JPS6161880B2 - - Google Patents

Info

Publication number
JPS6161880B2
JPS6161880B2 JP57185679A JP18567982A JPS6161880B2 JP S6161880 B2 JPS6161880 B2 JP S6161880B2 JP 57185679 A JP57185679 A JP 57185679A JP 18567982 A JP18567982 A JP 18567982A JP S6161880 B2 JPS6161880 B2 JP S6161880B2
Authority
JP
Japan
Prior art keywords
wastewater
resin
group
formula
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57185679A
Other languages
Japanese (ja)
Other versions
JPS5976592A (en
Inventor
Toshimitsu Hayashida
Isato Iwasaki
Akyuki Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP57185679A priority Critical patent/JPS5976592A/en
Publication of JPS5976592A publication Critical patent/JPS5976592A/en
Publication of JPS6161880B2 publication Critical patent/JPS6161880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硫黄化合物、ふつ素及び重金属等を
含む排水の処理方法に係り、特に湿式排ガス脱硫
装置から排出されるチオン酸等の硫黄化合物とふ
つ素と水銀、鉛等の重金属とを含むブローダウン
排水の処理方法に関するものである。 湿式排ガス脱硫装置から排出されるブローダウ
ン水(以下膜硫排水と記す)は、石灰石―石膏法
を例にとると、排ガスを除塵あるいは冷却する循
環系から排出されるもの、および排ガスと石灰石
スラリーとを接触させ、更に空気酸化して排ガス
中の二酸化硫黄を亜硫酸カルシウムを経由して石
膏にする反応過程から排出されるものとがある。 この脱硫排水中には懸濁物、溶解無機物、溶解
有機物などの汚濁・汚染物質が含まれており、特
に通常の手段では除去困難なCOD成分が含まれ
ている。 このCOD成分は、主にチオン酸イオン
(S2O6 2-,S4O6 2-,S5O6 2-)等の硫黄化合物からな
り、一般にCOD成分の除去法として知られてい
る凝集沈殿法、薬品酸化法、オゾン酸化法、活性
炭吸着法、紫外線照射法などでは除去困難であ
る。 従来、このような脱硫排水を処理する方法とし
ては、あらかじめ排水に消石炭、消石炭、塩化カ
ルシウム、苛性ソーダ、炭酸ソーダなどのカルシ
ウム塩及びアルカリ剤を単独あるいは二種類以下
添加して、排水をアルカリ性、好ましくはPH10以
上に調整して凝集沈殿、過などの処理法でふつ
素、重金属並びに懸濁物質の大部分を除去したの
ち、次に残留しているCOD成分を中性あるいは
弱酸性領域において強塩基型、中塩基型または弱
塩基型のいずれかの活性基を有する陰イオン交換
樹脂に接触させて、COD成分を選択的に除去し
ていた。しかし、前記凝集沈殿、過処理水中に
は未処理のふつ素並びに微量の重金属が残留して
おり、排水の排出基準を上回る場合には、凝集沈
殿、過処理した処理水を、更にふつ素除去する
ためには活性アルミナに接触させ、また微量の重
金属を除去するためには陽イオン交換樹脂に接触
させて該物質を吸着除去する高度処理を行わなけ
ればならなかつた。 ここで、排水と、活性アルミナ、陽イオン交換
樹脂などの吸着剤との接触は、各々の着剤を充填
した塔に排水を通水して行うものである。 したがつて、前記凝集沈殿、過処理した処理
水から未処理の残留ふつ素、微量の重金属および
COD成分を除去するためには、活性アルミナ充
填塔と陽イオン交換樹脂塔と強塩基型、中塩基型
または弱塩基型のいずれかの活性基型を有する陰
イオン交換樹脂充填塔を設置して、各塔に凝集沈
殿、過処理した処理水を順次(順不同)通水し
て該物質を各々除去しなければならなかつた。 しかし、前記各吸着剤によるふつ素、重金属並
びにCOD成分の除去方法では、通水時のPH領域
が各々異なること、吸着剤の再生に使用する薬剤
の種類、数量及び使用条件が各々異なることなど
から、各塔への通水前のPH調整、再生の為の運転
操作及び構成する装置が複雑化し、更に多種類の
再生排水が発生するという欠点があつた。 本発明の目的は、前記従来技術の欠点を解消
し、チオン酸イオン等の硫黄化合物とふつ素と水
銀、鉛等の重金属とを含む排水から該物質を選択
的に除去して容易に無害化処理し、更に再生の為
の運転操作及び構成装置を簡易化し、再生排水の
種類と再生排水量とを低減する該排水処理法を提
供することにある。 上記目的を達成するために、本発明はチオン酸
イオン等の硫黄化合物とふつ素と水銀、鉛等の重
金属とをむ排水を、イオン交換基として少なくと
も1個の第三級アミノ基を有する弱塩基性陰イオ
ン交換樹脂を基体とし、その第三級アミノ基を第
四級化した式(): の第四級アンモニウム基を官能基として有する両
性吸着樹脂と接触させることにより、該物質の除
去を可能とし、アルカリ剤及び鉱酸を使用して再
生することを特徴とするものである。 ここで、Xとはハロゲン原子、OHあるいは
SO3Hを示し、RとはCH3,C2H5あるいはCH2
CH2―OHを示し、nは1〜3を示し、R′とは
H、アルカリ土類金属を示す。 本発明において、脱硫排水は従来のように、あ
らかじめ消石炭、塩化カルシウム、苛性ソーダな
どのカルシウム塩及びアルカリ剤を単独あるいは
二種類以上添加して、アルカリ性領域で凝集沈
殿、過処理を行い、ふつ素、重金属並びに懸濁
物質の大部分を除去し、その後PH調整を行つたの
ち上記両性吸着樹脂と接触させる。 凝集沈殿、過処理した処理水はアルカリ性を
示すので該物質を効果的に除去するために硫酸、
塩酸などの鉱酸を添加してPH約3〜8好ましくは
4〜6に調整する。 本発明に使用する両性吸着樹脂における基体と
して、例えば、スチレン―ジビニルベンゼン樹
脂、塩化ビニル樹脂、エポキシ樹脂、メタクリル
酸樹脂、MMA樹脂等であつて、イオン交換基と
して少なくとも1個の第三級アミノ基を含む任意
の弱塩基性陰イオン交換樹脂を使用することがで
きる。第三級アミノ基は
