 1 shows the base material and

【表】 溶接材料の化学成分と機械的性質を示す。第1表
の溶接材料は炭酸ガスアーク溶接材料での全溶着
金属である。鋼管の溶接は上記の溶接法で、ポジ
シヨナーを用いて、鋼管を回転させて下向きで溶
接した。溶接条件を第2表に示す。
[Table] Shows the chemical composition and mechanical properties of welding materials. The welding materials in Table 1 are all deposited metals in carbon dioxide arc welding materials. The steel pipes were welded using the above welding method, using a positioner to rotate the steel pipes and welding them downward. The welding conditions are shown in Table 2.

【表】 まず、第4図のtを1.0、1.5、2.0、3.0、5.0mm
に変化させlを1.0、2.0、2.0、8.0、10.0に変化さ
せて、第1表の母材と溶接材料Aを用い、第2表
のW1の条件で1層を溶接し、続いて直ちに2層
目をW2で溶接を完了した。第5図は横軸に第4
図のlをとり、縦軸にtをとり良好な溶接可能な
範囲を示したものである。tが1.0mm以下のもの
は溶融池が溶け落ち溶接が不可能となる。またl
が20mm未満では2つの母材の中心軸を合わせるの
が困難となる。このことからtは1.5mm以上、l
は2.0mm以上が必要である。この継手部の平板の
継手引張試験結果を第3表に示す。引張強さは第
1表の母材1Bとほぼ同等で、溶接材料Aの強度
を上廻つ
[Table] First, t in Figure 4 is 1.0, 1.5, 2.0, 3.0, 5.0mm.
1.0, 2.0, 2.0, 8.0, and 10.0, welded one layer using the base metal and welding material A in Table 1 under the conditions of W1 in Table 2, and then immediately welded 2 layers. Welding of the layers was completed with W2. Figure 5 shows the 4th axis on the horizontal axis.
The figure shows the range in which good welding is possible, with l in the figure taken and t taken on the vertical axis. If t is less than 1.0 mm, the molten pool will burn through and welding will be impossible. Also l
If it is less than 20 mm, it will be difficult to align the central axes of the two base materials. From this, t is 1.5 mm or more, l
2.0mm or more is required. Table 3 shows the joint tensile test results for the flat plate of this joint. The tensile strength is almost the same as base material 1B in Table 1, and exceeds the strength of welding material A.

