JPH0140677B2 - - Google Patents

Info

Publication number
JPH0140677B2
JPH0140677B2 JP16454581A JP16454581A JPH0140677B2 JP H0140677 B2 JPH0140677 B2 JP H0140677B2 JP 16454581 A JP16454581 A JP 16454581A JP 16454581 A JP16454581 A JP 16454581A JP H0140677 B2 JPH0140677 B2 JP H0140677B2
Authority
JP
Japan
Prior art keywords
fluorine
exchange resin
anion exchange
water
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16454581A
Other languages
Japanese (ja)
Other versions
JPS5864181A (en
Inventor
Tadashi Yoshida
Tadashi Yamazaki
Hiroyuki Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP16454581A priority Critical patent/JPS5864181A/en
Publication of JPS5864181A publication Critical patent/JPS5864181A/en
Publication of JPH0140677B2 publication Critical patent/JPH0140677B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフツ素含有廃水からフツ素を陰イオン
交換樹脂を用いて除去し、廃水を浄化する方法に
関する。 近年、環境保全、公害防止の立場から公共水域
へ放流される廃水中のフツ素濃度は15mg/以
下、一部の地域では8mg/以下にするように規
制されている。 従来、陰イオン交換樹脂による廃水中のフツ素
の除去は、強塩基性陰イオン交換樹脂を単独また
は弱塩基性陰イオン交換樹脂と混合して用いて分
離する方法が採用されている。しかしフツ素イオ
ンは1価の陰イオンであるため、多価の陰イオン
より樹脂に対する親和性が小さく、また同価のイ
オンと比較しても水和したイオン半径が小さいた
め親和性がより小さく、樹脂のフツ素に対する交
換容量がかなり小さくなつてしまう。更に、他の
陰イオン(例えばSO4 2-、Cl-など)濃度が高い
場合には、フツ素の定常リーク量が増加する。こ
れは弱塩基性陰イオン交換樹脂において顕著であ
るため、後段の強塩基性陰イオン交換樹脂にかか
る負荷が増し、交換が著しく低下するという欠点
がある。 本発明は、前記の従来技術の欠点を解消し、フ
ツ素に対する弱塩基性及び強塩基性のイオン交換
樹脂の交換容量を向上させ、更にフツ素の定常リ
ーク量を低下させうる廃水の浄化方法を提供する
ことを目的とする。 この目的は本発明によれば、アルミニウム、鉄
またはジルコニウムの化合物を廃水に添加するこ
とにより、廃水中のフツ素を水に可溶性のフルオ
ロ錯イオンに変え、その後陰イオン交換樹脂に通
水することによつて達成される。 フツ素含有廃水にアルミニウム、鉄またはジル
コニウムの化合物を適切な量で共存させ、適切な
PHに保持すると、次式に示すようにフツ素は安定
な可溶性錯体を生成する。 Al3++4F-→AlF4 - (1) Al3++5F-→AlF5 2- (2) Al3++6F-→AlF6 3- (3) Fe3++4F-→FeF4 - (4) Fe3++5F-→FeF5 2- (5) Fe3++6F-→FeF6 3- (6) Zr4++5F-→ZrF5 - (7) Zr4++6F-→ZrF6 2- (8) これらの錯体は安定度定数から計算すると、PH
約8以下で安定である。アルミニウム、鉄または
ジルコニウムの化合物と反応するフツ素は遊離形
でなく、固体のフツ化カルシウムまたはフツ素を
含むリン酸アパタイトの懸濁液、更にアルミニウ
ム、鉄またはジルコニウム以外の金属等のフツ素
錯体であつても、最終的には前記(1)〜(8)の反応式
にしたがつて大部分が可液性のフルオロ錯体に移
行する。 前記の(1)〜(8)の反応式の中で、大部分の反応は
(3)、(6)及び(8)式に相当する。従つて、アルミニウ
ム、鉄またはジルコニウムの化合物はフツ素6モ
ルに対して1モルとかなり少量の存在ですむこと
になる。ヘキサフルオロアルミニウムイオン
(AlF6 3-)、ヘキサフルオロ鉄イオン(FeF6 3-
及びヘキサフルオロジルコニウムイオン
(ZrF6 2-)は、3価及び2価のイオンであるため、
樹脂に対する親和性が高く、またイオン半径も大
きくなるため、樹脂に対する親和性が著しく向上
する。従つて、イオン交換樹脂のフツ素に対する
交換容量は大幅に上昇し、フツ素の定常リーク量
が強塩基性イオン交換樹脂の場合にも弱塩基性イ
オン交換樹脂の場合にも減少する。 本発明方法において、アルミニウム、鉄または
ジルコニウムの化合物としては、これらの金属の
水酸化物または塩、例えば硫酸塩、塩酸塩などを
使用する。 アルミニウム、鉄またはジルコニウムの化合物
の添加量は、それぞれの反応当量比が0.5以上に
なるようにする。 次に実施例に基づいて本発明を詳述するが、本
発明はこれに限定されるものではない。 実施例 1 水道水にフツ化ナトリウムをフツ素として100
mg/、硫酸ナトリウムを1000mg/溶解させ、
塩酸を加えてPH2の合成試料を調製した。この試
料水に硫酸アルミニウム〔Al2(SO43〕溶液、硫
酸鉄〔Fe2(SO43〕溶液または硫酸ジルコニウム
〔Zr(SO42〕溶液を前記の(3)、(6)及び(8)式基準で
反応当量比で0〜2となるように添加し、撹拌混