The present invention relates to a method for treating wastewater containing sulfur compounds, fluorine, heavy metals, etc., and in particular, a method for treating wastewater containing sulfur compounds, fluorine, and heavy metals such as mercury and lead. The present invention relates to a method for treating down wastewater. Taking the limestone-gypsum method as an example, the blowdown water discharged from a wet flue gas desulfurization equipment (hereinafter referred to as membrane sulfur wastewater) is the water discharged from the circulation system that removes dust or cools the flue gas, and the water discharged from the flue gas and limestone slurry. Some are discharged from the reaction process in which sulfur dioxide in the exhaust gas is converted into gypsum via calcium sulfite through contact with sulfur dioxide and oxidation with air. This desulfurization wastewater contains pollutants such as suspended solids, dissolved inorganic substances, and dissolved organic substances, and in particular contains COD components that are difficult to remove by normal means. This COD component mainly consists of sulfur compounds such as thionate ions (S 2 O 6 2- , S 4 O 6 2- , S 5 O 6 2- ), and is generally known as a method for removing COD components. It is difficult to remove by coagulation precipitation method, chemical oxidation method, ozone oxidation method, activated carbon adsorption method, ultraviolet irradiation method, etc. Conventionally, the method of treating such desulfurization wastewater is to make the wastewater alkaline by adding one or two or more types of calcium salts and alkaline agents such as slaked coal, slaked coal, calcium chloride, caustic soda, and soda carbonate to the wastewater in advance. After adjusting the pH to preferably 10 or higher and removing most of the fluorine, heavy metals and suspended solids by coagulation-sedimentation, filtration, etc., the remaining COD components are then removed in a neutral or weakly acidic region. The COD component was selectively removed by contacting with an anion exchange resin having either a strong base type, medium base type, or weak base type active group. However, untreated fluorine and trace amounts of heavy metals remain in the coagulated and precipitated and overtreated water, and if they exceed the wastewater discharge standards, the coagulated and precipitated and overtreated treated water will be further removed to remove fluorine. In order to remove trace amounts of heavy metals, it was necessary to bring them into contact with activated alumina, and in order to remove trace amounts of heavy metals, they had to be brought into contact with a cation exchange resin to adsorb and remove the substances. Here, the contact between the waste water and the adsorbent such as activated alumina or cation exchange resin is carried out by passing the waste water through a column filled with each adhesive. Therefore, the coagulation and sedimentation, untreated residual fluorine, trace amounts of heavy metals and