【表】 ている。これは溶着金属が母材1Aの成分稀釈及
び熱影響部の硬度上昇による塑性拘束を受けて溶
接金属の強度が上昇したものである。 第6図は溶接部の硬さ分布を示す。硬さの測定
個所は第7図に示す通りである。 1層目の母材1Aは2層目の硬さより著しく低
下しているが、これは2層目の溶接熱で1層目の
マルテンサイトが焼戻されたものである。溶接金
属は1層目が硬いが、これは母材1Aからの稀釈
が大きいことを示す。第3表、第6図の結果か
ら、溶接材料の強度は母材強度より低くしてもよ
く、先行の溶接熱影響部が後行の溶接熱で焼もど
されると高強度銅では硬さが著しく低下すること
がわかる。第4表は溶接熱影響部のシヤルピー衝
撃試験結果を示す。
[Table] Yes. This is because the strength of the weld metal increases as the weld metal undergoes plastic restraint due to the dilution of the base material 1A and the increase in hardness of the heat-affected zone. Figure 6 shows the hardness distribution of the weld. The locations where the hardness was measured are as shown in FIG. The hardness of the base material 1A of the first layer is significantly lower than that of the second layer, but this is because the martensite of the first layer is tempered by the welding heat of the second layer. The first layer of the weld metal is hard, which indicates that the dilution from the base metal 1A is large. From the results in Table 3 and Figure 6, the strength of the welding material can be lower than the base metal strength, and if the heat affected zone of the preceding weld is tempered by the heat of the subsequent weld, the hardness of high-strength copper will decrease. It can be seen that this decreases significantly. Table 4 shows the results of the Shapey impact test of the weld heat affected zone.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、内径の小さい鋼
管側に適当な寸法の突起部を設け、この突起部に
内径の大きい鋼管の内周面を密着させて接合する
と、突起部によつて溶融部の加熱巾を小さくし、
裏波部に生ずる変形を抑制するとともに溶接操作
後の内径の小さい鋼管側の内周面のみ切削加工す
るのみで均一な内径の鋼管を得ることができる。
As described above, according to the present invention, a protrusion of an appropriate size is provided on the side of a steel pipe with a small inner diameter, and when the inner peripheral surface of a steel pipe with a large inner diameter is brought into close contact with this protrusion and joined, the protrusion causes melting. Reduce the heating width of the
A steel pipe with a uniform inner diameter can be obtained by suppressing deformation occurring in the back corrugated portion and only cutting the inner circumferential surface on the side of the steel pipe with a smaller inner diameter after welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の鋼管継手部(裏金無しの場合)
の溶接線直角方向の断面概略図、第2図は本発明
で得られる鋼管継手部の溶接線直角方向の断面概
略図、第3図は本発明を油圧シリンダーに適用し
た場合の説明図、第4図は実施例の溶接開先断面
図、第5図は本発明における突起部の長さ及び厚
みと溶接条件との関係図、第6図は実施例で得た
溶接部の硬さ分布を示すグラフ、第7図は第6図
の硬さ分布の測定個所を示す説明図である。 1A……母材、1B……母材、2……溶接金
属、3……溶接熱影響部、4……裏波ビード、5
……変形部、6……突起部、7A……高圧側油圧
シリンダー、7B……低圧側油圧シリンダー、8
……ピストンロツド、9……ピストン、10……
シリンダーヘツド、11……シリンダージヨイン
ト。
Figure 1 shows a conventional steel pipe joint (without backing metal)
2 is a schematic cross-sectional view of a steel pipe joint obtained by the present invention in a direction perpendicular to the weld line. FIG. 3 is an explanatory diagram of the present invention applied to a hydraulic cylinder. Figure 4 is a sectional view of the welding groove of the example, Figure 5 is a relationship between the length and thickness of the protrusion and welding conditions in the present invention, and Figure 6 is the hardness distribution of the welded part obtained in the example. The graph shown in FIG. 7 is an explanatory diagram showing the measurement locations of the hardness distribution in FIG. 6. 1A...Base metal, 1B...Base metal, 2...Weld metal, 3...Weld heat affected zone, 4...Uranami bead, 5
...Deformed part, 6...Protrusion, 7A...High pressure side hydraulic cylinder, 7B...Low pressure side hydraulic cylinder, 8
...Piston rod, 9...Piston, 10...
Cylinder head, 11...Cylinder joint.

Claims (1)

【特許請求の範囲】 1 2つの鋼管を溶接により接合して均一な内径
の鋼管を製造する鋼管の接合法において、2つの
鋼管はそれぞれ内径が異なり、内径の小さい鋼管
の接合部内径側に円周に沿つて軸方向に突起部を
設け、この突起部の外径側周面に内径の大きい鋼
管の接合部内径側周面を密着させ、かつ両鋼管の
接合部はルート間〓を実質的に零として開先を形
成させた後、アーク溶接で接合し、然る後、内径
の小さい鋼管の内周面を切削加工することを特徴
とする鋼管の接合法。 2 特許請求の範囲の第1項において、前記突起
部の軸方向長さが2mm以上、厚さ1.5mm以上であ
ることを特徴とする鋼管の接合法。 3 特許請求の範囲第1項において、溶接材料の
強度を母材の強度よりも小さくし、予熱すること
なく溶接を開始し、先行の溶接を行つた後、その
溶接部の割れの潜伏期間内に後行の溶接を行うこ
とを特徴とする鋼管の接合法。 4 特許請求の範囲第1項において、鋼管が油圧
シリンダであり、高い内圧を受ける側の鋼管に高
強度鉄鋼材料を用い、他方の鋼管には低強度鉄鋼
材料を用い、これらの鋼管を接合することを特徴
とする鋼管の接合法。 5 特許請求の範囲第1項において、先行の溶接
金属の温度が50℃以下にならないときに後行の溶
接を行い、先行の溶接金属と母材熱影響部が600
℃以上に少なくとも加熱されるように溶接するこ
とを特徴とする鋼管の接合法。
[Claims] 1. In a steel pipe joining method in which two steel pipes are joined by welding to produce a steel pipe with a uniform inner diameter, the two steel pipes have different inner diameters, and a circle is formed on the inner diameter side of the joint of the steel pipe with a smaller inner diameter. A protrusion is provided in the axial direction along the circumference, and the inner circumferential surface of the joint of the steel pipe with a large inner diameter is brought into close contact with the outer circumferential surface of this protrusion, and the joint between the two steel pipes is made so that the distance between the roots is substantially A method for joining steel pipes, which comprises forming a groove as a zero, joining by arc welding, and then cutting the inner circumferential surface of the steel pipe with a small inner diameter. 2. The method for joining steel pipes according to claim 1, wherein the protrusion has an axial length of 2 mm or more and a thickness of 1.5 mm or more. 3 In claim 1, the strength of the welding material is made lower than the strength of the base material, welding is started without preheating, and after the preceding welding is performed, within the incubation period of cracking in the welded part. A method of joining steel pipes characterized by performing subsequent welding. 4 In claim 1, the steel pipe is a hydraulic cylinder, the steel pipe on the side receiving high internal pressure is made of high-strength steel material, the other steel pipe is made of low-strength steel material, and these steel pipes are joined. A method for joining steel pipes. 5 In claim 1, the subsequent welding is performed when the temperature of the preceding weld metal does not fall below 50°C, and the heat affected zone of the preceding weld metal and the base metal is 600°C.
A method of joining steel pipes, characterized by welding so that the pipes are heated to at least ℃ or higher.
JP2466683A 1983-02-18 1983-02-18 Joining method of steel pipe Granted JPS59150674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2466683A JPS59150674A (en) 1983-02-18 1983-02-18 Joining method of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2466683A JPS59150674A (en) 1983-02-18 1983-02-18 Joining method of steel pipe