合した。 次に直径16mmのカラムに遊離形弱塩基性陰イオ
ン交換樹脂を100ml、これに接続した同径のカラ
ムに遊離形強塩基性陰イオン交換樹脂を20ml充填
し、弱塩基性陰イオン交換樹脂カラムには空塔速
度(SV)10h-1、強塩基性陰イオン交換樹脂カラ
ムには空塔速度(SV)50h-1の条件で試料水を通
水した。 両方のカラムを通過した各処理水をフラクシヨ
ンコレクターで採水し、処理水中のフツ素濃度を
JIS−K−0102の方法に準じて分析した。得られ
た結果を第1表に示した。
The present invention relates to a method for removing fluorine from fluorine-containing wastewater using an anion exchange resin and purifying the wastewater. In recent years, from the standpoint of environmental conservation and pollution prevention, the fluorine concentration in wastewater discharged into public waters has been regulated to 15 mg/or less, and in some areas to 8 mg/or less. Conventionally, to remove fluorine from wastewater using an anion exchange resin, a separation method has been adopted in which a strongly basic anion exchange resin is used alone or in combination with a weakly basic anion exchange resin. However, since fluoride ions are monovalent anions, they have a lower affinity for resins than polyvalent anions, and even compared to ions with the same valence, the hydrated ionic radius is smaller, so the affinity is lower. , the exchange capacity of the resin for fluorine becomes considerably small. Furthermore, when the concentration of other anions (for example, SO 4 2- , Cl -, etc.) is high, the amount of steady-state leakage of fluorine increases. Since this is noticeable in weakly basic anion exchange resins, there is a drawback that the load on the strongly basic anion exchange resin in the subsequent stage increases and the exchange rate decreases significantly. The present invention solves the drawbacks of the prior art described above, improves the exchange capacity of weakly basic and strongly basic ion exchange resins for fluorine, and further reduces the amount of constant leakage of fluorine. The purpose is to provide This purpose, according to the invention, is to convert the fluorine in the wastewater into water-soluble fluoro complex ions by adding compounds of aluminum, iron or zirconium to the wastewater, which are then passed through an anion exchange resin. achieved by. By coexisting an appropriate amount of aluminum, iron, or zirconium compounds in fluorine-containing wastewater,
When maintained at pH, fluorine forms a stable soluble complex as shown in the following equation: Al 3+ +4F - →AlF 4 - (1) Al 3+ +5F - →AlF 5 2- (2) Al 3+ +6F - →AlF 6 3- (3) Fe 3+ +4F - →FeF 4 - (4) Fe 3+ +5F - →FeF 5 2- (5) Fe 3+ +6F - →FeF 6 3- (6) Zr 4+ +5F - →ZrF 5 - (7) Zr 4+ +6F - →ZrF 6 2- (8 ) Calculated from the stability constant, these complexes have a pH of