In order to remove COD components, an activated alumina packed tower, a cation exchange resin tower, and an anion exchange resin packed tower having an active group type of strong base type, medium base type, or weak base type are installed. It was necessary to remove the substances by sequentially (in random order) passing treated water that had been coagulated and precipitated and overtreated through each column. However, in the methods for removing fluorine, heavy metals, and COD components using each adsorbent, the PH range during water flow is different, and the type, quantity, and usage conditions of the chemicals used to regenerate the adsorbent are different. As a result, the PH adjustment before water is passed through each tower, the operation for regeneration, and the equipment involved are complicated, and there are also disadvantages in that many types of regenerated wastewater are generated. An object of the present invention is to eliminate the drawbacks of the prior art, and to selectively remove and easily render harmless wastewater containing sulfur compounds such as thionate ions, fluorine, and heavy metals such as mercury and lead. It is an object of the present invention to provide a wastewater treatment method that simplifies the operation and configuration equipment for treatment and regeneration, and reduces the types of recycled wastewater and the amount of recycled wastewater. In order to achieve the above object, the present invention aims to convert wastewater containing sulfur compounds such as thionate ions, fluorine, and heavy metals such as mercury and lead to weak Formula () using a basic anion exchange resin as a base and quaternizing its tertiary amino group: The substance can be removed by bringing it into contact with an amphoteric adsorption resin having a quaternary ammonium group as a functional group, and is characterized by being regenerated using an alkaline agent and a mineral acid. Here, X is a halogen atom, OH or
SO 3 H and R is CH 3 , C 2 H 5 or CH 2
It represents CH 2 --OH, n represents 1 to 3, and R' represents H or an alkaline earth metal. In the present invention, desulfurization wastewater is treated with slaked coal, calcium chloride, caustic soda, etc., and calcium salts such as caustic soda, etc., and alkaline agents, alone or in combination, and coagulated and precipitated and overtreated in an alkaline region. , remove most of the heavy metals and suspended solids, then adjust the pH, and then bring it into contact with the amphoteric adsorption resin. Since treated water that has undergone coagulation and precipitation shows alkalinity, sulfuric acid,
The pH is adjusted to about 3-8, preferably 4-6 by adding a mineral acid such as hydrochloric acid. Examples of the substrate in the amphoteric adsorption resin used in the present invention include styrene-divinylbenzene resin, vinyl chloride resin, epoxy resin, methacrylic acid resin, MMA resin, etc., and at least one tertiary amino acid resin as an ion exchange group. Any weakly basic anion exchange resin containing groups can be used. The tertiary amino group is