Publications (2)

Publication Number Publication Date
JPS59150674A JPS59150674A (en) 1984-08-28
JPH0140713B2 true JPH0140713B2 (en) 1989-08-30

Family

ID=12144459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2466683A Granted JPS59150674A (en) 1983-02-18 1983-02-18 Joining method of steel pipe

Country Status (1)

Country Link
JP (1) JPS59150674A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168093B1 (en) * 2018-12-28 2020-10-20 클래드코리아원주 주식회사 Welding method for connection of clad pipe
CN111590227A (en) * 2020-06-03 2020-08-28 广东高沃科技有限公司 Method for processing oxygen injector of vortex thruster

Also Published As

Publication number Publication date
JPS59150674A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
CN105592969B (en) The manufacture method of the friction stirring connecting method of structural steel and the junction joint of structural steel
KR20180119636A (en) Method and apparatus for friction stir welding of structural steel
EP1534466B1 (en) Forge welding method
US9227267B1 (en) Warm bond method for butt joining metal parts
RU2746759C1 (en) Welded steel part used as vehicle part and method for manufacturing specified welded steel part
KR0137026B1 (en) Inertia welding method and repairing method through the use of inertia welding method
JPH03243286A (en) Joining method for clad tube
JPH0140713B2 (en)
US20210260699A1 (en) Butt welded joint of steel material and method for manufacturing same
JP2650558B2 (en) Manufacturing method of high workability welded steel pipe
JPH0275478A (en) Method for joining bar materials
JPS5941425A (en) Improvement in residual stress of hollow body
JPS58387A (en) Production of composite roll
KR20160077240A (en) Manufacturing method for welded steel pipe having reduced hot crack
JP7368716B2 (en) Manufacturing method of resistance spot welding joints
JP7234639B2 (en) Flanged plate-wound laser-welded steel pipe and method for producing plate-wound laser-welded steel pipe with flange
JP2000167673A (en) Tailored blank, and its manufacture
US11701738B2 (en) Laser welded assembly having a heat affected zone reinforcement and method of making the same
JPS6360081A (en) Manufacture of fuel jet high pressure pipe
JPH048488B2 (en)
RU2254950C1 (en) Method for making dowel joints of tubes
RU2643098C2 (en) Method of arc welding of weldolet from austenite steels to pipeline from low-carbon and low-alloy steels
RU2285595C1 (en) Method for forming butt welded seams on tubes
RU2279955C1 (en) Method of forming butt welds on pipes
JPH08155642A (en) Cladding by welding repair method of hot die