It is stable at about 8 or less. The fluorine that reacts with aluminum, iron or zirconium compounds is not in free form, but in solid calcium fluoride or suspensions of fluorine-containing phosphoapatite, as well as fluorine complexes such as metals other than aluminum, iron or zirconium. Even so, most of the fluorocomplexes are eventually converted into liquid fluorocomplexes according to the reaction formulas (1) to (8) above. Among the reaction formulas (1) to (8) above, most reactions are
Corresponds to equations (3), (6) and (8). Therefore, the aluminum, iron or zirconium compound only needs to be present in a fairly small amount of 1 mole per 6 moles of fluorine. Hexafluoroaluminium ion (AlF 6 3- ), hexafluoroiron ion (FeF 6 3- )
And hexafluorozirconium ion (ZrF 6 2- ) is a trivalent and divalent ion, so
Since the affinity for the resin is high and the ionic radius is also increased, the affinity for the resin is significantly improved. Therefore, the exchange capacity of the ion exchange resin for fluorine increases significantly, and the steady-state leakage amount of fluorine decreases in both the case of the strongly basic ion exchange resin and the weakly basic ion exchange resin. In the method of the invention, hydroxides or salts of these metals, such as sulfates and hydrochlorides, are used as the aluminum, iron or zirconium compounds. The amount of the aluminum, iron, or zirconium compound added is such that the reaction equivalent ratio of each is 0.5 or more. Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto. Example 1 Add sodium fluoride to tap water and add 100% fluorine.
mg/, dissolve 1000 mg/of sodium sulfate,
A synthetic sample of PH2 was prepared by adding hydrochloric acid. Add aluminum sulfate [Al 2 (SO 4 ) 3 ] solution, iron sulfate [Fe 2 (SO 4 ) 3 ] solution, or zirconium sulfate [Zr(SO 4 ) 2 ] solution to this sample water in (3) and (6) above. ) and (8) so that the reaction equivalent ratio was 0 to 2, and the mixture was stirred and mixed. Next, fill a column with a diameter of 16 mm with 100 ml of free weakly basic anion exchange resin, and fill a column with the same diameter connected to this with 20 ml of free strong basic anion exchange resin. The sample water was passed through the column at a superficial velocity (SV) of 10 h -1 and through the strongly basic anion exchange resin column at a superficial velocity (SV) of 50 h -1 . Each treated water that has passed through both columns is collected using a fraction collector, and the fluorine concentration in the treated water is measured.
It was analyzed according to the method of JIS-K-0102. The results obtained are shown in Table 1.