【式】又は[Formula] or

【式】〔式中RはCH3、C2H5あるいはCH2― CH2―OHを示す〕で示される。 本発明に使用する両性吸着樹脂は、前記のよう
な、第三級アミノ基を少なくとも1個有する塩基
性陰イオン交換樹脂を式X―(CH2)n―
COOR′〔式中Xはハロゲン原子を表し、nは1
〜3を示し、R′はH、アルカリ金属あるいはア
ルカリ土類金属を示す〕のモノハロゲンアルキル
カルボン酸又はその塩で第四級化することによつ
て製造することができる。前記のモノハロゲンア
ルキルカルボン酸としてはモノクロル酢酸、モノ
クロルプロピオン酸、モノクロルバレリアン酸が
挙げられる。 このように、排水を両性吸着樹脂に接触させる
ことにより、COD成分の大部分は樹脂のXの部
分で置換除去され、一方微量重金属のほかアルミ
ニウムなどの金属はR′の部分で同様に除去され
る。 また前記重金属、アルミニウムなどの除去と同
時にCOD成分の一部及びふつ素は、排水中に共
存する塩素、硫酸などの共存イオンに影響される
ことなく効率良く選択的に除去される。 この結果、処理水中のCODMoを10mg/以下
に、ふつ素を10mg/以下に、また微量重金属例
えば水銀を検出限界以下に、鉛を0.1mg/以下
に除去することができる。 吸着を終えた両性吸着樹脂は次に再生を行う。 再生は、苛性ソーダなどのアルカリ剤と硫酸、
塩酸などの鉱酸の水溶液を順次通水することによ
り、COD成分、ふつ素及び重金属を容易に脱着
することができる。 すなわち、苛性ソーダなどのアルカリ剤の水溶
液を通水することにより、ふつ素の一部とCOD
成分が脱着され、次に硫酸などの鉱酸の水溶液を
通水することによりふつ素の残分と重金属などが
脱着される。したがつて、各再生排水を分別回収
することにより、COD成分重金属とを高濃度に
含有する二種の再生排水を得ることができる。 COD成分を高濃度に含有する再生排水の好ま
しい処理法としては、硫酸溶液を用いて加熱分解
する方法があげられる。 本法は、上記再生排水を低PH領域、好ましくは
PH≦1.5及び60℃以上に加熱して分解処理するも
ので、通常の酸化処理では除去されない硫黄化合
物も容易に加熱分解され、最終的には二酸化硫黄
が得られる。 この二酸化硫黄は通常の脱硫処理で容易に除去
される。またCOD成分の加熱分解処理水中には
ふつ素が含有されているため、前段の凝集沈殿処
理設備へ返送してカルシウム塩と反応させること
により、ふつ化カルシウムとなつて不溶化し、沈
殿分解除去される。 重金属を高濃度に含有する再生排水の好ましい
処理法としては、加熱分解処理水と同様に前段の
凝集沈殿処理設備へ返送してアルカリ剤と反応さ
せることにより、水酸化物として沈殿分離除去す
る方法があげられる。 なお、本発明方法は、前記チオン酸イオン等の
通常の酸化処理では困難な硫黄化合物とふつ素と
重金属のうちいずれか一種類あるいは二種類以上
を含む排水であれば、排ガス脱硫装置のブローダ
ウン水に限らず適用することができる。 以上本発明によれば排ガス脱硫装置から排出さ
れるチオン酸イオン等の硫黄化合物、ふつ素及び
重金属を含む排水を官能基として なる構造を有する両性吸着樹脂と接触させること
により、該物質を同時に容易に無害化処理するこ
とができ、従来凝集沈殿、過処理後の処理水中
にふつ素及び微量の重金属が残留しており、排水
の排出基準を上回る場合に必要とされた、活性ア
ルミナによるふつ素除去と陽イオン交換樹脂ある
いはキレート樹脂による重金属除去などの高度処
理を不要とすることができる。 また、従来複雑であつた各塔への通水前のPH調
整、再生の為の運転操作及び構成装置を簡易化
し、更に再生排水の種類と再生排水量を低減させ
ることができる。 樹脂の製造例 製造例 1 1 スチレン―ジビニルベンゼン樹脂にイオン交
換基として―N(CH32を有する14〜48メツシ
ユの球状のマクロポーラス型弱塩基性陰イオン
交換樹脂(OH型、1.6meq/ml)500mlとイオ
ン交換水1000mlを撹拌機、温度計及び還流器を
付けたフラスコ中に仕込み、25℃で撹拌下に
3N塩酸でPH7.0に調整した後、50℃に昇温し、
50%モノクロ酢酸ナトリウム水溶液を46.6g添
加し、50〜60℃で2時間撹拌した後、更に85℃
に昇温して3時間撹拌を続けた。冷却後、樹脂
分を別し、イオン交換水で良く洗浄し、淡黄
色の両性イオン交換樹脂を得た(含水率53
%)。 2 こうして得た両性イオン交換樹脂をカラムに
充填し、硫酸水溶液をSV2h-2で充分通水する
ことにより後記の第1表に示す官能基を有する
樹脂Aを得た。 製造例 2 製造例1の1におけるモノクロル酢酸ナトリウ
ム水溶液の代わりにモノクロルピロピオン酸水溶
液を使用し、1と同様に操作して後記の第1表に
示す官能基を有する樹脂Bを得た。 製造例 3 前記の製造例1と同様の操作により、後記の第
1表に示す官能基をそれぞれ有する樹脂C〜Eを
製造した。 実施例 1 官能基として なる構造を有する両性吸着樹脂として、第1表に
示すA〜Dの官能基を有する樹脂を用いてモデル
液によるCOD成分、重金属ならびにふつ素の除
去実験を行つた。
[Formula] [In the formula, R represents CH 3 , C 2 H 5 or CH 2 — CH 2 —OH]. The amphoteric adsorption resin used in the present invention is a basic anion exchange resin having at least one tertiary amino group as described above, and has the formula X-(CH 2 ) n-
COOR' [in the formula, X represents a halogen atom, n is 1
~3 and R' represents H, an alkali metal or an alkaline earth metal] or a salt thereof. Examples of the monohalogen alkylcarboxylic acids include monochloroacetic acid, monochloropropionic acid, and monochlorovaleric acid. In this way, by bringing the wastewater into contact with the amphoteric adsorption resin, most of the COD components are removed by substitution at the X part of the resin, while trace amounts of heavy metals and metals such as aluminum are similarly removed at the R' part. Ru. Further, at the same time as the heavy metals, aluminum, etc. are removed, a part of the COD components and fluorine are efficiently and selectively removed without being affected by coexisting ions such as chlorine and sulfuric acid that coexist in the wastewater. As a result, COD Mo in the treated water can be removed to 10 mg/or less, fluorine to 10 mg/or less, trace heavy metals such as mercury to below the detection limit, and lead to 0.1 mg/or less. After adsorption, the amphoteric adsorption resin is then regenerated. Regeneration is performed using alkaline agents such as caustic soda and sulfuric acid,
COD components, fluorine, and heavy metals can be easily desorbed by sequentially passing an aqueous solution of a mineral acid such as hydrochloric acid. In other words, by passing water through an aqueous solution of an alkaline agent such as caustic soda, some of the fluorine and COD are removed.