【表】 第1表の結果から明らかなとおり、本発明方法
によれば陰イオン交換樹脂のフツ素に対する交換
容量を大幅に向上でき、かつフツ素の定常リーク
濃度を極めて低く、また安定して処理可能であつ
た。 実施例 2 実施例1と同一の実験条件下で、硫酸アルミニ
ウム、硫酸鉄及び硫酸ジルコニウムの混合液を
(3)、(6)及び(8)式基準で反応当量比で0〜2となる
ように添加し、同様に実験した。得られた結果を
第2表に示した。
[Table] As is clear from the results in Table 1, according to the method of the present invention, the exchange capacity of anion exchange resin for fluorine can be greatly improved, and the steady-state leakage concentration of fluorine can be kept extremely low and stable. It was manageable. Example 2 Under the same experimental conditions as Example 1, a mixed solution of aluminum sulfate, iron sulfate and zirconium sulfate was
(3), (6) and (8) were added so that the reaction equivalent ratio was 0 to 2, and the same experiment was carried out. The results obtained are shown in Table 2.

【表】 第2表の結果から明らかなとおり、アルミニウ
ム、鉄及びジルコニウムイオンを混合添加した場
合にも、単独使用の場合と同様の結果が得られ
た。 実施例 3 水道水にフツ化ナトリウムをフツ素として70
mg/、フツ化カルシウムをフツ素として30mg/
、塩化ナトリウムを1000mg/及び硫酸ナトリ
ウムを1000mg/加えて、中性の合成試料を調製
した。この試料水に硫酸アルミニウム溶液、硫酸
鉄溶液または硫酸ジルコニウム溶液を(3)、(6)及び
(8)式基準で反応当量比で0〜1.5となるように添
加し、撹拌混合した。 次に、実施例1に記載したイオン交換樹脂カラ
ムに実施例1と同じ条件で通水した。 処理水中のフツ素濃度をJIS−K−0102の方法
により分析し、得られた結果を第3表に示した。
[Table] As is clear from the results in Table 2, when aluminum, iron, and zirconium ions were mixed and added, the same results as when they were used alone were obtained. Example 3 Adding sodium fluoride to tap water as fluorine 70
mg/, calcium fluoride as fluoride 30mg/
A neutral synthetic sample was prepared by adding 1000 mg of sodium chloride and 1000 mg of sodium sulfate. Add aluminum sulfate solution, iron sulfate solution or zirconium sulfate solution to this sample water (3), (6) and
They were added so that the reaction equivalent ratio was 0 to 1.5 based on formula (8), and mixed with stirring. Next, water was passed through the ion exchange resin column described in Example 1 under the same conditions as in Example 1. The fluorine concentration in the treated water was analyzed by the method of JIS-K-0102, and the results are shown in Table 3.

【表】 第3表の結果から明らかなとおり、本発明方法
によれば廃水中のフツ素は、遊離形でなく、不溶
性塩のフツ化カルシウムであつても、容易にフル
オロ金属錯体となり、陰イオン交換樹脂処理水中
へのコロイド状フツ化カルシウムのリークを防止
し、かつ樹脂のフツ化カルシウムによる目詰りを
なくし、圧力損失を少なくすることができた。従
つて、陰イオン交換樹脂のフツ素に対する交換容
量を大幅に向上でき、かつフツ素の定常リーク濃
度を極めて低くでき、安定して処理をすることが
できた。
[Table] As is clear from the results in Table 3, according to the method of the present invention, fluorine in wastewater, even if it is not a free form and is an insoluble salt of calcium fluoride, easily becomes a fluorometallic complex and becomes negative. It was possible to prevent colloidal calcium fluoride from leaking into ion-exchange resin-treated water, eliminate clogging of the resin with calcium fluoride, and reduce pressure loss. Therefore, the exchange capacity of the anion exchange resin for fluorine could be greatly improved, and the constant leak concentration of fluorine could be extremely low, allowing stable processing.

Claims (1)