The components are desorbed, and then the remaining fluorine and heavy metals are desorbed by passing water through an aqueous solution of mineral acids such as sulfuric acid. Therefore, by separately collecting each recycled wastewater, it is possible to obtain two types of recycled wastewater containing high concentrations of COD component heavy metals. A preferred method for treating recycled wastewater containing a high concentration of COD components is thermal decomposition using a sulfuric acid solution. In this method, the recycled wastewater is treated in a low PH region, preferably in a low PH region.
The decomposition treatment is carried out by heating to PH≦1.5 and 60°C or higher, and sulfur compounds that cannot be removed by normal oxidation treatment are easily thermally decomposed, ultimately yielding sulfur dioxide. This sulfur dioxide is easily removed by normal desulfurization treatment. In addition, since fluorine is contained in the water treated for thermal decomposition of COD components, by returning it to the coagulation-sedimentation treatment equipment in the previous stage and reacting with calcium salts, it becomes insolubilized as calcium fluoride, which is then precipitated and decomposed and removed. Ru. A preferred treatment method for reclaimed wastewater containing a high concentration of heavy metals is to return it to the previous coagulation-sedimentation treatment facility and react with an alkali agent, in the same way as thermally decomposed water, to precipitate and remove it as hydroxides. can be given. In addition, the method of the present invention can be used for blowdown of exhaust gas desulfurization equipment if the wastewater contains one or more of sulfur compounds, fluorine, and heavy metals, which are difficult to treat by normal oxidation treatment such as thionate ions. It can be applied not only to water. As described above, according to the present invention, wastewater containing sulfur compounds such as thionate ions, fluorine, and heavy metals discharged from an exhaust gas desulfurization device is used as a functional group. By bringing the substance into contact with an amphoteric adsorption resin having the following structure, it is possible to easily detoxify the substance at the same time. Advanced treatments such as fluoride removal using activated alumina and heavy metal removal using cation exchange resin or chelate resin, which are required when wastewater discharge standards are exceeded, can be eliminated. In addition, it is possible to simplify the conventionally complicated pH adjustment before water flow to each tower, the operation and configuration equipment for regeneration, and further reduce the types of recycled wastewater and the amount of recycled wastewater. Production Example of Resin Production Example 1 1 Styrene-divinylbenzene resin with -N(CH 3 ) 2 as an ion exchange group, a spherical macroporous weakly basic anion exchange resin (OH type, 1.6 meq. /ml) and 1000ml of ion-exchanged water into a flask equipped with a stirrer, thermometer and reflux device, and stir at 25℃.
After adjusting the pH to 7.0 with 3N hydrochloric acid, raise the temperature to 50℃,
Add 46.6g of 50% monochlorosodium acetate aqueous solution, stir at 50 to 60°C for 2 hours, and then heat to 85°C.
The temperature was raised to , and stirring was continued for 3 hours. After cooling, the resin was separated and thoroughly washed with ion-exchanged water to obtain a pale yellow amphoteric ion-exchange resin (water content: 53
%). 2 The thus obtained amphoteric ion exchange resin was packed in a column, and a sulfuric acid aqueous solution was sufficiently passed through the column at SV2h -2 to obtain resin A having the functional groups shown in Table 1 below. Production Example 2 A monochloropyropionic acid aqueous solution was used in place of the monochlorosodium acetate aqueous solution in 1 of Production Example 1, and the same procedure as in 1 was carried out to obtain a resin B having the functional groups shown in Table 1 below. Production Example 3 Resins C to E each having the functional groups shown in Table 1 below were produced by the same operation as in Production Example 1 above. Example 1 As a functional group Experiments were conducted to remove COD components, heavy metals, and fluorine using model liquids using resins having the functional groups A to D shown in Table 1 as amphoteric adsorption resins having the following structure.

【表】【table】

【表】 原水としてジ・チオン酸イオン(S2O6 2-)1000
mg/、銅イオン(Cu2+)50mg/ならびにふ
つ素イオン(F-)20mg/を含有する水溶液を
調整した後、原水1に樹脂を1ml添加し、1
ビーカ中室温で3時間撹拌した。 固液分離後、水溶液中の残存ジチオン酸イオン
をセチルトリメチルアンモニウムブロマイド法
で、また銅イオンとふつ素イオンをJISK0102に
準じて測定し、原水との差により吸着量を算出し
た。 結果を第2表に示す。
[Table] Dithionate ion (S 2 O 6 2- ) 1000 as raw water
After preparing an aqueous solution containing copper ions (Cu 2+ ) 50 mg/ and fluorine ions (F - ) 20 mg/, 1 ml of resin was added to raw water 1, and 1 ml of resin was added to raw water 1.
Stirred in a beaker at room temperature for 3 hours. After solid-liquid separation, residual dithionate ions in the aqueous solution were measured by the cetyltrimethylammonium bromide method, and copper ions and fluorine ions were measured according to JISK0102, and the adsorption amount was calculated from the difference from the raw water. The results are shown in Table 2.

【表】 実施例 2 実施例1の結果より、ジ・チオン酸の吸着量が
優れている樹脂Aを用いて、カラム通水による
ジ・チオン酸イオンの除去効果を確認した。 ジ・チオン酸ナトリウム溶液(S2O6 2-として
2000mg/、CODMo:70mg/)を、両性吸着
樹脂200mlを充填したカラムに空間速度(SV)
10h-1で通液して接触させ、その処理水中の
CODMoを分析し、本発明のCOD成分の除去効果
を調べた。 樹脂はあらかじめ硫酸水溶液を、SV2h-1で十
分通水して使用し、処理水中のCODMo
JISK0102に準じて測定した。各通水倍量(樹脂
容量に対する通液量の比)と、そのときの処理水
中のCODMoとの関係を第1図に示す。 第1図からわかるように、本発明の方法によれ
ば、通水倍量45倍迄ジ・チオン酸に基因する処理
水中のCODMoを10mg/以下に維持でき、樹脂
の交換容量を計算すると約1.1当量/―樹脂と
なり、顕著なCOD成分の除去効果が認められ
た。 さらに樹脂に捕捉されたCOD成分を脱着し、
くり返し樹脂が使用可能であることを確認するた
め、樹脂量の50倍まで通水、処理したカラムに苛
性ソーダ溶液(80g/)をSV2h-1で通液して
再生し、再生排液中のCODMoを調べた。その結
果を第2図に示す。第2図から明らかなように、
苛性ソーダ溶液を樹脂容量の1〜2倍量通液して
再生することにより、CODMoは効果的に樹脂か
ら脱着され、樹脂はくり返し使用可能である。 実施例 3 チオン酸イオン、ふつ素及び各種重金属イオン
を含む実排水を用いて、実施例1の樹脂による
COD成分、ふつ素及び重金属の除去効果を確認
した。実排水はA火力発電所より、石灰石―石膏
法の湿式排ガス脱硫装置のブローダウン排水を採
水し、これを消石灰溶液にてPH約10に調整後、懸
濁物を別して得られた液に塩酸を添加してPH
を5に調整し試料排水として用いた。両性吸着樹
脂は硫酸水容液をSV2h-1で十分通水したものを
使用し、他は実施列2と同様にしてCOD成分、
ふつ素及び重金属の除去効果を調べた。 試料排水の通水倍量と処理水中のCODMoの測
定結果を第3図に示す。また試料排水及び処理水
のCOD、ふつ素及び重金属の濃度を第3表に示
す。 第3図から、通水倍量44倍までチオン酸に起因
する処理中のCODMoを10mg/に維持でき顕著
なCOD成分の除去効果が認められた。また第3
表からPH約5の試料排水中に共存していたふつ
素、水銀、カドミウム、鉛、亜鉛などの重金属が
非常に低濃度まで、COD成分と同時に除去され
ていることが認められた。
[Table] Example 2 Based on the results of Example 1, the effect of removing di-thionate ions by passing water through the column was confirmed using resin A which has an excellent adsorption amount of di-thionate. Sodium dithionate solution (as S 2 O 6 2-
2000mg/, COD Mo : 70mg/) was added to a column packed with 200ml of amphoteric adsorption resin at space velocity (SV).
The liquid was passed through the water for 10 h -1 and brought into contact with the treated water.
COD Mo was analyzed to examine the COD component removal effect of the present invention. The resin is used by passing a sulfuric acid aqueous solution through it in advance at SV2h -1 , and the COD Mo in the treated water is
Measured according to JISK0102. Figure 1 shows the relationship between each water flow rate (ratio of liquid flow rate to resin capacity) and the COD Mo in the treated water at that time. As can be seen from Figure 1, according to the method of the present invention, the COD Mo in the treated water caused by dithionic acid can be maintained at 10 mg/or less even when the water flow rate is 45 times the water flow rate, and when the exchange capacity of the resin is calculated, The amount was approximately 1.1 equivalent/-resin, and a remarkable effect of removing COD components was observed. Furthermore, the COD components captured in the resin are desorbed,