【特許請求の範囲】 1 フツ素含有廃水にアルミニウム化合物、鉄化
合物若しくはジルコニウム化合物またはこれらの
混合物を添加して、廃水中のフツ素を水に可溶性
のフルオロ錯イオンに変え、その後陰イオン交換
樹脂に通水することを特徴とするフツ素含有廃水
の処理方法。 2 アルミニウム化合物、鉄化合物若しくはジル
コニウム化合物として水酸化物または塩、例えば
硫酸塩、塩酸塩を使用する特許請求の範囲第1項
記載の処理方法。 3 陰イオン交換樹脂が弱塩基性陰イオン交換樹
脂または強塩基性陰イオン交換樹脂またはこれら
の組合せである特許請求の範囲第1項記載の処理
方法。 4 フルオロ錯イオンの形成をPH8以下で行なう
特許請求の範囲第1項記載の処理方法。
[Claims] 1. Adding an aluminum compound, an iron compound, a zirconium compound, or a mixture thereof to fluorine-containing wastewater to convert fluorine in the wastewater into water-soluble fluoro complex ions, and then converting the fluorine in the wastewater into water-soluble fluoro complex ions. A method for treating fluorine-containing wastewater, characterized by passing the water through the water. 2. The treatment method according to claim 1, wherein a hydroxide or a salt, such as a sulfate or a hydrochloride, is used as the aluminum compound, iron compound or zirconium compound. 3. The treatment method according to claim 1, wherein the anion exchange resin is a weakly basic anion exchange resin, a strongly basic anion exchange resin, or a combination thereof. 4. The treatment method according to claim 1, wherein the fluoro complex ion is formed at a pH of 8 or lower.
JP16454581A 1981-10-15 1981-10-15 Treatment of fluorine-containing waste water Granted JPS5864181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16454581A JPS5864181A (en) 1981-10-15 1981-10-15 Treatment of fluorine-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16454581A JPS5864181A (en) 1981-10-15 1981-10-15 Treatment of fluorine-containing waste water

Publications (2)

Publication Number Publication Date
JPS5864181A JPS5864181A (en) 1983-04-16
JPH0140677B2 true JPH0140677B2 (en) 1989-08-30

Family

ID=15795186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16454581A Granted JPS5864181A (en) 1981-10-15 1981-10-15 Treatment of fluorine-containing waste water

Country Status (1)

Country Link
JP (1) JPS5864181A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW406028B (en) 1994-05-26 2000-09-21 Toshiba Corp Process for treating acidic exhaust gas
KR19980086123A (en) * 1997-05-31 1998-12-05 엄길용 Foshan Wastewater Treatment Method
JP4294253B2 (en) * 2002-03-18 2009-07-08 オルガノ株式会社 Method for removing anionic metal complex
CN103253788B (en) * 2012-12-28 2014-07-09 中国科学院生态环境研究中心 Method for removing fluorides in water through aluminum base composite metal oxide-based fluorine removing absorption material complexation-absorption

Also Published As

Publication number Publication date
JPS5864181A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
CN1303363A (en) Method for recovering fluorinated alkanoic acids from waste water
CN103253788B (en) Method for removing fluorides in water through aluminum base composite metal oxide-based fluorine removing absorption material complexation-absorption
JP3635643B2 (en) Waste liquid treatment method
US4362643A (en) Aqueous basic polyaluminum-iron halide solutions
Sengupta Chromate ion exchange
JPH0140677B2 (en)
CN103274539B (en) Method for removing fluoride in drinking water by complexation-coacervation-adsorption with defluorination adsorption material based on aluminium base composite metal oxide
Kunin et al. New deionization techniques based upon weak electrolyte ion exchange resins
CN100582030C (en) Method for preparing reverse osmosis antisludging agent
US3414510A (en) Method for selectively removing chromates
JPS6366278B2 (en)
US4417996A (en) Aqueous basic polyaluminum-iron halide solutions
Chu et al. Removal of complex copper-ammonia ions from aqueous wastes with fly ash
TWI263623B (en) Effluent water treatment method
Trace Inorganic Substances Research Committee A review of solid‐solution interactions and implications for the control of trace inorganic materials in water treatment
JPH11235595A (en) Treatment of boron-containing waste water
JP2500345B2 (en) Method of solidifying and removing iodide ion
JP4761612B2 (en) Treatment method for boron-containing wastewater
JPH0866687A (en) Treatment of waste liquid incorporating borofluoride compound
EP0134314A1 (en) Removal of sulfate ions from brine
CN102921386A (en) Resin base phosphorus removal absorbent and preparation method thereof
JP3346708B2 (en) Treatment method of boron-containing wastewater
JP4014277B2 (en) Treatment method for boron-containing wastewater
JPS6161880B2 (en)
RU2010889C1 (en) Method of copper regenerating from copper contained ammonium solution