To confirm that the resin can be used repeatedly, water was passed up to 50 times the amount of resin, and a caustic soda solution (80 g/) was passed through the treated column at SV2h -1 to regenerate the COD in the regenerated effluent. I looked into Mo. The results are shown in FIG. As is clear from Figure 2,
By regenerating the resin by passing a caustic soda solution in an amount of 1 to 2 times the volume of the resin, COD Mo is effectively desorbed from the resin, and the resin can be used repeatedly. Example 3 Using actual wastewater containing thionate ions, fluorine, and various heavy metal ions, the resin of Example 1 was used.
The effectiveness of removing COD components, fluorine, and heavy metals was confirmed. The actual wastewater was taken from blowdown wastewater from the limestone-gypsum wet flue gas desulfurization equipment at thermal power plant A, and after adjusting the pH to approximately 10 with a slaked lime solution, the suspended solids were separated and the resulting liquid was collected. PH by adding hydrochloric acid
was adjusted to 5 and used as sample wastewater. The amphoteric adsorption resin used was a sulfuric acid aqueous solution sufficiently watered at SV2h -1 , and the other conditions were the same as in Example 2. COD components,
The removal effect of fluorine and heavy metals was investigated. Figure 3 shows the water flow rate of the sample wastewater and the measurement results of COD Mo in the treated water. Table 3 also shows the concentrations of COD, fluorine, and heavy metals in sample wastewater and treated water. From FIG. 3, it was found that the COD Mo during treatment caused by thionic acid could be maintained at 10 mg/distance up to a water flow rate of 44 times, and a remarkable effect of removing COD components was observed. Also the third
From the table, it was confirmed that heavy metals such as fluorine, mercury, cadmium, lead, and zinc, which coexisted in the sample wastewater with a pH of approximately 5, were removed to extremely low concentrations at the same time as COD components.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例2における通水倍量と
処理水CODの関係を示す説明図である。第2図
は実施例2における再生液の通水倍量と再生排液
中のCODの関係を示す説明図である。第3図か
本発明の実施例3における通水倍量と処理水
CODの関係を示す説明図である。
FIG. 1 is an explanatory diagram showing the relationship between water flow rate and treated water COD in Example 2 of the present invention. FIG. 2 is an explanatory diagram showing the relationship between the water flow rate of the regenerating liquid and the COD in the regenerating waste liquid in Example 2. Figure 3: Water flow rate and treated water in Example 3 of the present invention
FIG. 2 is an explanatory diagram showing the relationship between CODs.

Claims (1)

【特許請求の範囲】 1 石炭、石油を燃焼して生成したガスを処理し
た際に発生する、チオン酸イオン等の硫黄化合物
とふつ素及び重金属とを含む排水を、イオン交換
基として少なくとも1個の第三級アミノ基を有す
る弱塩基性陰イオン交換樹脂を基体とし、その第
三級アミノ基を第四級化した式(): 〔式中Xはハロゲン原子、OHあるいはSO3H
を示し、RはCH3、C2H5あるいはCH2―CH2
OHを示し、nは1〜3を示し、R′はH、アルカ
リ金属あるいはアルカリ土類金属を示す〕の第四
級アンモニウム基を官能基として有する両性吸着
樹脂と接触させることを特徴とする排水の処理方
法。 2 Xがハロゲン原子またはSO3Hを示す式
()の第四級アンモニウム基を官能基として有
する両性吸着樹脂を使用する特許請求の範囲第1
項記載の排水の処理方法。 3 脱硫排水にカルシウム塩及びアルカリ剤を添
加してアルカリ性領域で凝集沈殿させ、過処理
し、鉱酸を添加してPH約3〜8に調整した後、式
()の第四級アンモニウム基を官能基として有
する両性吸着樹脂と接触させる特許請求の範囲第
1項又は第2項記載の排水の処理方法。
[Scope of Claims] 1. Wastewater containing sulfur compounds such as thionate ions, fluorine, and heavy metals, which are generated when gas generated by burning coal or petroleum, is treated as an ion exchange group with at least one ion exchange group. The base is a weakly basic anion exchange resin having a tertiary amino group, and the formula () is obtained by quaternizing the tertiary amino group: [In the formula, X is a halogen atom, OH or SO 3 H
and R is CH 3 , C 2 H 5 or CH 2 -CH 2 -
OH, n represents 1 to 3, and R' represents H, an alkali metal or an alkaline earth metal] is brought into contact with an amphoteric adsorption resin having a quaternary ammonium group as a functional group. processing method. Claim 1 using an amphoteric adsorption resin having a quaternary ammonium group of the formula () in which 2 X represents a halogen atom or SO 3 H as a functional group.
Wastewater treatment method described in section. 3 Add calcium salts and alkaline agents to the desulfurization wastewater, coagulate and precipitate it in an alkaline region, over-treat it, add mineral acid to adjust the pH to about 3 to 8, and then add the quaternary ammonium group of formula (). The method for treating wastewater according to claim 1 or 2, which comprises bringing the wastewater into contact with an amphoteric adsorption resin having a functional group.
JP57185679A 1982-10-22 1982-10-22 Treatment of waste water Granted JPS5976592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185679A JPS5976592A (en) 1982-10-22 1982-10-22 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185679A JPS5976592A (en) 1982-10-22 1982-10-22 Treatment of waste water

Publications (2)

Publication Number Publication Date
JPS5976592A JPS5976592A (en) 1984-05-01
JPS6161880B2 true JPS6161880B2 (en) 1986-12-27

Family

ID=16174966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185679A Granted JPS5976592A (en) 1982-10-22 1982-10-22 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS5976592A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709678B1 (en) * 1993-09-09 1995-12-08 David Philippe Marie Process for the purification of gaseous or liquid effluents containing sulfur derivatives.
WO1996028239A1 (en) * 1993-09-09 1996-09-19 David Philippe Marie Method for purifying gaseous or liquid effluents containing sulphur derivatives
KR100469178B1 (en) * 2002-10-14 2005-02-02 남연우 pollutant decontaminating method
JP4682043B2 (en) * 2004-02-10 2011-05-11 中外写真薬品株式会社 Borohydrofluoric acid scavenger and wastewater treatment method using the same

Also Published As

Publication number Publication date
JPS5976592A (en) 1984-05-01

Similar Documents

Publication Publication Date Title
US2155318A (en) Processes for the deacidification of liquids, especially water
WO1995019321A1 (en) Water treatment process
JP2005193167A (en) Drainage purification method and purification method
JPS6161880B2 (en)
JP4543478B2 (en) Method for treating boron-containing water
JPH0256958B2 (en)
JP2005324137A (en) Method for removing fluoride ion in wastewater
US3553126A (en) Method of removal of molybdate ions from water
JP4521109B2 (en) Wastewater treatment method
JPH1099853A (en) Apparatus for treating water containing tetraalkylammonium hydroxide
JPS60132695A (en) Treatment of waste water containing sulfur compound
JP3390148B2 (en) Purification treatment method for salt water for electrolysis
JPS60143891A (en) Treatment of waste water from stack gas desulfurization
JPH0299189A (en) Process for treating waste water containing fluorine
JPH0371199B2 (en)
JPS5942083A (en) Treatment of waste water
JP2737614B2 (en) Treatment of flue gas desulfurization wastewater
JPS6230596A (en) Method for treating fluorine in waste water
JPS6036831B2 (en) Treatment method for water containing arsenic and silica
JPS596197B2 (en) Method for regenerating houfu compound wastewater treatment agent
JP2940981B2 (en) Wet exhaust gas desulfurization apparatus and wet exhaust gas desulfurization method
JP3563781B2 (en) Dechlorination of organic chlorinated products
JPS6152752B2 (en)
JP2001181219A (en) Method for purifying chlorinated hydrocarbon
JPH02218417A (en) Method for removing hydrogen sulfide in flue gas